1
|
Sharma R, Kashyap M, Zayed H, Krishnia L, Kashyap MK. Artificial blood-hope and the challenges to combat tumor hypoxia for anti-cancer therapy. Med Biol Eng Comput 2025; 63:933-957. [PMID: 39614063 DOI: 10.1007/s11517-024-03233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
The blood plays a vital role in the human body and serves as an intermediary between various physiological systems and organs. White blood cells, which are a part of the immune system, defend against infections and regulate the body temperature and pH balance. Blood platelets play a crucial role in clotting, the prevention of excessive bleeding, and the promotion of healing. Blood also serves as a courier system that transports hormones to facilitate communication and synchronization between different organs and systems in the body. The circulatory system, comprised of arteries, veins, and capillaries, plays a crucial role in the efficient transportation and connection of vital nutrients and oxygen. Despite the importance of natural blood, there are often supply shortages, compatibility issues, and medical conditions, which make alternatives such as artificial blood necessary. This is particularly relevant in cancer treatment, which was the focus of our study. In this study, we investigated the potential of artificial blood in cancer therapy, specifically to address tumor hypoxia. We also examined the potential of red blood cell substitutes such as hemoglobin-based oxygen carriers and perfluorocarbons. Additionally, we examined the production of hemoglobin using E. coli and the role of hemoglobin in oncogenesis. Furthermore, we explored the potential use of artificial platelets for cancer treatment. Our study emphasizes the significance of artificial blood in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Rishabh Sharma
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar (Gurugram), Haryana, 122413, India
| | - Manju Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar (Gurugram), Haryana, 122413, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Lucky Krishnia
- Amity Institute of Nanotechnology, Amity School of Applied Sciences, Amity University Haryana, Panchgaon, Manesar (Gurugram), Haryana, 122413, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar (Gurugram), Haryana, 122413, India.
| |
Collapse
|
2
|
Cordas Dos Santos DM, Toenges R, Bertamini L, Alberge JB, Ghobrial IM. New horizons in our understanding of precursor multiple myeloma and early interception. Nat Rev Cancer 2024; 24:867-886. [PMID: 39414947 DOI: 10.1038/s41568-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Multiple myeloma is an incurable plasma cell malignancy that evolves over decades through the selection and malignant transformation of monoclonal plasma cells. The evolution from precursor states to symptomatic disease is characterized by an increasing complexity of genomic alterations within the plasma cells and a remodelling of the microenvironment towards an immunosuppressive state. Notably, in patients with advanced disease, similar mechanisms of tumour escape and immune dysfunction mediate resistance to modern T cell-based therapies, such as T cell-engaging bispecific antibodies and chimeric antigen receptor (CAR)-T cells. Thus, an increasing number of clinical trials are assessing the efficiency and safety of these therapies in individuals with newly diagnosed multiple myeloma and high-risk smoldering multiple myeloma. In this Review, we summarize the current knowledge about tumour intrinsic and extrinsic processes underlying progression from precursor states to symptomatic myeloma and discuss the rationale for early interception including the use of T cell-redirecting therapies.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rosa Toenges
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luca Bertamini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Erasmus MC Cancer Institute Rotterdam, Rotterdam, The Netherlands
| | - Jean-Baptiste Alberge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Bhowmick K, von Suskil M, Al-Odat OS, Elbezanti WO, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. Pathways to therapy resistance: The sheltering effect of the bone marrow microenvironment to multiple myeloma cells. Heliyon 2024; 10:e33091. [PMID: 39021902 PMCID: PMC11252793 DOI: 10.1016/j.heliyon.2024.e33091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Multiple Myeloma (MM) is a malignant expansion of plasma cells in the bone marrow (BM), resulting in a disease characterized by symptoms of end organ damage from light chain secretion, crowding of the BM, and bone lesions. Although the past two decades have been characterized by numerous novel therapies emerging, the disease remains incurable due to intrinsic or acquired drug resistance. A major player in MM's drug resistance arises from its intimate relationship with the BM microenvironment (BMME). Through stress-inducing conditions, soluble messengers, and physical adhesion to BM elements, the BMME activates numerous pathways in the myeloma cell. This not only propagates myeloma progression through survival and growth signals, but also specific mechanisms to circumvent therapeutic actions. In this review, we provide an overview of the BMME, the role of individual components in MM survival, and various therapy-specific resistance mechanisms reported in the literature.
Collapse
Affiliation(s)
- Kuntal Bhowmick
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Tulin Budak-Alpdogan
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
4
|
Borsi E, Mazzocchetti G, Dico AF, Vigliotta I, Martello M, Poletti A, Solli V, Armuzzi S, Taurisano B, Kanapari A, Pistis I, Zamagni E, Tacchetti P, Pantani L, Mancuso K, Rocchi S, Rizzello I, Cavo M, Terragna C. High levels of CRBN isoform lacking IMiDs binding domain predicts for a worse response to IMiDs-based upfront therapy in newly diagnosed myeloma patients. Clin Exp Med 2023; 23:5227-5239. [PMID: 37815734 PMCID: PMC10725394 DOI: 10.1007/s10238-023-01205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
In recent years, the immunoderivative (IMiD) agents have been extensively used for the treatment of multiple myeloma (MM). IMiDs and their newer derivatives CRBN E3 ligase modulator bind the E3 ligase substrate recognition adapter protein cereblon (CRBN), which has been recognized as one of the IMiDs' direct target proteins, and it is essential for the therapeutic effect of these agents.High expression of CRBN was associated with improved clinical response in patients with MM treated with IMiDs, further confirming that the expression of IMiDs' direct target protein CRBN is required for the anti-MM activity. CRBN's central role as a target of IMiDs suggests potential utility as a predictive biomarker of response or resistance to IMiDs therapy. Additionally, the presence of alternatively spliced variants of CRBN in MM cells, especially those lacking the drug-binding domain for IMiDs, raise questions concerning their potential biological function, making difficult the transcript measurement, which leads to inaccurate overestimation of full-length CRBN transcripts. In sight of this, in the present study, we evaluated the CRBN expression, both full-length and spliced isoforms, by using real-time assay data from 87 patients and RNA sequencing data from 50 patients (n = 137 newly diagnosed MM patients), aiming at defining CRBN's role as a predictive biomarker for response to IMiDs-based induction therapy. We found that the expression level of the spliced isoform tends to be higher in not-responding patients, confirming that the presence of a more CRBN spliced transcript predicts for lack of IMiDs response.
