1
|
Hu JJ, Zhang QY, Yang ZC. The correlation between obesity and the occurrence and development of breast cancer. Eur J Med Res 2025; 30:419. [PMID: 40414892 DOI: 10.1186/s40001-025-02659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
This study reviews the mechanisms by which obesity affects the development and progression of breast cancer (BC). The association between obesity and BC is mainly due to three aspects: disruption of glycolipid metabolism, abnormal cell function and imbalance of adipokine levels. The dysregulation of glycolipid metabolism caused by obesity, including the accumulation of cholesterol and fatty acids and the reprogramming of glucose metabolism, promotes the growth and invasion of tumour cells. Obesity triggers multiple cellular abnormalities, particularly in lipid-associated macrophages and cancer-associated adipocytes, which promote tumour progression and immunosuppression by secreting inflammatory factors and various fatty acids into the tumour microenvironment. Obesity leads to an imbalance in the expression of several adipokines. Leptin upregulation is closely associated with BC metastasis and resistance to endocrine therapy, while reduced adiponectin levels attenuate the protective effect. At the same time, chronic inflammation and insulin resistance not only further increase the risk of BC, but also exacerbate tumour resistance. In terms of treatment, weight-loss drugs and metformin can improve the efficacy of obesity-related BC treatment to some extent. Intervention strategies targeting adipose tissue remodelling, lipid metabolism and leptin regulation also show potential clinical value, but more research is needed to clarify their safety and efficacy. This review provides systematic ideas and references for research into the mechanisms and clinical management of obesity-related BC.
Collapse
Affiliation(s)
- Jun-Jie Hu
- Hunan University of Traditional Chinese Medicine, Changsha, 410078, China
| | - Qi-Yue Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, 410078, China
| | - Zhi-Chun Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Grigoraș A, Amalinei C. The Role of Perirenal Adipose Tissue in Carcinogenesis-From Molecular Mechanism to Therapeutic Perspectives. Cancers (Basel) 2025; 17:1077. [PMID: 40227577 PMCID: PMC11987925 DOI: 10.3390/cancers17071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Perirenal adipose tissue (PRAT) exhibits particular morphological features, with its activity being mainly related to thermogenesis. However, an expanded PRAT area seems to play a significant role in cardiovascular diseases, diabetes mellitus, and chronic kidney disease pathogenesis. Numerous studies have demonstrated that PRAT may support cancer progression and invasion, mainly in obese patients. The mechanism underlying these processes is of dysregulation of PRAT's secretion of adipokines and pro-inflammatory cytokines, such as leptin, adiponectin, chemerin, apelin, omentin-1, vistatin, nesfatin-1, and other pro-inflammatory cytokines, modulated by tumor cells. Cancer cells may also induce a metabolic reprogramming of perirenal adipocytes, leading to increased lipids and lactate transfer to the tumor microenvironment, contributing to cancer growth in a hypoxic milieu. In addition, the PRAT browning process has been specifically detected in renal cell carcinoma (RCC), being characterized by upregulated expression of brown/beige adipocytes markers (UCP1, PPAR-ɣ, c/EBPα, and PGC1α) and downregulated white fat cells markers, such as LEPTIN, SHOX2, HOXC8, and HOXC9. Considering its multifaceted role in cancer, modulation of PRAT's role in tumor progression may open new directions for oncologic therapy improvement. Considering the increasing evidence of the relationship between PRAT and tumor cells, our review aims to provide a comprehensive analysis of the perirenal adipocytes' impact on tumor progression and metastasis.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
3
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
5
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
6
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
9
|
Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol 2024; 978:176803. [PMID: 38950839 DOI: 10.1016/j.ejphar.2024.176803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
10
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
11
|
Yur M, Özcan S, Yıldırım N, Özdede MR, Özcan M. Elevated Asprosin Levels in Breast Cancer: Insights from a Comparative Study. J Womens Health (Larchmt) 2024; 33:254-261. [PMID: 37856162 DOI: 10.1089/jwh.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Background: Breast cancer (BC) is the most common type of cancer in women. Diagnosis in the early stage is very important for cancer treatment. There is no good biomarker to diagnose BC in T1-T2 or N0 stage. This study aimed to evaluate asprosin (ASP) levels of BC compared with non-cancer. Materials and Methods: An enzyme-linked immunosorbent assay was used to evaluate serum ASP levels in 40 patients with BC and 40 healthy women. The cancer group included T1-T4, N1-N3, and M0-M1 patients. T stages were divided into groups as T1-T2 and T3-T4. N stages were divided into groups as N (0) and N (+). Results: ASP showed good discrimination (area under the curve = 0.767, 95% confidence interval: 0.657-0.878) between the BC group and the healthy group and acceptable discriminating ability (sensitivity = 0.825; specificity = 0.750) at the optimal cutoff value of 1.82 ng/mL. ASP indicated no difference for T, N, and M stages (p = 0.919, p = 0.859, and p = 0.225, respectively). There was a significant difference between grades within cancer patients in terms of ASP (p = 0.025). Conclusions: These findings provide evidence of a potential association between elevated ASP levels and the presence of BC. The observed higher levels of ASP in women with BC compared with healthy individuals suggest that ASP could potentially serve as a biomarker for distinguishing between the two groups. These results may contribute to our understanding of the potential role of ASP in BC detection and highlight its potential as a diagnostic marker. Further studies are required to establish whether ASP can be used to diagnose BC.
Collapse
Affiliation(s)
- Mesut Yur
- Department of Surgical Oncology and Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sibel Özcan
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nilgün Yıldırım
- Department of Medical Oncology, Firat University School of Medicine, Elazıg, Turkey
| | - Mehmet R Özdede
- Department of Physiology and Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mete Özcan
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
12
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
13
|
Hao Y, Xiao J, Fu P, Yan L, Zhao X, Wu X, Zhou M, Zhang X, Xu B, Li X, Liu Z, Yang C, Wang X, Long L, Jiang X, Liao J, Zhang B, Li J. Increases in BMI contribute to worsening inflammatory biomarkers related to breast cancer risk in women: a longitudinal study. Breast Cancer Res Treat 2023; 202:117-127. [PMID: 37541965 DOI: 10.1007/s10549-023-07023-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Inflammatory adipokines and cytokines play a pivotal role in linking obesity and breast cancer (BC) risk in women. We investigated the longitudinal associations between BMI change and trajectories of inflammatory biomarkers related to BC risk. METHODS A longitudinal study was conducted among 442 Chinese women with 3-year repeated measures from 2019 to 2021. Plasma circulating inflammatory biomarkers related to BC risk, including adiponectin (ADP), resistin (RETN), soluble leptin receptor (sOB-R), insulin-like growth factor-binding protein-3 (IGFBP-3), and C-reactive protein (CRP), were examined annually. Linear mixed-effect models (LMM) were applied to investigate associations of time-varying BMI with trajectories of biomarkers. We additionally examined the modification effect of baseline BMI groups, menopausal status, and metabolic syndrome. RESULTS BMI was associated with increased levels of RETN, CRP, sOB-R, and decreased levels of ADP at baseline. An increasing BMI rate was significantly associated with an average 3-year increase in RETN (β = 0.019, 95% CI 0.004 to 0.034) and sOB-R (β = 0.022, 95% CI 0.009 to 0.035), as well as a decrease in ADP (β = - 0.006, 95% CI - 0.012 to 0.001). These associations persisted across different baseline BMI groups. An increasing BMI rate was significantly associated with an average 3-year increase in CRP levels among normal weight (β = 0.045, 95% CI 0.001 to 0.088) and overweight (β = 0.060, 95% CI 0.014 to 0.107) women. As BMI increased over time, a more remarkable decrease in ADP was observed among women with metabolic syndrome (β = - 0.016, 95% CI - 0.029 to - 0.004) than those without metabolic syndrome at baseline. CONCLUSIONS A higher increase rate of BMI was associated with poorer trajectories of inflammatory biomarkers related to BC risk. Recommendations for BMI reduction may benefit BC prevention in women, particularly for those with metabolic syndrome.
