1
|
Singh S, Goyal R, Gupta A, Singh R, Singh M, Mehra P, Pramanik R, Suri V, Ali S. Role of Cell-free DNA as a Non-Invasive Biomarker in the Detection of Head and Neck Squamous Cell Carcinoma. Indian J Clin Biochem 2025; 40:294-299. [PMID: 40123626 PMCID: PMC11928709 DOI: 10.1007/s12291-024-01181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 03/25/2025]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are the sixth leading cancer by incidence worldwide. Small fragments of cell-free DNA (cfDNA) are present in the circulation with elevated levels in cancer patients. Their concentration correlates with tumor size, disease stage, and metastatic burden. Our present study aims to determine the utility of cfDNA as an early screening and diagnostic tool in patients with HNSCC. A cross-sectional study was conducted. The cohort included 35 biopsy-confirmed cases of HNSCC and 35 age and sex-matched healthy controls. cfDNA was extracted using 3 ml plasma with QIAamp Circulating Nucleic acid kit and quantified using UV Spectrophotometry. Mean levels of plasma cfDNA were elevated in patients with HNSCC compared to controls (Mean of 17.10 ng/μl and 15.26 ng/μl, respectively), although the difference was not significant (p value = 0.244). On comparison of the mean of cfDNA levels between different tumor stages, cfDNA levels in stage IV (26.65 ng/μl) were highest followed by stage III (21.93 ng/μl), stage II (17.43 ng/μl) and stage I (12.12 ng/μl). ROC curve analysis showed that at a cut-off of > 16.8 ng/μl, cfDNA provided 42.8% sensitivity for detecting cancer. cfDNA may have the potential for monitoring disease progression in HNSCC patients in advanced stages. However, non-significant elevation in cfDNA during early stages (Stages I and II) limits its utility as a reliable biomarker for diagnosing the disease at initial stages in HNSCC.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biochemistry, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, New Delhi, India
| | - Rajeev Goyal
- Department of Biochemistry, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, New Delhi, India
| | - Ashna Gupta
- Medical Oncology, B.A.I.R.A.C.H., All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ritu Singh
- Department of Biochemistry, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, New Delhi, India
| | - Mayank Singh
- Medical Oncology, B.A.I.R.A.C.H., All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Parvesh Mehra
- Department of Dental and Oral Surgery, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, New Delhi, India
| | - Raja Pramanik
- Medical Oncology, B.A.I.R.A.C.H., All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shadan Ali
- Department of Surgery, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, New Delhi, India
| |
Collapse
|
2
|
Fernández-Domínguez IJ, Pérez-Cárdenas E, Taja-Chayeb L, Wegman-Ostrosky T, Caro-Sánchez CHS, Zentella-Dehesa A, Dueñas-González A, López-Basabe H, Morales-Bárcenas R, Trejo-Becerril C. Increased amounts of cell-free DNA released from a culture with a high content of cancer stem cells. Front Cell Dev Biol 2025; 13:1499936. [PMID: 40226589 PMCID: PMC11985834 DOI: 10.3389/fcell.2025.1499936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background The study and characterization of cell-free DNA (cfDNA) has gained significant importance due to its clinical applications as a diagnostic and prognostic marker. However, it remains unclear whether all cell populations within a tumor or culture contribute equally to its release. This pioneering research analyzes the contribution of cancer stem cells (CSCs) in colon cancer cell lines to the amount of cfDNA released and its role in cellular transformation. Methods The CSC population derived from the SW480 colon cancer cell line was enriched using a non-adhesive culture system to assess the quantity and electrophoretic profile of the released cfDNA. Subsequently, in vitro transformation assays were conducted to compare the transforming capacity of the cfDNA obtained from enriched cultures with that from non-enriched cultures. Group differences were analyzed using analysis of variance (ANOVA), followed by post hoc interpretation with Tukey's test. Results Our study revealed that cultures with CSCs released greater amounts of cfDNA, displaying a distinct fragment profile. Additionally, cfDNA from different cellular origins influenced the transformation characteristics of NIH3T3 cells. This is the first demonstration of a link between CSC proportions and cfDNA release, suggesting that CSCs and microenvironmental conditions can affect cfDNA quantity and its potential to induce transformation. Conclusion These findings highlight the importance of cfDNA in carcinogenesis and its potential as a biomarker and therapeutic target, especially given the role of CSCs in drug resistance and tumor aggressiveness.