Collapse
Affiliation(s)
- Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| | - Gaia Mazzocchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Marina Martello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Andrea Poletti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Vincenza Solli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Silvia Armuzzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Barbara Taurisano
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ajsi Kanapari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Serena Rocchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ilaria Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| |
Collapse
|
5
|
Gao D, Hong F, He A. The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies. Scand J Immunol 2023; 98:e13273. [PMID: 39007933 DOI: 10.1111/sji.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/16/2024]
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Rana PS, Goparaju K, Driscoll JJ. Shutting off the fuel supply to target metabolic vulnerabilities in multiple myeloma. Front Oncol 2023; 13:1141851. [PMID: 37361580 PMCID: PMC10285382 DOI: 10.3389/fonc.2023.1141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Pathways that govern cellular bioenergetics are deregulated in tumor cells and represent a hallmark of cancer. Tumor cells have the capacity to reprogram pathways that control nutrient acquisition, anabolism and catabolism to enhance their growth and survival. Tumorigenesis requires the autonomous reprogramming of key metabolic pathways that obtain, generate and produce metabolites from a nutrient-deprived tumor microenvironment to meet the increased bioenergetic demands of cancer cells. Intra- and extracellular factors also have a profound effect on gene expression to drive metabolic pathway reprogramming in not only cancer cells but also surrounding cell types that contribute to anti-tumor immunity. Despite a vast amount of genetic and histologic heterogeneity within and between cancer types, a finite set of pathways are commonly deregulated to support anabolism, catabolism and redox balance. Multiple myeloma (MM) is the second most common hematologic malignancy in adults and remains incurable in the vast majority of patients. Genetic events and the hypoxic bone marrow milieu deregulate glycolysis, glutaminolysis and fatty acid synthesis in MM cells to promote their proliferation, survival, metastasis, drug resistance and evasion of immunosurveillance. Here, we discuss mechanisms that disrupt metabolic pathways in MM cells to support the development of therapeutic resistance and thwart the effects of anti-myeloma immunity. A better understanding of the events that reprogram metabolism in myeloma and immune cells may reveal unforeseen vulnerabilities and advance the rational design of drug cocktails that improve patient survival.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Immune Oncology Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Krishna Goparaju
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Immune Oncology Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
7
|
Metabolic Alterations in Multiple Myeloma: From Oncogenesis to Proteasome Inhibitor Resistance. Cancers (Basel) 2023; 15:cancers15061682. [PMID: 36980568 PMCID: PMC10046772 DOI: 10.3390/cancers15061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Despite significant improvements in treatment strategies over the past couple of decades, multiple myeloma (MM) remains an incurable disease due to the development of drug resistance. Metabolic reprogramming is a key feature of cancer cells, including MM, and acts to fuel increased proliferation, create a permissive tumour microenvironment, and promote drug resistance. This review presents an overview of the key metabolic adaptations that occur in MM pathogenesis and in the development of resistance to proteasome inhibitors, the backbone of current MM therapy, and considers the potential for therapeutic targeting of key metabolic pathways to improve outcomes.
Collapse
|
8
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
9
|
HIF-1α Expression Increases Preoperative Concurrent Chemoradiotherapy Resistance in Hyperglycemic Rectal Cancer. Cancers (Basel) 2022; 14:cancers14164053. [PMID: 36011045 PMCID: PMC9406860 DOI: 10.3390/cancers14164053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose: Preoperative concurrent chemoradiotherapy (CCRT) is the standard treatment for locally advanced rectal cancer patients. However, the poor therapeutic efficacy of CCRT was found in rectal cancer patients with hyperglycemia. This study investigated how hyperglycemia affects radiochemotherapy resistance in rectal cancer. Methods and Materials: We analyzed the correlation between prognosis indexes with hypoxia-inducible factor-1 alpha (HIF-1α) in rectal cancer patients with preoperative CCRT. In vitro, we investigated the effect of different concentrated glucose of environments on the radiation tolerance of rectal cancers. Further, we analyzed the combined HIF-1α inhibitor with radiation therapy in hyperglycemic rectal cancers. Results: The prognosis indexes of euglycemic or hyperglycemic rectal cancer patients after receiving CCRT treatment were investigated. The hyperglycemic rectal cancer patients (n = 13, glycosylated hemoglobin, HbA1c > 6.5%) had poorer prognosis indexes. In addition, a positive correlation was observed between HIF-1α expression and HbA1c levels (p = 0.046). Therefore, it is very important to clarify the relationship between HIF-1α and poor response in patients with hyperglycemia receiving pre-operative CCRT. Under a high glucose environment, rectal cancer cells express higher levels of glucose transport 1 (GLUT1), O-GlcNAc transferase (OGT), and HIF-1α, suggesting that the high glucose environment might stimulate HIF-1α expression through the GLUT1-OGT-HIF-1α pathway promoting tolerance to Fluorouracil (5-FU) and radiation. In the hyperglycemic rectal cancer animal model, rectal cancer cells confirmed that radiation exposure reduces apoptosis by overexpressing HIF-1α. Combining HIF-1α inhibitors was able to reverse radioresistance in a high glucose environment. Lower HIF-1α levels increased DNA damage in tumors leading to apoptosis. Conclusions: The findings here show that hyperglycemia induces the expression of GLUT1, OGT, and HIF-1α to cause CCRT tolerance in rectal cancer and suggest that combining HIF-1α inhibitors could reverse radioresistance in a high glucose environment. HIF-1α inhibitors may be useful for development as CCRT sensitizers in patients with hyperglycemic rectal cancer.
Collapse
|
10
|
Higgins BW, Shuparski AG, Miller KB, Robinson AM, McHeyzer-Williams LJ, McHeyzer-Williams MG. Isotype-specific plasma cells express divergent transcriptional programs. Proc Natl Acad Sci U S A 2022; 119:e2121260119. [PMID: 35704755 PMCID: PMC9231473 DOI: 10.1073/pnas.2121260119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Antibodies are produced across multiple isotypes with distinct properties that coordinate initial antigen clearance and confer long-term antigen-specific immune protection. Here, we interrogate the molecular programs of isotype-specific murine plasma cells (PC) following helper T cell-dependent immunization and within established steady-state immunity. We developed a single-cell-indexed and targeted molecular strategy to dissect conserved and divergent components of the rapid effector phase of antigen-specific IgM+ versus inflammation-modulating programs dictated by type 1 IgG2a/b+ PC differentiation. During antibody affinity maturation, the germinal center (GC) cycle imparts separable programs for post-GC type 2 inhibitory IgG1+ and type 1 inflammatory IgG2a/b+ PC to direct long-term cellular function. In the steady state, two subsets of IgM+ and separate IgG2b+ PC programs clearly segregate from splenic type 3 IgA+ PC programs that emphasize mucosal barrier protection. These diverse isotype-specific molecular pathways of PC differentiation control complementary modules of antigen clearance and immune protection that could be selectively targeted for immunotherapeutic applications and vaccine design.