Collapse
Affiliation(s)
- Yu Hao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Lanping Yan
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Zhou
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Xiaofan Zhang
- Department of Scientific Research & Management, The Second People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Bin Xu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingyue Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Long
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqiang Liao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
周 敏, 郝 宇, 付 萍, 赵 洵, 严 兰, 李 星, 李 佳. [Association of Body Mass Index and Weight Gain With Obesity-Related Breast Cancer Risk Biomarkers in Adult Chinese Women]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:978-984. [PMID: 37866956 PMCID: PMC10579059 DOI: 10.12182/20230960503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Indexed: 10/24/2023]
Abstract
Objective To investigate the associatiojn of body mass index (BMI) at different stages of life and weight gain in adulthood with obesity-related breast cancer risk biomarkers and to provide evidence for formulating policies concerning the prevention and control of breast cancer. Methods A cross-sectional study was designed based on the follow-up cohort of southwest China community-based breast cancer screening of women. Using sequential sampling, eligible participants were enrolled from the cohort as the subjects of the study. Information on the basic risk factors was collected and the height, weight, and plasma biomarker levels were measured. Multiple linear regression model was applied to analyze the associations of early adulthood BMI (defined as the BMI of the participant at age 20), adulthood BMI (defined as the BMI measured at the time of enrollment), and weight gain in adulthood with the biomarkers. The concentrations of the biomarkers were incorporated in the model after log transformation. Results The average age of the 442 participants was 49 (45, 54) years old, the average early adulthood BMI and adulthood BMI were 21.47 (19.56, 23.11) and 24.10 (22.59, 25.97) kg/m 2, respectively, and the average weight gain in adulthood was 6.60 (2.00, 11.00) kg. Adulthood BMI was negatively associated with adiponectin level ( β=-0.026, 95% CI: -0.045--0.008, P=0.006), and positively associated with C-reactive protein level ( β=0.095, 95% CI: 0.054-0.137, P<0.001) and leptin receptor level ( β=0.090, 95% CI: 0.063-0.117, P<0.001). No association was found between adulthood BMI and resistin levels or between adulthood BMI and insulin-like growth factor-binding protein-3 levels. BMI in early adulthood was found to be negatively associated with only insulin-like growth factor-binding protein-3 levels ( β=-0.039, 95% CI: -0.068--0.010, P=0.009). Further analysis of adulthood weight gain after the age of 20 revealed that average annual weight gain in adulthood was negatively associated with adiponectin levels and positively associated with 4 other biomarkers. Furthermore, compared with those of women whose weight remained stable, the adiponectin level of women whose weight gain in adulthood exceeded 5.00 kg was much lower ( β=-0.185, 95% CI: -0.320--0.049, P=0.008), while their insulin-like growth factor-binding protein-3 ( β=0.389, 95% CI: 0.183-0.594, P<0.001) and leptin receptor ( β=0.245, 95% CI: 0.048-0.442, P=0.015) levels were higher. Conclusion Weight gain in adulthood is strongly associated with the changes in obesity-related breast cancer risk biomarkers. Women should maintain a stable weight throughout adulthood and it is preferred that their weight gain should not exceed 5.00 kg.
Collapse
Affiliation(s)
- 敏 周
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
| | - 宇 郝
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
- 四川大学华西公共卫生学院/四川大学华西第四医院 (成都 610041)West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 萍 付
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
| | - 洵颖 赵
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
- 四川大学华西公共卫生学院/四川大学华西第四医院 (成都 610041)West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 兰平 严
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
| | - 星月 李
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
- 四川大学华西公共卫生学院/四川大学华西第四医院 (成都 610041)West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 佳圆 李
- 成都市双流区妇幼保健院 (成都 610041)Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu 610041, China
- 四川大学华西公共卫生学院/四川大学华西第四医院 (成都 610041)West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
16
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Martínez-Guardado I, Navarro-Jiménez E, Laborde-Cárdenas CC, Tornero-Aguilera JF. The Role of Adipokines in Health and Disease. Biomedicines 2023; 11:biomedicines11051290. [PMID: 37238961 DOI: 10.3390/biomedicines11051290] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are cell-signaling proteins secreted by adipose tissue that has been related to a low-grade state of inflammation and different pathologies. The present review aims to analyze the role of adipokines in health and disease in order to understand the important functions and effects of these cytokines. For this aim, the present review delves into the type of adipocytes and the cytokines produced, as well as their functions; the relations of adipokines in inflammation and different diseases such as cardiovascular, atherosclerosis, mental diseases, metabolic disorders, cancer, and eating behaviors; and finally, the role of microbiota, nutrition, and physical activity in adipokines is discussed. This information would allow for a better understanding of these important cytokines and their effects on body organisms.
Collapse
Affiliation(s)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Wang Y, Du L, Jing J, Zhao X, Wang X, Hou S. Leptin and leptin receptor expression as biomarkers for breast cancer: a retrospective study. BMC Cancer 2023; 23:260. [PMID: 36941557 PMCID: PMC10029294 DOI: 10.1186/s12885-023-10617-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Effective screening and treatment have reduced the number of women dying from breast cancer (BC). However, the long-term sequelae of BC treatment and psychosocial factors seriously affect the life quality of BC patients and survivors. Therefore, the discovery and application of targeted biomarkers to improve the functional outcome and life quality of BC patients is necessary. AIMS To explore the impact of leptin (LEP)/ leptin receptor (LEPR) expression on occurrence and survival of BC. METHODS Totally 132 primary BC and 66 non-BC patients who underwent surgery in department of breast surgery in Shanxi Cancer Hospital from January to October in 2009 were enrolled in this retrospective study. LEP and LEPR were examined in BC tissues, benign breast tissues, para-carcinoma tissues using immunohistochemical staining. Kaplan-Meier curve was generated to test survival time. RESULTS The high level expression of LEP and LEPR in BC tissues were significantly higher than that in benign breast tissues and in para-carcinoma tissues (all P < 0.05). The LEP expression in patients with lymph node metastases was significantly higher than that in patients without lymph nodes metastases (P = 0.002). LEPR expression was correlated with higher Ki-67 rate (P = 0.002). LEP and LEPR both had no impact on survival (all P > 0.05). CONCLUSIONS High LEP/LEPR expression were risk factors for occurrence of BC, but without impact on survival.