Collapse
Affiliation(s)
- Ileana J. Fernández-Domínguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, México City, Mexico
| | - Enrique Pérez-Cárdenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | | | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Horacio López-Basabe
- Departamento de Gastroenterología del Instituto Nacional de Cancerología, México City, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Catalina Trejo-Becerril
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| |
Collapse
|
3
|
Torres PC, Tàssies D, Castillo H, Gracia M, Feixas G, Reverter JC, Carmona F, Martínez-Zamora MA. Long-term follow-up of the effect of oral dienogest and dienogest/ethinylestradiol treatment on cell-free DNA levels in patients with deep endometriosis. Eur J Med Res 2025; 30:193. [PMID: 40114274 PMCID: PMC11927308 DOI: 10.1186/s40001-025-02429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Endometriosis is currently considered a systemic inflammatory disease and different non-invasive inflammatory markers, such as cell-free DNA (cfDNA), have recently been evaluated. Hormonal treatments are frequently prescribed as first-line treatments to improve symptoms, reduce lesions and improve the quality of life of patients with endometriosis. The most frequently used hormonal treatments are estroprogestins and progestins due to their effectiveness and well-tolerated clinical profile. However, the impact these hormonal treatments may have on these markers has yet to be determined. The aim of this study was to assess whether cfDNA levels are modified under the two main first-line hormonal treatments in patients with deep endometriosis (DE). METHODS Ninety patients diagnosed with DE were analyzed in this prospective, observational study. Forty-five received daily oral treatment with dienogest 2 mg, and 45 with 2 mg dienogest/30 μg ethinylestradiol. Plasma cfDNA levels were evaluated by fluorescent assay prior to initiation of treatment and at 6 and 12 months of treatment. RESULTS An increase in cfDNA levels was observed during the follow-up at 6 and 12 months. However, these higher levels were only statistically significant at 12 months of treatment. The increase of cfDNA levels was similar with both treatments. CONCLUSION Higher cfDNA levels were observed in DE patients at 12 months of oral hormonal treatment showing similar results with dienogest or dienogest/ethinylestradiol. This increase could be explained by apoptosis of the endometriosis foci due to the treatment.
Collapse
Affiliation(s)
- P Carrillo Torres
- Gynaecology Department. Clinic Institute of Gynaecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Universitat de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - D Tàssies
- Hemotherapy and Hemostasis Department, Clinic Institute of Hemato-Oncological Disease (ICMHO), Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - H Castillo
- Gynaecology Department. Clinic Institute of Gynaecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Universitat de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - M Gracia
- Gynaecology Department. Clinic Institute of Gynaecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Universitat de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - G Feixas
- Gynaecology Department. Clinic Institute of Gynaecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Universitat de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - J C Reverter
- Hemotherapy and Hemostasis Department, Clinic Institute of Hemato-Oncological Disease (ICMHO), Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - F Carmona
- Gynaecology Department. Clinic Institute of Gynaecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Universitat de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - M A Martínez-Zamora
- Gynaecology Department. Clinic Institute of Gynaecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Universitat de Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Aydın Ş, Özdemir S, Adıgüzel A. The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases. J Mol Neurosci 2025; 75:34. [PMID: 40080233 PMCID: PMC11906534 DOI: 10.1007/s12031-025-02317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive and gradual degeneration of neurons. The prevalence and rates of these disorders rise significantly with age. As life spans continue to increase in many countries, the number of cases is expected to grow in the foreseeable future. Early and precise diagnosis, along with appropriate surveillance, continues to pose a challenge. The high heterogeneity of neurodegenerative diseases calls for more accurate and definitive biomarkers to improve clinical therapy. Cell-free DNA (cfDNA), including fragmented DNA released into bodily fluids via apoptosis, necrosis, or active secretion, has emerged as a promising non-invasive diagnostic tool for various disorders including neurodegenerative diseases. cfDNA can serve as an indicator of ongoing cellular damage and mortality, including neuronal loss, and may provide valuable insights into disease processes, progression, and therapeutic responses. This review will first cover the key aspects of cfDNA and then examine recent advances in its potential use as a biomarker for neurodegenerative disorders.