Collapse
Affiliation(s)
- Brett W. Higgins
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrew G. Shuparski
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Karen B. Miller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Amanda M. Robinson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | | |
Collapse
|
11
|
High Output Heart Failure in Multiple Myeloma: Pathogenetic Considerations. Cancers (Basel) 2022; 14:cancers14030610. [PMID: 35158878 PMCID: PMC8833382 DOI: 10.3390/cancers14030610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a plasma cell disorder that accounts for around 10% of all haematological malignancies. This neoplasia is often associated with a significant prevalence of cardiovascular complications resulting from several factors, unrelated and/or related to the disease. Among cardiovascular complications, the high output heart failure is of great importance as it is related to a worse prognosis for patients. It is important to point out that, despite the availability of more and more numerous and effective drugs, myeloma remains an incurable disease, with frequent relapses and several treatment lines, with the need, therefore, for a careful evaluation of patients, especially from a cardiological point of view. For this reason, we are proposing a comprehensive overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma, including artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations, with the belief that a multidisciplinary approach, in clinical evaluation is critical for the optimal management of the patient. Abstract The high output heart failure is a clinical condition in which the systemic congestion is associated to a high output state, and it can be observed in a non-negligible percentage of hematological diseases, particularly in multiple myeloma, a condition in which the risk of adverse cardiovascular events may increase, with a worse prognosis for patients. For this reason, though an accurate literature search, we provided in this review a complete overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma. Indeed, this clinical finding is present in the 8% of multiple myeloma patients, and it may be caused by artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations with increase in plasma viscosity. The high output heart failure in multiple myeloma is associated with significant morbidity and mortality, emphasizing the need for a multidisciplinary approach.
Collapse
|
12
|
Clonal and subclonal TP53 molecular impairment is associated with prognosis and progression in multiple myeloma. Blood Cancer J 2022; 12:15. [PMID: 35082295 PMCID: PMC8791929 DOI: 10.1038/s41408-022-00610-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrations on TP53, either as deletions of chromosome 17p (del17p) or mutations, are associated with poor outcome in multiple myeloma (MM), but conventional detection methods currently in use underestimate their incidence, hindering an optimal risk assessment and prognostication of MM patients. We have investigated the altered status of TP53 gene by SNPs array and sequencing techniques in a homogenous cohort of 143 newly diagnosed MM patients, evaluated both at diagnosis and at first relapse: single-hit on TP53 gene, either deletion or mutation, detected both at clonal and sub-clonal level, had a minor effect on outcomes. Conversely, the coexistence of both TP53 deletion and mutation, which defined the so-called double-hit patients, was associated with the worst clinical outcome (PFS: HR 3.34 [95% CI: 1.37–8.12] p = 0.008; OS: HR 3.47 [95% CI: 1.18–10.24] p = 0.02). Moreover, the analysis of longitudinal samples pointed out that TP53 allelic status might increase during the disease course. Notably, the acquisition of TP53 alterations at relapse dramatically worsened the clinical course of patients. Overall, our analyses showed these techniques to be highly sensitive to identify TP53 aberrations at sub-clonal level, emphasizing the poor prognosis associated with double-hit MM patients.
Collapse
|
13
|
Identification of the Cysteine Protease Legumain as a Potential Chronic Hypoxia-Specific Multiple Myeloma Target Gene. Cells 2022; 11:cells11020292. [PMID: 35053409 PMCID: PMC8773999 DOI: 10.3390/cells11020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1–6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.
Collapse
|
14
|
Han Z, Dong Y, Lu J, Yang F, Zheng Y, Yang H. Role of hypoxia in inhibiting dendritic cells by VEGF signaling in tumor microenvironments: mechanism and application. Am J Cancer Res 2021; 11:3777-3793. [PMID: 34522449 PMCID: PMC8414384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023] Open
Abstract
The tumor microenvironment (TME) plays a central role in tumor initiation, development, immune escape, and clinical treatment. Hypoxia, an important characteristic of the TME, mediates vascular endothelial factor (VEGF) signaling through direct or indirect mechanisms. Directly, hypoxia promotes the expression of VEGF through hypoxia-inducible factor (HIF) induction. Indirectly, VEGF inhibits dendritic cell (DC) maturation and function by binding to VEGF receptors (VEGFRs) and co-receptors expressed on cell membranes. Additionally, HIF can bypass VEGF/VEGFR and activate downstream signaling factors to promote tumor development. Currently, DC vaccine, anti-HIF and anti-VEGF therapies are widely used in clinical treatment, but their long-term effects remain limited. Therefore, a further understanding of the effects of hypoxia and VEGF signaling on DCs will help in the development of innovative combination therapies and the identification of new targets.
Collapse
Affiliation(s)
- Ziying Han
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| | - Yucheng Dong
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| | - Jizhou Lu
- Department of Liver Surgery, The Third People’s Hospital of Gansu ProvinceNo. 763, Duanjiatan, Chengguan District, Lanzhou 730020, Gansu, China
| | - Fan Yang
- Department of Clinical Medicine, Capital Medical UniversityFengtai District, Youanmen West Headline 10, Beijing 100069, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| |
Collapse
|
15
|
Melana JP, Mignolli F, Stoyanoff T, Aguirre MV, Balboa MA, Balsinde J, Rodríguez JP. The Hypoxic Microenvironment Induces Stearoyl-CoA Desaturase-1 Overexpression and Lipidomic Profile Changes in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13122962. [PMID: 34199164 PMCID: PMC8231571 DOI: 10.3390/cancers13122962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Clear cell renal cell carcinoma (ccRCC) is characterized by a high rate of cell proliferation and an extensive accumulation of lipids. Uncontrolled cell growth usually generates areas of intratumoral hypoxia that define the tumor phenotype. In this work, we show that, under these microenvironmental conditions, stearoyl-CoA desaturase-1 is overexpressed. This enzyme induces changes in the cellular lipidomic profile, increasing the oleic acid levels, a metabolite that is essential for cell proliferation. This work supports the idea of considering stearoyl-CoA desaturase-1 as an exploitable therapeutic target in ccRCC. Abstract Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids. Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism, including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors, as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1n-9) is one of the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core. Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1n-9, which, in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks 18:1n-9 synthesis and compromises the proliferation. The addition of exogenous 18:1n-9 to the cells reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Juan Pablo Melana
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - Francesco Mignolli
- Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias (UNNE-CONICET), Universidad Nacional del Nordeste, Corrientes 3400, Argentina;
| | - Tania Stoyanoff
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María V. Aguirre
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| |
Collapse
|
16
|
Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death. Cancers (Basel) 2021; 13:cancers13102411. [PMID: 34067602 PMCID: PMC8156203 DOI: 10.3390/cancers13102411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.