Collapse
Affiliation(s)
- Yan Wang
- Department of Etiology and Tumor Markers Laboratory, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Lili Du
- Department of Etiology and Tumor Markers Laboratory, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Jiexian Jing
- Department of Etiology and Tumor Markers Laboratory, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Xianwen Zhao
- Department of Etiology and Tumor Markers Laboratory, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Xing Wang
- Department of Etiology and Tumor Markers Laboratory, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Shenghuai Hou
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, No. 3 Zhigongxin Street, Xinhualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
18
|
Verras GI, Tchabashvili L, Chlorogiannis DD, Mulita F, Argentou MI. Updated Clinical Evidence on the Role of Adipokines and Breast Cancer: A Review. Cancers (Basel) 2023; 15:1572. [PMID: 36900364 PMCID: PMC10000674 DOI: 10.3390/cancers15051572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
With the recent leaps in medicine, the landscape of our knowledge regarding adipose tissue has changed dramatically: it is now widely regarded as a fully functional endocrine organ. In addition, evidence from observational studies has linked the pathogenesis of diseases like breast cancer with adipose tissue and mainly with the adipokines that are secreted in its microenvironment, with the catalog continuously expanding. Examples include leptin, visfatin, resistin, osteopontin, and more. This review aims to encapsulate the current clinical evidence concerning major adipokines and their link with breast cancer oncogenesis. Overall, there have been numerous meta-analyses that contribute to the current clinical evidence, however more targeted larger-scale clinical studies are still expected to solidify their clinical utility in BC prognosis and reliability as follow-up markers.
Collapse
Affiliation(s)
- Georgios-Ioannis Verras
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | - Levan Tchabashvili
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | | | - Francesk Mulita
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | - Maria-Ioanna Argentou
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
19
|
Tewari S, Vargas R, Reizes O. The impact of obesity and adipokines on breast and gynecologic malignancies. Ann N Y Acad Sci 2022; 1518:131-150. [PMID: 36302117 PMCID: PMC10092047 DOI: 10.1111/nyas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The link between obesity and multiple disease comorbidities is well established. In 2003, Calle and colleagues presented the relationship between obesity and several cancer types, including breast, ovarian, and endometrial malignancies. Nearly, 20% of cancer-related deaths in females can be accounted for by obesity. Identifying obesity as a risk factor for cancer led to a focus on the role of fat-secreted cytokines, known as adipokines, on carcinogenesis and tumor progression. Early studies indicated that the adipokine leptin increases cell proliferation, invasion, and inhibition of apoptosis in multiple cancer types. As a greater appreciation of the obesity-cancer link has amassed, we now know that additional adipokines can impact tumorigenesis. A deeper understanding of the adipokine-activated signaling in cancer may identify new treatment strategies irrespective of obesity. Moreover, adipokines may serve as disease biomarkers, harnessing the potential of obesity-associated factors to serve as indicators of treatment response and disease prognosis. As studies investigating obesity and women's cancers continue to expand, it has become evident that breast, ovarian, and uterine cancers are distinctly impacted by adipokines. While complex, these distinct interactions may provide insight into cancer progression in these organs and new opportunities for targeted therapies. This review aims to organize and present the literature from the last 5 years investigating the mechanisms and implications of adipokine signaling in breast, endometrial, and ovarian cancers with a special focus on leptin and adiponectin.
Collapse
Affiliation(s)
- Surabhi Tewari
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
22
|
Asprosin and meteorin-like protein immunoreactivity in invasive ductal breast carcinoma stages. Tissue Cell 2022; 77:101855. [DOI: 10.1016/j.tice.2022.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
|
23
|
Nouri-Majd S, Salari-Moghaddam A, Benisi-Kohansal S, Azadbakht L, Esmaillzadeh A. Dietary intake of branched-chain amino acids in relation to the risk of breast cancer. Breast Cancer 2022; 29:993-1000. [PMID: 35794412 DOI: 10.1007/s12282-022-01379-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Given that, studies on the association of dietary intake of branched-chain amino acids (BCAAs) with risk of cancers, especially breast cancer, are limited, we aimed to examine the association between dietary intake of BCAAs and risk of breast cancer. METHODS This case-control study was performed on Iranian women aged ≥ 30 years from July 2013 to July 2015. Overall 1050 women including 350 patients and 700 controls were included. Breast cancer was diagnosed by physical examination, mammography and pathological confirmation. We assessed dietary intakes using the validated 106-item Willett-format semi-quantitative dish-based food frequency questionnaire. The total intake of valine, leucine, and isoleucine from all food items in the questionnaire was used to calculate BCAAs intake. To estimate odds ratios (ORs) and 95% confidence intervals (95% CI), we used logistic regression analysis. RESULTS After controlling for potential confounders, we found that women in the highest quartile of BCAAs had lower odds of breast cancer compared with the first quartile (OR: 0.50; 95% CI 0.34-0.72). When we stratified the analysis based on menopausal status, a significant inverse association between BCAAs intake and odds of postmenopausal breast cancer was observed (OR: 0.22; 95% CI 0.13-0.39), although this significant relationship was not found in premenopausal breast cancer (OR: 2.57; 95% CI 0.51-12.73). Also, this significant association was also observed for valine, leucine, and isoleucine separately. CONCLUSION We found that higher dietary intake of BCAAs was significantly associated with a reduced risk of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Asma Salari-Moghaddam
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Sanaz Benisi-Kohansal
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
24
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Abstract
The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
Collapse
Affiliation(s)
- Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: Nikos Koundouros, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: John Blenis, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| |
Collapse
|
27
|
Solikhah S, Perwitasari D, Permatasari TAE, Safitri RA. Diet, Obesity, and Sedentary Lifestyle as Risk Factor of Breast Cancer among Women at Yogyakarta Province in Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Breast cancer prevalence remains high worldwide, including in Indonesia. Studies examining relationship between obesity, dietary habit, sedentary lifestyle, and breast cancer development are largely inconclusive.
AIM: This study aimed to determine relationship between obesity, dietary habit, sedentary lifestyle, and breast cancer risk among women at Yogyakarta Province in Indonesia.
METHODS: This was a cross-sectional study on 135 women selected purposively during March–May 2019. Binary logistic regression models were employed in the analysis with 0.05 considered significant.
RESULTS: Among study subjects, 54.07% and 40% were, respectively, ≥40 years old and smokers. About 53.33% consumed preserved food 3–6 times/week, and 49% and 50.37% consumed sweet food and beverage >1 time/ day, respectively. High body mass index (BMI) and physical inactivity were associated with 93% and 85% breast cancer risk reductions (adjusted odds ratio [AOR]: 0.07, 95% confidence interval [CI]: 0.01–0.45, p < 0.01 and AOR: 0.15, 95% CI: 0.05–0.47, p < 0.001). Smoking showed no significant relationship. A waist circumference (WC) of ≤80 was linked to 78% breast cancer risk reduction. Sweet food, sweet beverage, and energy drink consumption of >1 time/day led to 96%, 36%, and 84% reductions of invasive breast cancer risks. Meanwhile, consumption of preserved food 3–6 times/weeks and soft drinks >1 time/day correlated with an increased risk of breast cancer.
CONCLUSION: High BMI, physical inactivity, and lower WC were associated with the lower breast cancer risk, while preserved food and soft drink consumption significantly increase the risk. Although sedentary lifestyle seems to have a small protective effect, healthy lifestyle should be encouraged and effective strategies are required to encourage women to adopt healthy lifestyle.
Collapse
|
28
|
Aziz MA, Akter T, Sarwar MS, Islam MS. The first combined meta‐analytic approach for elucidating the relationship of circulating resistin levels and RETN gene polymorphisms with colorectal and breast cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Evidence suggests that circulating resistin levels are altered in colorectal cancer (CRC) and breast cancer (BC). Again, polymorphisms in resistin-encoding gene RETN have been evaluated in CRC and BC. However, there is a scarcity of data establishing the relationship of resistin and RETN polymorphisms (rs1862513 and rs3745367) with these cancers. This study aimed to analyze the relationship of resistin levels and RETN polymorphisms with CRC and BC in a combined meta-analytic approach.