Collapse
Affiliation(s)
- Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
5
|
Tran TTQ, Pham TT, Nguyen TT, Hien Do T, Luu PTT, Nguyen UQ, Vuong LD, Nguyen QN, Ho SV, Dao HV, Hoang TV, Vo LTT. An appropriate DNA input for bisulfite conversion reveals LINE-1 and Alu hypermethylation in tissues and circulating cell-free DNA from cancers. PLoS One 2024; 19:e0316394. [PMID: 39775734 PMCID: PMC11684646 DOI: 10.1371/journal.pone.0316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer. This study demonstrated that errors in LINE-1 and Alu methylation level measurements were caused by an excessive input quantity of genomic DNA used for bisulfite conversion. Using the minuscule DNA amount of 0.5 ng, much less than what has been used and recommended so far (500 ng-2 μg) or 1 μL of cfDNA extracted from 1 mL of blood, we revealed hypermethylation of LINE-1 and Alu in 407 tumour samples of primary breast, colon and lung cancers when compared with the corresponding pair-matched adjacent normal tissue samples (P < 0.05-0.001), and in cfDNA from 296 samples of lung cancers as compared with 477 samples from healthy controls (P < 0.0001). More importantly, LINE-1 hypermethylation in cfDNA is associated with healthy ageing. Our results have not only contributed to the standardized bisulfite-based protocols for DNA methylation assays, particularly in applications on repeated sequences but also provided another perspective for other repetitive sequences whose epigenetic properties may have crucial impacts on genome architecture and human health.
Collapse
Affiliation(s)
- Trang Thi Quynh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| | - Tung The Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Than Thi Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Trang Hien Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phuong Thi Thu Luu
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, Vietnam National Cancer Hospital, Hanoi, Vietnam
| | - Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, Vietnam National Cancer Hospital, Hanoi, Vietnam
| | - Son Van Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Hang Viet Dao
- Endoscopic Centre, Hanoi Medical University Hospital, Hanoi, Vietnam
| | | | - Lan Thi Thuong Vo
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| |
Collapse
|
6
|
Ali M, Kumar KG, Singh K, Rabyang S, Thinlas T, Mishra A. Evaluation of the cell death markers for aberrated cell free DNA release in high altitude pulmonary edema. Clin Sci (Lond) 2024; 138:1467-1480. [PMID: 39509268 DOI: 10.1042/cs20242052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The effect of high altitude (HA, altitude >2500 m) can trigger a maladaptive response in unacclimatized individuals, leading to various HA illnesses such as high altitude pulmonary edema (HAPE). The present study investigates circulating cell free (cf) DNA, a minimally invasive biomarker that can elicit a pro-inflammatory response. Our earlier study observed altered cfDNA fragment patterns in HAPE patients and the significant correlation of these patterns with peripheral oxygen saturation levels. However, the unclear release mechanisms of cfDNA in circulation limit its characterization and clinical utility. The present study not only observed a significant increase in cfDNA levels in HAPE patients (27.03 ± 1.37 ng/ml; n = 145) compared to healthy HA sojourners (controls, 14.57 ± 0.74 ng/ml; n = 65) and highlanders (HLs, 15.50 ± 0.8 ng/ml; n = 34) but also assayed the known cell death markers involved in cfDNA release at HA. The study found significantly elevated levels of the apoptotic marker, annexin A5, and secondary necrosis or late apoptotic marker, high mobility group box 1, in HAPE patients. In addition, we observed a higher oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine, in HAPE compared with controls, suggestive of the role of oxidative DNA status in promoting the inflammatory potential of cfDNA fragments and their plausible role in manifesting HAPE pathophysiology. Extensive in vitro future assays can confirm the immunogenic role of cfDNA fragments that may act as a danger-associated molecular pattern and associate with markers of cellular stresses in HAPE.