Collapse
|
17
|
Uckun FM. Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13092018. [PMID: 33922005 PMCID: PMC8122391 DOI: 10.3390/cancers13092018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This article provides a comprehensive review of new and emerging treatment strategies against multiple myeloma that employ precision medicines and/or drugs capable of improving the ability of the immune system to prevent or slow down the progression of multiple myeloma. These rationally designed new treatment methods have the potential to change the therapeutic landscape in multiple myeloma and improve the long-term survival outcome. Abstract SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alternatively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells (Tregs). These immunosuppressive elements in bidirectional and multi-directional crosstalk with each other inhibit both memory and cytotoxic effector T-cell populations as well as natural killer (NK) cells. Immunomodulatory imide drugs (IMiDs), protease inhibitors (PI), monoclonal antibodies (MoAb), adoptive T-cell/NK cell therapy, and inhibitors of anti-apoptotic signaling pathways have emerged as promising therapeutic platforms that can be employed in various combinations as part of a rationally designed immunomodulatory strategy against an immunosuppressive tumor microenvironment (TME) in MM. These platforms provide the foundation for a new therapeutic paradigm for achieving improved survival of high-risk newly diagnosed as well as relapsed/refractory MM patients. Here we review the scientific rationale and clinical proof of concept for each of these platforms.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Norris Comprehensive Cancer Center and Childrens Center for Cancer and Blood Diseases, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA;
- Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Reven Pharmaceuticals, Translational Oncology Program, Golden, CO 80401, USA
| |
Collapse
|
18
|
Russignan A, Dal Collo G, Bagnato A, Tamassia N, Bugatti M, Belleri M, Lorenzi L, Borsi E, Bazzoni R, Gottardi M, Terragna C, Vermi W, Giacomini A, Presta M, Cassatella MA, Krampera M, Tecchio C. Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma. Front Oncol 2021; 10:600025. [PMID: 33489901 PMCID: PMC7820698 DOI: 10.3389/fonc.2020.600025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1α pathways, respectively. HIF-1α silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1α and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM.
Collapse
Affiliation(s)
- Anna Russignan
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - Riccardo Bazzoni
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Krampera
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Mohammadalipour A, Dumbali SP, Wenzel PL. Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy. Front Cell Dev Biol 2020; 8:603292. [PMID: 33365311 PMCID: PMC7750467 DOI: 10.3389/fcell.2020.603292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) metabolism plays a crucial role in the surrounding microenvironment in both normal physiology and pathological conditions. While MSCs predominantly utilize glycolysis in their native hypoxic niche within the bone marrow, new evidence reveals the importance of upregulation in mitochondrial activity in MSC function and differentiation. Mitochondria and mitochondrial regulators such as sirtuins play key roles in MSC homeostasis and differentiation into mature lineages of the bone and hematopoietic niche, including osteoblasts and adipocytes. The metabolic state of MSCs represents a fine balance between the intrinsic needs of the cellular state and constraints imposed by extrinsic conditions. In the context of injury and inflammation, MSCs respond to reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), such as damaged mitochondria and mitochondrial products, by donation of their mitochondria to injured cells. Through intercellular mitochondria trafficking, modulation of ROS, and modification of nutrient utilization, endogenous MSCs and MSC therapies are believed to exert protective effects by regulation of cellular metabolism in injured tissues. Similarly, these same mechanisms can be hijacked in malignancy whereby transfer of mitochondria and/or mitochondrial DNA (mtDNA) to cancer cells increases mitochondrial content and enhances oxidative phosphorylation (OXPHOS) to favor proliferation and invasion. The role of MSCs in tumor initiation, growth, and resistance to treatment is debated, but their ability to modify cancer cell metabolism and the metabolic environment suggests that MSCs are centrally poised to alter malignancy. In this review, we describe emerging evidence for adaptations in MSC bioenergetics that orchestrate developmental fate decisions and contribute to cancer progression. We discuss evidence and potential strategies for therapeutic targeting of MSC mitochondria in regenerative medicine and tissue repair. Lastly, we highlight recent progress in understanding the contribution of MSCs to metabolic reprogramming of malignancies and how these alterations can promote immunosuppression and chemoresistance. Better understanding the role of metabolic reprogramming by MSCs in tissue repair and cancer progression promises to broaden treatment options in regenerative medicine and clinical oncology.
Collapse
Affiliation(s)
- Amina Mohammadalipour
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Immunology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
20
|
Bouzidi A, Magnifico MC, Paiardini A, Macone A, Boumis G, Giardina G, Rinaldo S, Liberati FR, Lauro C, Limatola C, Lanzillotta C, Tramutola A, Perluigi M, Sgarbi G, Solaini G, Baracca A, Paone A, Cutruzzolà F. Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity. Cell Death Dis 2020; 11:1012. [PMID: 33243973 PMCID: PMC7691363 DOI: 10.1038/s41419-020-03215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.
Collapse
Affiliation(s)
- Amani Bouzidi
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Maria Chiara Magnifico
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70121, Bari, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessio Paone
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
21
|
Sun X, Lv X, Yan Y, Zhao Y, Ma R, He M, Wei M. Hypoxia-mediated cancer stem cell resistance and targeted therapy. Biomed Pharmacother 2020; 130:110623. [PMID: 32791395 DOI: 10.1016/j.biopha.2020.110623] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a major obstacle in the treatment of tumors, which easily lead to relapse or poor prognosis. Cancer stem cells (CSCs) are regarded as one of the important targets that mediate tumor resistance. Increasing evidence shows that the tumor hypoxia microenvironment is closely related to the resistance of CSCs to chemotherapy and radiotherapy. In this review, we intend to review the articles that have described how the hypoxic microenvironment affects CSC stemness and mediates tumor resistance and provide new directions and methods in the clinical treatment of tumors. Here, we also discuss the feasibility and development prospects of using hypoxia-inducible factors (HIFs) that regulate the hypoxic microenvironment of tumors as targeted agents to treat tumors, as well as to reduce or even reverse the resistance of tumors to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Rong Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
22
|
Xiong Q, Liu B, Ding M, Zhou J, Yang C, Chen Y. Hypoxia and cancer related pathology. Cancer Lett 2020; 486:1-7. [PMID: 32439418 DOI: 10.1016/j.canlet.2020.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Hypoxic environments occur normally at high altitude, or in underground burrows and in deep sea habitats. They also occur pathologically in human ischemia and in hypoxic solid tumors. Hypoxia in various cancer types and its related molecular mechanisms are associated with a poor clinical outcome. This review will discuss how hypoxia can influence two aspects of tumorigenesis, namely the direct, cell-intrinsic oncogenic effects, as well as the indirect effects on tumor progression mediated by an altered tumor microenvironment. We will also discuss recent progress in identifying the functional roles of hypoxia-related factors (HIFs), along with their regulators and downstream target genes, in cancer stem cells and therapy. Importantly, we propose, using convergent evolution schemes to identify novel biomarkers for both hypoxia adaptation and hypoxic solid tumors as an important strategy in the future.