Main body of the abstract
After a comprehensive online literature search, screening and eligibility check, 41 articles (31 with resistin level and 10 with RETN polymorphisms) were retrieved for meta-analyses. The mean difference (MD) of resistin was calculated and pooled to investigate the effect sizes with a 95% confidence interval (CI), and the connection of genetic polymorphisms was analyzed with an odds ratio (OR) and 95% CI. The analysis showed that resistin level is significantly higher in CRC (MD = 3.39) and BC (MD = 3.91) patients. Subgroup analysis in CRC showed significantly higher resistin in serum (MD = 4.61) and plasma (MD = 0.34), and in BC, a significantly elevated resistin level was reported in premenopausal (MD = 7.82) and postmenopausal (MD = 0.37) patients. Again, RETN rs1862513 showed a significantly strong association with CRC (codominant 1—OR 1.24, codominant 2—OR 1.31, dominant model—OR 1.25, and allele model—OR 1.16) and with BC (codominant 2—OR 1.51, codominant 3—OR 1.51, recessive model—OR 1.51, and allele model—OR 1.21). RETN rs3745367 did not show any association with these cancers.
Short conclusion
Overall, our analysis indicates that higher circulating resistin levels are associated with an elevated risk of CRC and premenopausal and postmenopausal BC. Besides, rs1862513 in RETN gene is significantly connected with both CRC and BC.
Collapse
|
29
|
Hu LK, Chen JQ, Zheng H, Tao YP, Yang Y, Xu XF. MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis. Exp Ther Med 2021; 22:1430. [PMID: 34707711 PMCID: PMC8543238 DOI: 10.3892/etm.2021.10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex type of liver disease that represents an important global health threat. The mechanistic basis of this disease remains incompletely understood. The present study sought to explore whether microRNA (miR)-506-3p served a functional role in the onset and/or progression of NAFLD. To that end, high levels of glucose were used to treat liver cancer cell lines (HepG2 and Huh7) to model hepatic steatosis, and the expression levels of miR-506-3p and its downstream target genes were assessed. The cells of this hepatic steatosis model were transfected with miR-506-3p mimic molecules to explore the effect of miR-506-3p overexpression on cell viability, target gene expression and AMP-activated protein kinase (AMPK) phosphorylation. Via bioinformatics approaches, sirtuin 1 (SIRT1) was identified as a potential miR-506-3p target gene with relevance in NAFLD, and this interaction was confirmed via luciferase reporter assay. In the hepatic steatosis model of the present study, miR-506-3p expression level was significantly increased, whereas SIRT1 mRNA/protein levels and AMPK phosphorylation levels were markedly decreased. Transfection of the cells with miR-506-3p mimics led to significant SIRT1 downregulation, while miR-506-3p inhibitor molecules exhibited the opposite effect, with similar trends observed in the phosphorylation status of AMPK. These results suggested that miR-506-3p can inhibit SIRT1 expression and associated AMPK phosphorylation in HepG2 and Huh7 cells in an in vitro hepatic steatosis model system. These data indicated that the miR-506-3p/SIRT1/AMPK axis may be valuable as a therapeutic target in patients affected by NAFLD.
Collapse
Affiliation(s)
- Liang-Kai Hu
- Department of Gastroenterology, Shidong Hospital, Shanghai 200438, P.R. China
| | - Jian-Qing Chen
- Department of Gastroenterology, Shidong Hospital, Shanghai 200438, P.R. China
| | - Hao Zheng
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Yuan-Ping Tao
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
30
|
Jin TY, Saindane M, Park KS, Kim S, Nam S, Yoo Y, Yang JH, Yun I. LEP as a potential biomarker in prognosis of breast cancer: Systemic review and meta analyses (PRISMA). Medicine (Baltimore) 2021; 100:e26896. [PMID: 34414945 PMCID: PMC8376305 DOI: 10.1097/md.0000000000026896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Obesity strongly affects the prognosis of various malignancies, including breast cancer. Leptin (LEP) may be associated with obesity and breast cancer prognosis. The purpose of our study was to determine the prognostic value of LEP in breast cancer. METHOD We conducted a multi-omic analysis to determine the prognostic role of LEP. Different public bioinformatics platforms (Oncomine, Gene Expression Profiling Interactive Analysis, University of California Santa Cruz Xena, bc-GenExMiner, PrognoScan database, R2-Kaplan-Meier Scanner, UALCAN, Search Tool for the Retrieval of Interacting Genes/Proteins database , and The Database for Annotation, Visualization and Integrated Discovery) were used to evaluate the roles of LEP. Clinicopathological variables were evaluated. RESULTS LEP was downregulated in breast cancer tissues compared to levels in normal tissues. By co-expressed gene analysis, a positive correlation between LEP and SLC19A3 was observed. Based on the clinicopathological analysis, low LEP expression was associated with older age, higher stage, lymph node status, human epidermal growth factor receptor 2 (HER2) status, estrogen receptor (ER+) positivity, and progesterone receptor (PR+) positivity. Kaplan-Meier survival analysis showed that low LEP expression indicated a poorer prognosis. LEP is hypermethylated in breast cancer tissues in PrognoScan and R2-Kaplan Meier Scanner, and low LEP expression was correlated with poor prognosis. LEP protein-protein interactions were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins database. Gene ontology analysis results showed that cellular component is mainly associated with the endosome lumen, cytosol, and secretory granules and is upregulated. For the biological process energy reserve, metabolic processes exhibited the greatest regulation compared to the others. In molecular function, it was mainly enriched in a variety of combinations, but hormone activity showed the highest regulation. CONCLUSION Our study provides evidence for the prognostic role of LEP in breast cancer and as a novel potential therapeutic target in such malignancies. Nevertheless, further validation is required.
Collapse
Affiliation(s)
- Tong Yi Jin
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Madhuri Saindane
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SeongHoon Kim
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SangEun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - YoungBum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - IkJin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
31
|
Macis D, Aristarco V, Johansson H, Guerrieri-Gonzaga A, Raimondi S, Lazzeroni M, Sestak I, Cuzick J, DeCensi A, Bonanni B, Gandini S. A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk. Cancers (Basel) 2021; 13:cancers13133303. [PMID: 34209441 PMCID: PMC8268385 DOI: 10.3390/cancers13133303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Adiponectin and leptin are adipokines secreted by the adipose tissue that have been associated with several chronic diseases including cancer. We compared two methods for their measurement and investigated their association with breast cancer. We measured adiponectin and leptin with the automated ELLA platform and a manual commercially available enzyme-linked immunosorbent assay (ELISA) kit on serum samples of women enrolled in two international breast cancer prevention trials. We found a good concordance between the two methods and our results support the association of low adiponectin levels with breast cancer, irrespective of the method used. The take-home message is that ELLA is a very robust platform that represents a step forward for the future use of adipokines, along with other biomarkers, in clinical cancer risk assessment and prevention. Its use should be taken into account whenever biomarkers should be measured in a large cohort of patients for clinical validation or cancer association studies. Abstract Adiponectin and leptin are adipokines secreted by the adipose tissue that are associated with several chronic diseases including cancer. We aimed to compare the immunoassay platform ELLA with an enzyme-linked immunosorbent assay (ELISA) kit and to assess whether the results of the association analyses with breast cancer risk were dependent on the assay used. We measured adiponectin and leptin with ELLA and ELISA on baseline serum samples of 116 Italian postmenopausal women enrolled in two international breast cancer prevention trials. Results were compared with Deming, Passing–Bablok regression and Bland–Altman plots. Disease-free survival was analyzed with the Cox model. There was a good correlation between the methods for adiponectin and leptin (r > 0.96). We found an increased breast cancer risk for very low adiponectin levels (HR for ELLA = 3.75; 95% CI: 1.37;10.25, p = 0.01), whereas no significant association was found for leptin levels. The disease-free survival curves were almost identical for values obtained with the two methods, for both biomarkers. The ELLA platform showed a good concordance with ELISA for adiponectin and leptin measurements. Our results support the association of very low adiponectin levels with postmenopausal breast cancer risk, irrespective of the method used. The ELLA platform is a time-saving system with high reproducibility, therefore we recommend its use for biomarker assessment.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
- Correspondence:
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.R.); (S.G.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Ivana Sestak
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M-6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M-6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Andrea DeCensi
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M-6BQ, UK; (I.S.); (J.C.); (A.D.)
- Division of Medical Oncology, Ente Ospedaliero Ospedali Galliera, 16128 Genoa, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.R.); (S.G.)
| |
Collapse
|
32
|
Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021; 11:913. [PMID: 34202969 PMCID: PMC8235379 DOI: 10.3390/biom11060913] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Leptin is an important regulator of basal metabolism and food intake, with a pivotal role in obesity. Leptin exerts many different actions on various tissues and systems, including cancer, and is considered as a linkage between metabolism and the immune system. During the last decades, obesity and leptin have been associated with the initiation, proliferation and progression of many types of cancer. Obesity is also linked with complications and mortality, irrespective of the therapy used, affecting clinical outcomes. However, some evidence has suggested its beneficial role, called the "obesity paradox", and the possible antitumoral role of leptin. Recent data regarding the immunotherapy of cancer have revealed that overweight leads to a more effective response and leptin may probably be involved in this beneficial process. Since leptin is a positive modulator of both the innate and the adaptive immune system, it may contribute to the increased immune response stimulated by immunotherapy in cancer patients and may be proposed as a good actor in cancer. Our purpose is to review this dual role of leptin in cancer, as well as trying to clarify the future perspectives of this adipokine, which further highlights its importance as a cornerstone of the immunometabolism in oncology.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Ana López-Saavedra
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Jesús Castiñeiras
- Urology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain;
| | - Juan A. Virizuela-Echaburu
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Luis de la Cruz-Merino
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| |
Collapse
|
33
|
Monk JM, Liddle DM, Hutchinson AL, Burns JL, Wellings H, Cartwright NM, Muller WJ, Power KA, Robinson LE, Ma DWL. Fish oil supplementation increases expression of mammary tumor apoptosis mediators and reduces inflammation in an obesity-associated HER-2 breast cancer model. J Nutr Biochem 2021; 95:108763. [PMID: 33965532 DOI: 10.1016/j.jnutbio.2021.108763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Obesity is associated with inflammation and has been shown to increase breast cancer severity. The objective of this study was to examine the effect of fish oil (FO) supplementation in obesity-associated mammary tumorigenesis in the MMTV-neu(ndl)-YD5 mouse model of human epidermal growth factor receptor-2 positive BC. Female mice were fed one of three diets for 16 weeks: i) high fat diet [HF, % kacl: 41.2% lard, 18.7% corn oil (CO)], ii) an isocaloric HF plus menhaden FO diet (HF+FO, % kcal: 41.2 lard, 13.4% CO, 5.3% FO), iii) low fat diet (LF, % kcal: 4.7% lard, 6% CO). HF mice had increased body weight, visceral adipose weight and serum hormone concentrations (increased leptin and resistin; decreased adiponectin) versus LF, which was attenuated in the HF+FO group versus HF (P<.05). Compared to HF, tumor onset was delayed in HF+FO and LF mice (P<0.05). Compared to HF, HF+FO reduced mammary tumor multiplicity (-27%), tumor weight (-46%) and total tumor volume (-50%) (P<0.05). Additionally, HF+FO reduced mammary tumor multiplicity (-33%), tumor weight (-39%) and total tumor volume (-60%) versus LF. HF+FO improved mammary tumor apoptosis status with increased expression of pro-apoptotic Bad and decreased expression of anti-apoptotic Bcl-xLmediators versus HF (P<0.05). Additionally, HF+FO decreased tumor protein expression of activated Akt, NFκB p65 and STAT3, versus HF (P<0.05). Tumor mRNA expression of inflammatory mediators TNFα, IL-6 and leptin were reduced in HF+FO, whereas IL-10 expression was increased compared to HF (P<0.05). Collectively these results demonstrate the efficacy of FO supplementation for improving obesity-associated breast cancer outcomes.
Collapse
Affiliation(s)
- Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| | - Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Jessie L Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Hannah Wellings
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Nadia M Cartwright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - William J Muller
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research, Montreal, QC, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa ON, Canada, K1H 8L1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| |
Collapse
|
34
|
Abstract
This Review focuses on the mechanistic evidence for a link between obesity, dysregulated cellular metabolism and breast cancer. Strong evidence now links obesity with the development of 13 different types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women. A number of local and systemic changes are hypothesized to support this relationship, including increased circulating levels of insulin and glucose as well as adipose tissue-derived oestrogens, adipokines and inflammatory mediators. Metabolic pathways of energy production and utilization are dysregulated in tumour cells and this dysregulation is a newly accepted hallmark of cancer. Dysregulated metabolism is also hypothesized to be a feature of non-neoplastic cells in the tumour microenvironment. Obesity-associated factors regulate metabolic pathways in both breast cancer cells and cells in the breast microenvironment, which provides a molecular link between obesity and breast cancer. Consequently, interventions that target these pathways might provide a benefit in postmenopausal women and individuals with obesity, a population at high risk of breast cancer.
Collapse
Affiliation(s)
- Kristy A Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Diao S, Wu X, Zhang X, Hao Y, Xu B, Li X, Tian L, Miao Y, Zhao X, Ye F, Li J. Obesity-related proteins score as a potential marker of breast cancer risk. Sci Rep 2021; 11:8230. [PMID: 33859244 PMCID: PMC8050206 DOI: 10.1038/s41598-021-87583-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
There is strong evidence to suggest that obesity-related proteins play a key role in pathways that are related to breast cancer. In this study, we aimed to establish a robust obesity-related protein score (ORPS) that could be used to assess breast cancer risk. Based on evidence from high-quality systematic reviews and population studies, we selected nine such proteins that are stable in vitro, and measured their circulating concentrations by ELISA in a case-control study conducted in Chengdu, Sichuan, China, with 279 breast cancer cases and 260 healthy controls. Two obesity-related protein scores (ORPS) were calculated using a three-step method, with linear-weighted summation, and the one with a larger area under the curve was chosen for further evaluation. As a result, ORPS (PS5pre or PS4post) was positively correlated with breast cancer risk (premenopausal: OR≤63 VS >63 3.696, 95% CI 2.025-6.747; postmenopausal: OR≤38 VS >38 7.100, 95% CI 3.134-16.084), and represented a better risk predictor among obese women compared to non-obese in pre- and postmenopausal women. Among different molecular subtypes, ORPS was positively correlated with Luminal breast cancer, with additionally positive association with triple-negative breast cancer in premenopausal women. The ORPS might be a potential marker of breast cancer risk among Chinese women.