Collapse
Affiliation(s)
- Qiuxia Xiong
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxia Ding
- Deparment of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
23
|
Shi X, Sung SHP, Lee MMS, Kwok RTK, Sung HHY, Liu H, Lam JWY, Williams ID, Liu B, Tang BZ. A lipophilic AIEgen for lipid droplet imaging and evaluation of the efficacy of HIF-1 targeting drugs. J Mater Chem B 2020; 8:1516-1523. [DOI: 10.1039/c9tb02848j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A lipid-droplet-specific AIEgen was used to evaluate the inhibitory efficacy of HIF-1-targeting drugs by assessing lipid-droplet levels.
Collapse
|
24
|
Li S, Vallet S, Sacco A, Roccaro A, Lentzsch S, Podar K. Targeting transcription factors in multiple myeloma: evolving therapeutic strategies. Expert Opin Investig Drugs 2019; 28:445-462. [DOI: 10.1080/13543784.2019.1605354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shirong Li
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Aldo Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Suzanne Lentzsch
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
25
|
Factors Regulating microRNA Expression and Function in Multiple Myeloma. Noncoding RNA 2019; 5:ncrna5010009. [PMID: 30654527 PMCID: PMC6468559 DOI: 10.3390/ncrna5010009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Intensive research has been undertaken during the last decade to identify the implication of microRNAs (miRNAs) in the pathogenesis of multiple myeloma (MM). The expression profiling of miRNAs in MM has provided relevant information, demonstrating different patterns of miRNA expression depending on the genetic abnormalities of MM and a key role of some miRNAs regulating critical genes associated with MM pathogenesis. However, the underlying causes of abnormal expression of miRNAs in myeloma cells remain mainly elusive. The final expression of the mature miRNAs is subject to multiple regulation mechanisms, such as copy number alterations, CpG methylation or transcription factors, together with impairment in miRNA biogenesis and differences in availability of the mRNA target sequence. In this review, we summarize the available knowledge about the factors involved in the regulation of miRNA expression and functionality in MM.
Collapse
|
26
|
Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, Zhou Z, Auger MJ, Bowles KM, Rushworth SA. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res 2019; 79:2285-2297. [PMID: 30622116 DOI: 10.1158/0008-5472.can-18-0773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/11/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
Metabolic adjustments are necessary for the initiation, proliferation, and spread of cancer cells. Although mitochondria have been shown to move to cancer cells from their microenvironment, the metabolic consequences of this phenomenon have yet to be fully elucidated. Here, we report that multiple myeloma cells use mitochondrial-based metabolism as well as glycolysis when located within the bone marrow microenvironment. The reliance of multiple myeloma cells on oxidative phosphorylation was caused by intercellular mitochondrial transfer to multiple myeloma cells from neighboring nonmalignant bone marrow stromal cells. This mitochondrial transfer occurred through tumor-derived tunneling nanotubes (TNT). Moreover, shRNA-mediated knockdown of CD38 inhibits mitochondrial transfer and TNT formation in vitro and blocks mitochondrial transfer and improves animal survival in vivo. This study describes a potential treatment strategy to inhibit mitochondrial transfer for clinical benefit and scientifically expands the understanding of the functional effects of mitochondrial transfer on tumor metabolism. SIGNIFICANCE: Multiple myeloma relies on both oxidative phosphorylation and glycolysis following acquisition of mitochondria from its bone marrow microenvironment.See related commentary by Boise and Shanmugam, p. 2102.
Collapse
Affiliation(s)
- Christopher R Marlein
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Rachel E Piddock
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jayna J Mistry
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Lyubov Zaitseva
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Charlotte Hellmich
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Rebecca H Horton
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Martin J Auger
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom. .,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
27
|
Tsubaki M, Takeda T, Tomonari Y, Koumoto YI, Imano M, Satou T, Nishida S. Overexpression of HIF-1α contributes to melphalan resistance in multiple myeloma cells by activation of ERK1/2, Akt, and NF-κB. J Transl Med 2019; 99:72-84. [PMID: 30353128 DOI: 10.1038/s41374-018-0114-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) commonly displays multidrug resistance and is associated with poor prognosis. Therefore, it is important to identify the mechanisms by which MM cells develop multidrug resistance. Our previous study showed that multidrug resistance is correlated with overexpression of multidrug resistance protein 1 (MDR1) and Survivin, and downregulation of Bim expression in melphalan-resistant RPMI8226/L-PAM cells; however, the underlying mechanism of multidrug resistance remains unclear. In the present study, we investigated the mechanism of multidrug resistance in melphalan-resistant cells. We found that RPMI8226/L-PAM and ARH-77/L-PAM cells showed increased phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Akt, and nuclear localization of nuclear factor κB (NF-κB). The combination of ERK1/2, Akt, and NF-κB inhibitors with melphalan reversed melphalan resistance via suppression of Survivin expression and enhanced Bim expression in melphalan-resistant cells. In addition, RPMI8226/L-PAM and ARH-77/L-PAM cells overexpressed hypoxia-inducible factor 1α (HIF-1α) via activation of ERK1/2, Akt, and NF-κB. Moreover, suppression of HIF-1α by echinomycin or HIF-1α siRNA resensitized RPMI8226/L-PAM cells to melphalan through downregulation of Survivin expression and upregulation of Bim expression. These results indicate that enhanced Survivin expression and decreased Bim expression by HIF-1α via activation of ERK1/2, Akt, and NF-κB play a critical role in melphalan resistance. Our findings suggest that HIF-1α, ERK1/2, Akt, and NF-κB inhibitors are potentially useful as anti-MDR agents for the treatment of melphalan-resistant MM.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Yoshika Tomonari
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Yu-Ichi Koumoto
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Motohiro Imano
- Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Japan.