Collapse
Affiliation(s)
- Sha Diao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaofan Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Hao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Xu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xu Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lulu Tian
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yunqi Miao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xunying Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
36
|
Abstract
Obesity is epidemiologically linked to 13 forms of cancer. The local and systemic obese environment is complex and likely affect tumors through multiple avenues. This includes modulation of cancer cell phenotypes and the composition of the tumor microenvironment. A molecular understanding of how obesity links to cancer holds promise for identifying candidate genes for targeted therapy for obese cancer patient. Herein, we review both the cell-autonomous and non-cell-autonomous mechanisms linking obesity and cancer as well as provide an overview of the mouse model systems applied to study this.
Collapse
Affiliation(s)
- Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Line Pedersen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
37
|
Association between Tumor Prognosis Marker Visfatin and Proinflammatory Cytokines in Hypertensive Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8568926. [PMID: 33816632 PMCID: PMC7990525 DOI: 10.1155/2021/8568926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Visfatin has been reported as a risk factor and a potential diagnostic marker in cancer. It is an adipokine, secreted by visceral fat and associated with the pathogenesis of arterial hypertension. We investigated the circulatory levels of visfatin in hypertensive patients with hypertriglyceridemia, which are the risk factors for various cancers and its association with proinflammatory cytokines. A total of 81 (male/female: 33/48) subjects with or without hypertension were enrolled for this study. Group 1 was normotensive, Group 2 hypertensive, and Group 3 with hypertension with hypertriglyceridemia. Data on anthropometric and biochemical data were recorded. Plasma visfatin levels were measured using an ELISA kit. The plasma inflammatory cytokines were estimated using a multiplex bead-based assay. The results revealed that the hypertension with hypertriglyceridemia group has the highest levels of visfatin compared to the hypertension and control groups with a significant difference (p < 0.001). Besides, circulatory visfatin showed the strongest possible correlation with proinflammatory cytokines among hypertensive patients with hypertriglyceridemia. We found a positive correlation between visfatin and diastolic blood pressure as well as high-density lipoproteins. In conclusion, the outcomes of the present study demonstrate that plasma visfatin levels were found to be elevated in hypertensive patients with hypertriglyceridemia and associated with proinflammatory cytokines. Since hypertension has been documented as the most common comorbidity observed in cancer patients, visfatin may be a novel potential therapeutic target for hypertension in cancer patients and survivors.
Collapse
|
38
|
Menzel A, Samouda H, Dohet F, Loap S, Ellulu MS, Bohn T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants (Basel) 2021; 10:antiox10030414. [PMID: 33803155 PMCID: PMC8001241 DOI: 10.3390/antiox10030414] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Many chronic conditions such as cancer, chronic obstructive pulmonary disease, type-2 diabetes, obesity, peripheral/coronary artery disease and auto-immune diseases are associated with low-grade inflammation. Closely related to inflammation is oxidative stress (OS), which can be either causal or secondary to inflammation. While a low level of OS is physiological, chronically increased OS is deleterious. Therefore, valid biomarkers of these signalling pathways may enable detection and following progression of OS/inflammation as well as to evaluate treatment efficacy. Such biomarkers should be stable and obtainable through non-invasive methods and their determination should be affordable and easy. The most frequently used inflammatory markers include acute-phase proteins, essentially CRP, serum amyloid A, fibrinogen and procalcitonin, and cytokines, predominantly TNFα, interleukins 1β, 6, 8, 10 and 12 and their receptors and IFNγ. Some cytokines appear to be disease-specific. Conversely, OS-being ubiquitous-and its biomarkers appear less disease or tissue-specific. These include lipid peroxidation products, e.g., F2-isoprostanes and malondialdehyde, DNA breakdown products (e.g., 8-OH-dG), protein adducts (e.g., carbonylated proteins), or antioxidant status. More novel markers include also -omics related ones, as well as non-invasive, questionnaire-based measures, such as the dietary inflammatory-index (DII), but their link to biological responses may be variable. Nevertheless, many of these markers have been clearly related to a number of diseases. However, their use in clinical practice is often limited, due to lacking analytical or clinical validation, or technical challenges. In this review, we strive to highlight frequently employed and useful markers of inflammation-related OS, including novel promising markers.
Collapse
Affiliation(s)
- Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Francois Dohet
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Suva Loap
- Clinic Cryo Esthetic, 11 Rue Éblé, 75007 Paris, France;
| | - Mohammed S. Ellulu
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Al-Azhar University of Gaza (AUG), Gaza City 00970, Palestine;
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
- Correspondence:
| |
Collapse
|
39
|
Bergqvist M, Elebro K, Borgquist S, Rosendahl AH. Adipocytes Under Obese-Like Conditions Change Cell Cycle Distribution and Phosphorylation Profiles of Breast Cancer Cells: The Adipokine Receptor CAP1 Matters. Front Oncol 2021; 11:628653. [PMID: 33738261 PMCID: PMC7962603 DOI: 10.3389/fonc.2021.628653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity and associated metabolic conditions impact adipocyte functionality with potential consequences for breast cancer risk and prognosis, but contributing mechanisms remain to be understood. The adipokine receptor adenylyl cyclase-associated protein-1 (CAP1) has been implicated in the progression of breast cancer, but results are conflicting and the underlying molecular mechanisms are still unknown. In this study, molecular and cellular effects in breast cancer cells by stimulation of adipocytes under normal or obese-like conditions, and potential involvement of CAP1, were assessed. MATERIAL AND METHODS Estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cells were exposed to adipocyte-secretome from adipocytes placed under pressures mimicking normal and obese-like metabolic conditions. Changes in phosphorylated kinase proteins and related biological pathways were assessed by phospho-antibody array and PANTHER analysis, cell proliferation were investigated through sulforhodamine B, cell cycle distribution by flow cytometry. Functional effects of CAP1 were subsequently examined following small interfering (si)RNA-mediated knockdown. RESULTS Protein phosphorylations involved in important biological processes were enriched in T47D breast cancer cells in response to adipocyte secretome from obese-like compared with normal conditions. The obesity-associated adipocyte secretome further stimulated cell proliferation and a shift from cell cycle G1-phase to S- and G2/M-phase was observed. Silencing of CAP1 decreased cell proliferation in both T47D and MDA-MB-231 cells, and reduced the obesity-associated secretome-induction of phosphoproteins involved in cell proliferation pathways. CONCLUSIONS These results indicate that the adipocyte secretome and CAP1 are mechanistically important for the proliferation of both ER-positive and ER-negative breast cancer cells, and potential signaling mediators were identified. These studies provide biological insight into how obesity-associated factors could affect breast cancer.
Collapse
Affiliation(s)
- Malin Bergqvist
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Karin Elebro
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Malmö, Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
40
|
The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1342-1352. [PMID: 33639102 DOI: 10.1016/j.ajpath.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The role of the adipocyte in the tumor microenvironment has received significant attention as a critical mediator of the obesity-cancer relationship. Current estimates indicate that 650 million adults have obesity, and thirteen cancers, including breast cancer, are estimated to be associated with obesity. Even in people with a normal body mass index, adipocytes are key players in breast cancer progression because of the proximity of tumors to mammary adipose tissue. Outside the breast microenvironment, adipocytes influence metabolic and immune function and produce numerous signaling molecules, all of which affect breast cancer development and progression. The current epidemiologic data linking obesity, and importantly adipose tissue, to breast cancer risk and prognosis, focusing on metabolic health, weight gain, and adipose distribution as underlying drivers of obesity-associated breast cancer is presented here. Bioactive factors produced by adipocytes, both normal and cancer associated, such as cytokines, growth factors, and metabolites, and the potential mechanisms through which adipocytes influence different breast cancer subtypes are highlighted.
Collapse
|
41
|
Lorenzo PM, Crujeiras AB. Potential effects of nutrition-based weight loss therapies in reversing obesity-related breast cancer epigenetic marks. Food Funct 2021; 12:1402-1414. [PMID: 33480953 DOI: 10.1039/d0fo01984d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a modifiable risk factor of breast cancer and epigenetic marks were proposed as a relevant mechanistic link. These mechanisms can be remodelled by modifying lifestyle factors and this fact could be useful in the treatment of obesity-related breast cancer. This review aimed to reveal the current evidence on the effects of differences in body composition and lifestyle factors on the risk, treatment, and survival of breast cancer with a focus on the effects of weight loss therapies based on different nutrients, bioactive compounds, and Mediterranean and ketogenic diets to counteract obesity-related breast cancer epigenetic marks. This review was framed on the most relevant and recently published articles and abstracts selected in PubMed using key words related to epigenetics, lifestyle, dietary habits, nutrients, bioactive compounds, ketone bodies, and weight loss treatments in obesity and breast cancer. Several studies have demonstrated that lifestyle interventions, including dietary modifications towards a healthy diet pattern, are effective therapies to prevent the onset of breast cancer and to improve the survival after treatment. These therapies reduce the main factors associated with obesity that are links between adiposity and cancer, including oxidative stress, inflammation and epigenetic mechanisms. However, although sufficient evidence exists regarding the effects of nutrients, dietary patterns, and weight loss therapies to prevent breast cancer or to improve survival, the effects of these strategies on the oncological treatment response were less studied. This review summarises the current scientific evidence regarding these nutritional strategies as adjuvant therapies in the management of obesity-related breast cancer by remodelling epigenetic marks related to carcinogenesis.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
| | | |
Collapse
|
42
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
43
|
Grupińska J, Budzyń M, Brzeziński JJ, Gryszczyńska B, Kasprzak MP, Kycler W, Leporowska E, Iskra M. Association between clinicopathological features of breast cancer with adipocytokine levels and oxidative stress markers before and after chemotherapy. Biomed Rep 2021; 14:30. [PMID: 33585032 PMCID: PMC7873584 DOI: 10.3892/br.2021.1406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Adipocytokines and markers of oxidative stress have been shown to exhibit potential for detection of advanced stage, HER2/neu status and lymph node metastases in patients with breast cancer, as well as in determining the efficiency of anti-cancer treatments. In the present study, blood concentrations of apelin (APLN), retinol-binding protein 4 (RBP4), 8-hydroxydeoxyguanosine (8-oxo-dG) and total antioxidant capacity (TAC) in women with breast cancer with different clinicopathological features were measured prior to and following adjuvant chemotherapy. The study included 60 women with breast cancer stratified according to tumor grade and size, HER-2/neu expression, and lymph node and hormone receptor status. Blood samples were taken before and after two cycles of adjuvant chemotherapy. None of the clinicopathological features were associated with the baseline concentrations of RBP4, 8-oxo-dG or TAC. An increased baseline concentration of APLN was observed in HER-2/neu positive patients. Moreover, through multivariate logistical regression analysis, APLN was shown to be independently associated with a positive HER/neu status. Chemotherapy treatment did not affect the levels of RBP4 or APLN, or TAC values when assessing all the patients, and when assessing the stratified groups of patients. Only 8-oxo-dG was found to be significantly decreased following drug administration (P=0.0009). This preliminary study demonstrated that APLN is a significant and independent predictor of HER-2/neu positive breast cancer. A significant reduction in 8-oxo-dG levels following chemotherapy may indicate its potential clinical utility in monitoring the effects of chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Joanna Grupińska
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland.,Nutrition Laboratory, Hospital Pharmacy, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Magdalena Budzyń
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Jacek J Brzeziński
- Gastrointestinal Surgical Oncology Department, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Bogna Gryszczyńska
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Magdalena P Kasprzak
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Witold Kycler
- Gastrointestinal Surgical Oncology Department, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Ewa Leporowska
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Maria Iskra
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
44
|
Taroeno-Hariadi KW, Hardianti MS, Sinorita H, Aryandono T. Obesity, leptin, and deregulation of microRNA in lipid metabolisms: their contribution to breast cancer prognosis. Diabetol Metab Syndr 2021; 13:10. [PMID: 33482868 PMCID: PMC7821690 DOI: 10.1186/s13098-020-00621-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity and Metabolic Syndrome have been associated with cardiovascular, diabetes and cancer incidence. Obesity is a state of inflammation. There are cross-talks between adipocyte, adipokines, pro-inflammatory cytokines, insulin, leptin, and other growth factors to initiate signals for proliferation, anti-apoptosis, and angiogenesis. Those networks lead to cancer initiation, promotion, progression, and metastasis. Post menopause women with breast cancer commonly have overweight, obesity, and metabolic syndrome, which are previously reported as conditions to be associated with breast cancer prognosis. MicroRNAs (miRNAs), small non-coding RNA that regulate gene expression, are known to play important roles either in metabolic or carcinogenesis process in patients with breast cancer. Some miRNAs expressions are deregulated in persons either with obesity, breast cancer, or breast cancer with co-morbid obesity. This literature review aimed at reviewing recent publications on the role of obesity, leptin, and microRNA deregulation in adverse prognosis of breast cancer. Understanding the influence of deregulated miRNAs and their target genes in patients with breast cancer and obesity will direct more studies to explore the potential prognostic role of obesity in breast cancer from epigenetic points of view.
Collapse
Affiliation(s)
- Kartika W Taroeno-Hariadi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Farmako Street, Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Mardiah S Hardianti
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Farmako Street, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Hemi Sinorita
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
45
|
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol 2021; 8:619888. [PMID: 33511131 PMCID: PMC7835429 DOI: 10.3389/fcell.2020.619888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals' genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Priyanka Firmal
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samit Chattopadhyay
- National Centre for Cell Science, SP Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, Goa, India
| |
Collapse
|
46
|
Combined High Resistin and EGFR Expression Predicts a Poor Prognosis in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8835398. [PMID: 33313320 PMCID: PMC7719526 DOI: 10.1155/2020/8835398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Elevated levels of resistin and epidermal growth factor receptor (EGFR) facilitate the development of breast cancer, although there are no reports of any correlation between these proteins. This study analyzed 392 human breast cancer tissue specimens and 42 samples of adjacent normal tissue. Rates of positive and strongly positive resistin expression were significantly higher in breast cancer tissue than in the adjacent nontumor tissue (83.2% vs. 23.8% and 20.9% vs. 0.0%, respectively; P < 0.001 for both comparisons). Positive resistin expression was significantly associated with tumor size, grade, stage, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and molecular classification; strongly positive resistin expression was associated with tumor grade, ER, PR, HER2 status, and molecular classification. Significantly positive correlations were observed between positive and strongly positive resistin expression and corresponding levels of EGFR expression. Relapse-free and overall survival was worse for patients with high levels of both proteins than for those with high levels of only one protein or normal levels of both proteins. Our evidence suggests that combined high levels of resistin and EGFR expression correlate with survival in patients with breast cancer.