| |
Collapse
|
28
|
Sgarbi G, Liuzzi F, Baracca A, Solaini G. Resveratrol preserves mitochondrial function in a human post-mitotic cell model. J Nutr Biochem 2018; 62:9-17. [PMID: 30216747 DOI: 10.1016/j.jnutbio.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Francesca Liuzzi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
29
|
TRIM44 promotes quiescent multiple myeloma cell occupancy and survival in the osteoblastic niche via HIF-1α stabilization. Leukemia 2018; 33:469-486. [PMID: 30089913 PMCID: PMC6365383 DOI: 10.1038/s41375-018-0222-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022]
Abstract
Despite progress in the treatment of MM, including the use of high-dose chemotherapy and autologous stem cell transplantation, a considerable proportion of patients are refractory to all therapies. This resistance is related to the molecular genetic heterogeneity in MM cells as well as to the contributions from the BM, which is one of the key determinants of treatment outcome. Our previous studies using fluorescent tracers revealed that MM heterogeneity is correlated with the presence of quiescent stem-like cancer cells, which prefer to reside within the osteoblastic niche of the BM. In this report, we identified a novel protein, tripartite motif containing 44 (TRIM44), which is overexpressed in the osteoblastic niche of the BM, enabling MM cells to compete with HSCs for niche support. TRIM44 expression in MM cells promoted cell quiescence but increased bone destruction in xenograft mice, similar to what is observed in MM patients. TRIM44 functions as a deubiquitinase for hypoxia inducible factor-1α (HIF-1α), which stabilizes HIF-1α expression during hypoxia and normoxia. Stabilized HIF-1α stimulates MM cell growth and survival during hypoxia. Our work is the first report to reveal signaling in quiescent MM cells and the functions of TRIM44.
Collapse
|
30
|
Shahruzaman SH, Fakurazi S, Maniam S. Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res 2018; 10:2325-2335. [PMID: 30104901 PMCID: PMC6074761 DOI: 10.2147/cmar.s167424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adaptive metabolic responses toward a low oxygen environment are essential to maintain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell metabolism and the usage of some of these molecules in clinical trials.
Collapse
Affiliation(s)
- Shazwin Hani Shahruzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|
31
|
Borsi E, Martello M, Santacroce B, Zamagni E, Tacchetti P, Pantani L, Mancuso K, Rocchi S, Cavo M, Terragna C. Treatment optimization for multiple myeloma: schedule-dependent synergistic cytotoxicity of pomalidomide and carfilzomib in in vitro and ex vivo models. Haematologica 2018; 103:e602-e606. [PMID: 30026343 DOI: 10.3324/haematol.2017.186924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Enrica Borsi
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Marina Martello
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Barbara Santacroce
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Elena Zamagni
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Paola Tacchetti
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Lucia Pantani
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Katia Mancuso
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Serena Rocchi
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Michele Cavo
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| | - Carolina Terragna
- "L. & A. Seràgnoli" Institute of Haematology, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Italy
| |
Collapse
|
32
|
Saba F, Soleimani M, Abroun S. New role of hypoxia in pathophysiology of multiple myeloma through miR-210. EXCLI JOURNAL 2018; 17:647-662. [PMID: 30108468 PMCID: PMC6088223 DOI: 10.17179/excli2018-1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
Bone is one of the most common sites of complication in multiple myeloma (MM) progression and bone remodeling gets definitively perturbed during disease progression. Hypoxia and miR-210 play an important role in hematological malignancies. In an attempt to elucidate the specificity of the pathways of hypoxia and miR-210 in suppression of osteoblastic differentiation in MM patients, we examined the effect of miR-210 and hypoxia on expression of important cytokines and genes of myeloma cells. Differentiation of BM-MSCs towards osteoblastic cells in response to microvesicles (MVs) was also investigated. Finally, we proposed a molecular model on how HIF-1α may promote bone lesions in MM patients. To validate the effect of miR-210 and HIF-1α on targeted genes, the shRNA of HIF-1α and off-hsa-miR-210 were transfected into RPMI-8226 cells. BM-MSCs were cultured in osteoblastic inducer and 50 µg/mL of MVs derived from both hypoxic and normoxic myeloma cells. We designed an in vitro study to establish the effects of HIF-1α and miR-210 on the crosstalk between MM and osteoblasts. We here showed that hypoxia-induced miR-210 increased the mRNA expression of VLA-4, CXCR4, IL-6 and TGF-β in myeloma cells. MiR-210 is mandatory for the hypoxia-increased resistance of MM cells to melphalan. Moreover, MVs derived from hypoxic myeloma cells substantially decreased osteoblast differentiation. Considered comprehensively, our findings explain one of the reasons of bone loss that occurs at the sites of MM and a nascent crosstalk model in MM pathogenesis.
Collapse
Affiliation(s)
- Fakhredin Saba
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| |
Collapse
|
33
|
Sgarbi G, Barbato S, Costanzini A, Solaini G, Baracca A. The role of the ATPase inhibitor factor 1 (IF 1) in cancer cells adaptation to hypoxia and anoxia. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:99-109. [PMID: 29097244 DOI: 10.1016/j.bbabio.2017.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022]
Abstract
The physiological role of the mitochondrial ATP synthase complex is to generate ATP through oxidative phosphorylation. Indeed, the enzyme can reverse its activity and hydrolyze ATP under ischemic conditions, as shown in isolated mitochondria and in mammalian heart and liver. However, what occurs when cancer cells experience hypoxia or anoxia has not been well explored. In the present study, we investigated the bioenergetics of cancer cells under hypoxic/anoxic conditions with particular emphasis on ATP synthase, and the conditions driving it to work in reverse. In this context, we further examined the role exerted by its endogenous inhibitor factor, IF1, that it is overexpressed in cancer cells. Metabolic and bioenergetic analysis of cancer cells exposed to severe hypoxia (down to 0.1% O2) unexpectedly showed that Δψm is preserved independently of the presence of IF1 and that ATP synthase still phosphorylates ADP though at a much lower rate than in normoxia. However, when we induced an anoxia-mimicking condition by collapsing ΔμΗ+ with the FCCP uncoupler, the IF1-silenced clones only reversed the ATP synthase activity hydrolyzing ATP in order to reconstitute the electrochemical proton gradient. Notably, in cancer cells IF1 overexpression fully prevents ATP synthase hydrolytic activity activation under uncoupling conditions. Therefore, our results suggest that IF1 overexpression promotes cancer cells survival under temporary anoxic conditions by preserving cellular ATP despite mitochondria dysfunction.