Collapse
|
47
|
Obesity-related protein biomarkers for predicting breast cancer risk: an overview of systematic reviews. Breast Cancer 2020; 28:25-39. [PMID: 33237347 DOI: 10.1007/s12282-020-01182-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Based on the biological mechanisms underlying the obesity-breast cancer connections, potential protein biomarkers involved in breast cancer development have been identified, which may be helpful for the estimation of breast cancer risk. This study aimed to carry out a comprehensive overview of systematic reviews on circulating levels of obesity-related protein biomarkers for female breast cancer risk to provide a solid reference for potential breast cancer predictors. METHODS Comprehensive literature searches were conducted in MEDLINE, EMBASE and Cochrane Database of Systematic Reviews up to Dec 2019. The AMSTAR tool was used for the methodological quality assessment of the included systematic reviews. Evidence was reported narratively. RESULTS A total of 28 relevant systematic reviews which were mostly of moderate quality were included in the overview. Protein biomarkers relating to adipokines, insulin/insulin-like growth factor-1 (IGF-1) axis, inflammatory cytokines and sex hormones were investigated. Higher levels of circulating IGF-1, IGF-binding protein-3, leptin and resistin were found to be associated with an increased risk of premenopausal breast cancer; lower levels of circulating adiponectin and higher levels of circulating c-reactive protein, leptin, and resistin were found to be associated with an increased risk of postmenopausal breast cancer. CONCLUSIONS We found sufficient evidence on the positive associations between certain obesity-related protein biomarkers with pre- and/or postmenopausal breast cancer risk. These biomarkers could be used jointly as predictors, so as to build a comprehensive risk predictive score for female breast cancer. PROSPERO REGISTRATION NUMBER CRD42020175328.
Collapse
|
48
|
Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Cancer Lett 2020; 498:229-239. [PMID: 33152400 DOI: 10.1016/j.canlet.2020.10.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Obesity is one of the major modifiable risk factors in breast cancer, with obese adipose tissue showing a pathological role in breast cancer development and malignancy via the release of secretory factors, such as proinflammatory cytokines and adipocytokines. The current article focuses on visfatin and resistin, two such adipocytokines that have emerged over the last two decades as leading breast cancer promoting factors in obesity. The clinical association of circulating visfatin and resistin with breast cancer and their biological mechanisms are reviewed, in addition to their role in the context of tumor-stromal interactions in the breast cancer microenvironment. Recent findings have unraveled several mediators of visfatin and resistin that are involved in the crosstalk between breast cancer cells and adipose tissue in the breast tumor microenvironment, including growth differentiation factor 15 (GDF15), interleukin 6 (IL-6), and toll-like receptor 4 (TLR4). Finally, current therapeutics targeting visfatin and resistin and their respective pathways are discussed, including future therapeutic strategies such as new drug design or neutralizing peptides that target extracellular visfatin or resistin. These hold promise in the development of novel breast cancer therapies and are of increasing relevance as the prevalence of obesity-related breast cancer increases worldwide.
Collapse
|
49
|
Michels KB, Keller K, Pereira A, Kim CE, Santos JL, Shepherd J, Corvalan C, Binder AM. Association between indicators of systemic inflammation biomarkers during puberty with breast density and onset of menarche. Breast Cancer Res 2020; 22:104. [PMID: 33004039 PMCID: PMC7531086 DOI: 10.1186/s13058-020-01338-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Systemic inflammation may play a role in shaping breast composition, one of the strongest risk factors for breast cancer. Pubertal development presents a critical window of breast tissue susceptibility to exogenous and endogenous factors, including pro-inflammatory markers. However, little is known about the role of systemic inflammation on adolescent breast composition and pubertal development among girls. Methods We investigated associations between circulating levels of inflammatory markers (e.g., interleukin-6 (IL-6), tumor necrosis factor receptor 2 (TNFR2), and C-reactive protein (CRP)) at Tanner stages 2 and 4 and breast composition at Tanner stage 4 in a cohort of 397 adolescent girls in Santiago, Chile (Growth and Obesity Cohort Study, 2006–2018). Multivariable linear models were used to examine the association between breast composition and each inflammatory marker, stratifying by Tanner stage at inflammatory marker measurement. Accelerated failure time models were used to evaluate the association between inflammatory markers concentrations at each Tanner stage and time to menarche. Results In age-adjusted linear regression models, a doubling of TNFR2 at Tanner 2 was associated with a 26% (95% CI 7–48%) increase in total breast volume at Tanner 4 and a 22% (95% CI 10–32%) decrease of fibroglandular volume at Tanner 4. In multivariable models further adjusted for body fatness and other covariates, these associations were attenuated to the null. The time to menarche was 3% (95% CI 1–5%) shorter among those in the highest quartile of IL-6 at Tanner 2 relative to those in the lowest quartile in fully adjusted models. Compared to those in the lowest quartile of CRP at Tanner 4, those in the highest quartile experienced 2% (95% CI 0–3%) longer time to menarche in multivariable models. Conclusions Systemic inflammation during puberty was not associated with breast volume or breast density at the conclusion of breast development among pubertal girls after adjusting for body fatness; however, these circulating inflammation biomarkers, specifically CRP and IL-6, may affect the timing of menarche onset.
Collapse
Affiliation(s)
- Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles Young Drive South, Room 71-264 CHS, Los Angeles, CA, 90095, USA. .,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Kristen Keller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Claire E Kim
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles Young Drive South, Room 71-264 CHS, Los Angeles, CA, 90095, USA
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - John Shepherd
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles Young Drive South, Room 71-264 CHS, Los Angeles, CA, 90095, USA.,Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| |
Collapse
|
50
|
Robinson T, Martin RM, Yarmolinsky J. Mendelian randomisation analysis of circulating adipokines and C-reactive protein on breast cancer risk. Int J Cancer 2020; 147:1597-1603. [PMID: 32134113 PMCID: PMC7497166 DOI: 10.1002/ijc.32947] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023]
Abstract
Circulating adipokines and C-reactive protein (CRP) have been linked to breast cancer risk in observational epidemiological studies. The causal nature of these associations is unclear because of the susceptibility of conventional observational designs to residual confounding, reverse causation and other forms of bias. Mendelian randomisation (MR) uses genetic variants as proxies for risk factors to strengthen causal inference in observational settings. We performed a MR analysis to evaluate the causal relevance of six previously reported circulating adipokines [adiponectin, hepatocyte growth factor (HGF), interleukin-6, leptin receptor, plasminogen activator inhibitor-1 and resistin] and CRP in risk of overall and oestrogen receptor-stratified breast cancer in up to 122,977 cases and 105,974 controls of European ancestry. Genetic instruments were constructed from single-nucleotide polymorphisms robustly (p < 5 × 10-8 ) associated with risk factors in genome-wide association studies. Colocalisation was performed as a sensitivity analysis to examine whether findings reflected shared causal variants or genomic confounding. In MR analyses, there was evidence for an association of HGF with oestrogen receptor-negative cancer (odds ratio per standard deviation increase: 1.17, 95% confidence interval: 1.01-1.35; p = 0.035) but little evidence for associations of other adipokines or CRP with overall or oestrogen receptor-stratified breast cancer. Colocalisation analysis suggested that the association of HGF with oestrogen receptor-negative breast cancer was unlikely to reflect a causal association. Collectively, these findings do not support an important aetiological role of various adipokines or CRP in overall or oestrogen receptor-specific breast cancer risk.
Collapse
Affiliation(s)
- Timothy Robinson
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Richard M. Martin
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- University Hospitals Bristol, NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research CentreUniversity of BristolBristolUK
| | - James Yarmolinsky
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|