Collapse
Affiliation(s)
- G Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - S Barbato
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - A Costanzini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - G Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| | - A Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
34
|
Huang S, Tong X, Rehman MU, Wang M, Zhang L, Wang L, Li J, Yang S. Oxygen Supplementation Ameliorates Tibial Development via Stimulating Vascularization in Tibetan Chickens at High Altitudes. Int J Biol Sci 2017; 13:1547-1559. [PMID: 29230103 PMCID: PMC5723921 DOI: 10.7150/ijbs.22670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022] Open
Abstract
Tibetan chickens (TBCs) living in high-altitude hypoxic environment, are characterized by delayed growth and small size as compared to low-altitude broiler chickens. Increasing evidences signify the beneficial effect of oxygen (O2) supplementation in animal's body for regulating their body growth and organ development. However, it is still unclear that whether O2 supplementation has an ameliorative and protective role in TBCs living at high altitude. In this study, we first found that O2 supplementation not only increased the survival rate but also promoted the growth of TBCs associated with bone development. Importantly, we observed that the increase of vascular distribution in the tibial hypertrophic zone could contribute to promote growth and development of the tibia, which is highly correlated with the up-regulated expression level of vascular endothelial growth factor (VEGF)-A and VEGF receptor-1 (VEGFR1). Additionally, hypoxia inducible factor (HIF)-1ɑ also has a stimulative elevation by O2 supplementation. These results were confirmed by histology, immunohistochemistry, qRT-PCR and Western blotting techniques. Altogether, these findings demonstrated that the up-regulation of VEGFA and its receptors are accompanied by proangiogeneic factor (HIF-1α) expression, which were required for angiogenesis to meliorate tibia development of TBCs in hypoxia-induced bone suppression that occurred during O2 supplementation. Thus, O2 supplementation may serve as a good applicant for promoting and meliorating bone development in juvenile high-altitude animals.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000 Tibet, People's Republic of China
| | - Shijin Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
35
|
Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget 2016; 7:5715-27. [PMID: 26735336 PMCID: PMC4868716 DOI: 10.18632/oncotarget.6796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc-overexpressing cells was fully reversed by wogonin treatment via increasing HIF-1α-VHL interaction and promoting HIF-1α degradation. Collectively, our in vitro and in vivo studies reveal for the first time that wogonin represses MM-stimulated angiogenesis and tumor progression via c-Myc/VHL/HIF-1α signaling axis.
Collapse
|
36
|
Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, Sgarbi G, Baracca A, Pinton P, Riva G, Rampazzo E, Petrizza L, Prodi L, Milani D, Luppi M, Potenza L, De Pol A, Cocco L, Capitani S, Marmiroli S. Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget 2016; 7:5521-37. [PMID: 26575168 PMCID: PMC4868703 DOI: 10.18632/oncotarget.6315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition. Furthermore, since PI3K/Akt/mTOR has been proposed as a drug target in PEL, we ascertained that pathway-specific inhibitors, namely the dual PI3K and mTOR inhibitor, PF-04691502, and the Akt inhibitor, Akti 1/2, display improved cytotoxicity to PEL cells in hypoxic conditions. Unexpectedly, we found that these drugs reduce lactate production/extracellular acidification rate, and, in combination with the glycolysis inhibitor 2-deoxyglucose (2-DG), they shift PEL cells metabolism from aerobic glycolysis towards oxidative respiration. Moreover, the associations possess strong synergistic cytotoxicity towards PEL cells, and thus may reduce adverse reaction in vivo, while displaying very low toxicity to normal lymphocytes. Finally, we showed that the association of 2-DG and PF-04691502 maintains its cytotoxic and proapoptotic effect also in PEL cells co-cultured with human primary mesothelial cells, a condition known to mimic the in vivo environment and to exert a protective and pro-survival action. All together, these results provide a compelling rationale for the clinical development of new therapies for the treatment of PEL, based on combined targeting of glycolytic metabolism and constitutively activated signaling pathways.
Collapse
Affiliation(s)
- Laura Mediani
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Gibellini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Chiara Frasson
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Raffaella Bosco
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Giovanni Riva
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Enrico Rampazzo
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Petrizza
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Wang J, Li G, Wang Y, Tang S, Sun X, Feng X, Li Y, Bao G, Li P, Mao X, Wang M, Liu P. Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. Oncotarget 2016; 6:44579-92. [PMID: 26625311 PMCID: PMC4792577 DOI: 10.18632/oncotarget.6373] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/23/2015] [Indexed: 01/10/2023] Open
Abstract
Anti-angiogenesis is currently considered as one of the major antitumor strategies for its protective effects against tumor emergency and later progression. The anti-diabetic drug metformin has been demonstrated to significantly inhibit tumor angiogenesis based on recent studies. However, the mechanism underlying this anti-angiogenic effect still remains an enigma. In this study, we investigated metformin-induced inhibitory effect on tumor angiogenesis in vitro and in vivo. Metformin pretreatment significantly suppressed tumor paracrine signaling-induced angiogenic promotion even in the presence of heregulin (HRG)-β1 (a co-activator of HER2) pretreatment of HER2+ tumor cells. Similar to that of AG825, a specific inhibitor of HER2 phosphorylation, metformin treatment decreased both total and phosphorylation (Tyr 1221/1222) levels of HER2 protein and significantly reduced microvessel density and the amount of Fitc-conjugated Dextran leaking outside the vessel. Furthermore, our results of VEGF-neutralizing and -rescuing tests showed that metformin markedly abrogated HER2 signaling-induced tumor angiogenesis by inhibiting VEGF secretion. Inhibition of HIF-1α signaling by using RNAi or YC-1, a specific inhibitor of HIF-1α synthesis, both completely diminished mRNA level of VEGF and greatly inhibited endothelial cell proliferation promoted by HER2+ tumor cell-conditioned medium in both the absence and presence of HRG-β1 pretreatment. Importantly, metformin treatment decreased the number of HIF-1α nucleus positive cells in 4T1 tumors, accompanied by decreased microvessel density. Our data thus provides novel insight into the mechanism underlying the metformin-induced inhibition of tumor angiogenesis and indicates possibilities of HIF-1α-VEGF signaling axis in mediating HER2-induced tumor angiogenesis.
Collapse
Affiliation(s)
- Jichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China.,Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Guangyue Li
- Department of Science and Technology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Shouching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia, 30912, United States of America.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xuefei Feng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Xiaona Mao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R.China
| |
Collapse
|
38
|
Martello M, Remondini D, Borsi E, Santacroce B, Procacci M, Pezzi A, Dico FA, Martinelli G, Zamagni E, Tacchetti P, Pantani L, Testoni N, Marzocchi G, Rocchi S, Zannetti BA, Mancuso K, Cavo M, Terragna C. Opposite activation of the Hedgehog pathway in CD138+ plasma cells and CD138-CD19+ B cells identifies two subgroups of patients with multiple myeloma and different prognosis. Leukemia 2016; 30:1869-76. [PMID: 27074969 DOI: 10.1038/leu.2016.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Hyperactivation of the Hedgehog (Hh) pathway, which controls refueling of multiple myeloma (MM) clones, might be critical to disease recurrence. Although several studies suggest the Hh pathway is activated in CD138- immature cells, differentiated CD138+ plasma cells might also be able to self-renew by producing themselves the Hh ligands. We studied the gene expression profiles of 126 newly diagnosed MM patients analyzed in both the CD138+ plasma cell fraction and CD138-CD19+ B-cell compartment. Results demonstrated that an Hh-gene signature was able to cluster patients in two subgroups characterized by the opposite Hh pathway expression in mature plasma cells and their precursors. Strikingly, patients characterized by Hh hyperactivation in plasma cells, but not in their B cells, displayed high genomic instability and an unfavorable outcome in terms of shorter progression-free survival (hazard ratio: 1.92; 95% confidence interval: 1.19-3.07) and overall survival (hazard ratio: 2.61; 95% confidence interval: 1.26-5.38). These results suggest that the mechanisms triggered by the Hh pathway ultimately led to identify a more indolent vs a more aggressive biological and clinical subtype of MM. Therefore, patient stratification according to their molecular background might help the fine-tuning of future clinical and therapeutic studies.
Collapse
Affiliation(s)
- M Martello
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - D Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - E Borsi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B Santacroce
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Procacci
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - A Pezzi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - F A Dico
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Martinelli
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - E Zamagni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - P Tacchetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - L Pantani
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - N Testoni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Marzocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - S Rocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B A Zannetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - K Mancuso
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Cavo
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - C Terragna
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
39
|
Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer 2016; 114:519-23. [PMID: 26867162 PMCID: PMC4782210 DOI: 10.1038/bjc.2016.20] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background: Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. The constitutive expression of HIF-1α in MM suggests that inhibition of HIF-1α-mediated transcription represents an interesting target in MM. Methods: As p300 is a crucial co-activator of hypoxia-inducible transcription, disrupting the complex HIF-1α/p300 to target HIF activity appears to be an attractive strategy. Results: We reported that chetomin, an inhibitor of HIF-1α/p300 interaction, exhibits antitumour activity in human myeloma cell lines and primary MM cells from patients. Conclusions: Our data suggest that chetomin may be of clinical value in MM and especially for patients characterised by a high EP300/HIF-1α expression and a poor prognosis.
Collapse
|
40
|
Abstract
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
41
|
Bhaskar A, Tiwary BN. Hypoxia inducible factor-1 alpha and multiple myeloma. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH 2016; 4:706-715. [PMID: 26900575 PMCID: PMC4760640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rapid tumor growth creates a state of hypoxia in the tumor microenvironment and results in release of hypoxia inducible factor-1 alpha (HiF-1α) in the local milieu. Hypoxia inducible factor activity is deregulated in many human cancers, especially those that are highly hypoxic. In multiple myeloma (MM) in initial stages of disease establishment, the hypoxic bone marrow microenvironment supports the initial survival and growth of the myeloma cells. Hypoxic tumour cells are usually resistant to radiotherapy and most conventional chemotherapeutic agents, rendering them highly aggressive and metastatic. Therefore, HIF is an attractive, although challenging, therapeutic target in MM directly or indirectly in recent years.
Collapse
Affiliation(s)
- Archana Bhaskar
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (Central University), Koni, Bilaspur, Chhattisgarh, India, 495009
| | - Bhupendra Nath Tiwary
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (Central University), Koni, Bilaspur, Chhattisgarh, India, 495009
| |
Collapse
|
42
|
Falank C, Fairfield H, Reagan MR. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells. Front Endocrinol (Lausanne) 2016; 7:67. [PMID: 27379019 PMCID: PMC4911365 DOI: 10.3389/fendo.2016.00067] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.
Collapse
Affiliation(s)
- Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Heather Fairfield
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
- School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
- *Correspondence: Michaela R. Reagan,
| |
Collapse
|
43
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
44
|
Chemical biology approach for the development of hypoxia inducible factor (HIF) inhibitor LW6 as a potential anticancer agent. Arch Pharm Res 2015; 38:1563-74. [DOI: 10.1007/s12272-015-0632-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
|
45
|
Borsi E, Terragna C, Brioli A, Tacchetti P, Martello M, Cavo M. Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma. Transl Res 2015; 165:641-50. [PMID: 25553605 DOI: 10.1016/j.trsl.2014.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by accumulation of malignant plasma cells (PCs) within the bone marrow (BM). The PCs are in close contact with stromal cells, which secrete growth factors and cytokines, promoting tumor cell growth and survival. Despite the availability of new drugs with immunomodulatory properties targeting the neoplastic clone and its microenvironment, MM is still an incurable disease, with patients experiencing subsequent phases of remission and relapse, eventually leading to disease resistance and patient death. It is now well established that the MM BM microenvironment is hypoxic, a condition required for the activation of the hypoxia-inducible factor 1 alpha (HIF-1α). It has been shown that HIF-1α is constitutively expressed in MM even in normoxic conditions, suggesting that HIF-1α suppression might be part of a therapeutic strategy. Constitutively activated HIF-1α enhances neovascularization, increases glucose metabolism, and induces the expression of antiapoptotic proteins. HIF-1α is thought to be one of the most important molecular targets in the treatment of cancer, and a variety of chemical inhibitors for HIF-1α have been developed to date. This review examines the role of HIF-1α in MM and recent developments in harnessing the therapeutic potential of HIF-1α inhibition in MM.
Collapse
Affiliation(s)
- Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Annamaria Brioli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Paola Tacchetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Marina Martello
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Michele Cavo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy.
| |
Collapse
|
46
|
Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem 2015; 290:6338-48. [PMID: 25605724 PMCID: PMC4358270 DOI: 10.1074/jbc.m114.631788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/20/2015] [Indexed: 01/20/2023] Open
Abstract
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.
Collapse
Affiliation(s)
- Simona Barbato
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Gianluca Sgarbi
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Gorini
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giancarlo Solaini
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
47
|
The role of hypoxia-inducible factor-1α in response to injury and hypoxia*. Crit Care Med 2014; 42:2312-3. [PMID: 25226132 DOI: 10.1097/ccm.0000000000000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Borsi E, Perrone G, Terragna C, Martello M, Zamagni E, Tacchetti P, Pantani L, Brioli A, Dico AF, Zannetti BA, Rocchi S, Cavo M. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment. Exp Cell Res 2014; 328:444-55. [PMID: 25257607 DOI: 10.1016/j.yexcr.2014.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/25/2023]
Abstract
Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma.
Collapse
Affiliation(s)
- Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy.
| | - Giulia Perrone
- Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano, Italy
| | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Marina Martello
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Elena Zamagni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Paola Tacchetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Lucia Pantani
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Annamaria Brioli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Angela Flores Dico
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Beatrice Anna Zannetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Serena Rocchi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Michele Cavo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| |
Collapse
|