Collapse
Affiliation(s)
- Manzoor Ali
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishna G Kumar
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kanika Singh
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stanzen Rabyang
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh 194101, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh 194101, India
| | - Aastha Mishra
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Boeken T, Pellerin O, Bourreau C, Palle J, Gallois C, Zaanan A, Taieb J, Lahlou W, Di Gaeta A, Al Ahmar M, Guerra X, Dean C, Laurent Puig P, Sapoval M, Pereira H, Blons H. Clinical value of sequential circulating tumor DNA analysis using next-generation sequencing and epigenetic modifications for guiding thermal ablation for colorectal cancer metastases: a prospective study. LA RADIOLOGIA MEDICA 2024; 129:1530-1542. [PMID: 39183242 DOI: 10.1007/s11547-024-01865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION While thermal ablation is now a standard treatment option for oligometastatic colorectal cancer patients, selecting those who will benefit most from locoregional therapies remains challenging. This proof-of-concept study is the first to assess the feasibility of routine testing of ctDNA before and after thermal ablation with curative intent, analyzed by next-generation sequencing (NGS) and methylation specific digital droplet PCR (ddPCR). Our prospective study primary objective was to assess the prognostic value of ctDNA before thermal ablation. METHODS This single-center prospective study from November 2021 to June 2022 included colorectal cancer patients referred for curative-intent thermal ablation. Cell-free DNA was tested at different time points by next-generation sequencing and detection of WIF1 and NPY genes hypermethylation using ddPCR. The ctDNA was considered positive if either a tumor mutation or hypermethylation was detected; recurrence-free survival was used as the primary endpoint. RESULTS The study enrolled 15 patients, and a total of 60 samples were analyzed. The median follow-up after ablation was 316 days, and median recurrence-free survival was 250 days. CtDNA was positive for 33% of the samples collected during the first 24 h. The hazard ratio for progression according to the presence of baseline circulating tumor DNA was estimated at 0.14 (CI 95%: 0.03-0.65, p = 0.019). The dynamics are provided, and patients with no recurrence were all negative at H24 for ctDNA. DISCUSSION This study shows the feasibility of routine testing of ctDNA before and after thermal ablation with curative intent. We report that circulating tumor DNA is detectable in patients with low tumor burden using 2 techniques. This study emphasizes the potential of ctDNA for discerning patients who are likely to benefit from thermal ablation from those who may not, which could shape future referrals. The dynamics of ctDNA before and after ablation shed light on the need for further research and larger studies.
Collapse
Affiliation(s)
- Tom Boeken
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France.
| | - Olivier Pellerin
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | | | - Juliette Palle
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Claire Gallois
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Widad Lahlou
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Alessandro Di Gaeta
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | - Marc Al Ahmar
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | - Xavier Guerra
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | | | - Pierre Laurent Puig
- Department of Biochemistry, Pharmacogenetics and Molecular Oncology (ONSTeP), AP-HP, Hôpital Européen Georges Pompidou, Paris Cancer Institute CARPEM, Université de Paris Cité, Paris, France
| | - Marc Sapoval
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | - Helena Pereira
- Centre d'investigation Clinique 1418 Épidémiologie Clinique, AP-HP, INSERM, Hôpital Européen Georges Pompidou, Clinical Research Unit, Paris, France
| | - Hélène Blons
- Department of Biochemistry, Pharmacogenetics and Molecular Oncology (ONSTeP), AP-HP, Hôpital Européen Georges Pompidou, Paris Cancer Institute CARPEM, Université de Paris Cité, Paris, France
| |
Collapse
|
8
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Davidson BA, Miranda AX, Reed SC, Bergman RE, Kemp JDJ, Reddy AP, Pantone MV, Fox EK, Dorand RD, Hurley PJ, Croessmann S, Park BH. An in vitro CRISPR screen of cell-free DNA identifies apoptosis as the primary mediator of cell-free DNA release. Commun Biol 2024; 7:441. [PMID: 38600351 PMCID: PMC11006667 DOI: 10.1038/s42003-024-06129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
ABTRACT Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.
Collapse
Affiliation(s)
- Brad A Davidson
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Adam X Miranda
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah C Reed
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Riley E Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Justin D J Kemp
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Anvith P Reddy
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Morgan V Pantone
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ethan K Fox
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - R Dixon Dorand
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Paula J Hurley
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah Croessmann
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ben Ho Park
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Das D, Avssn R, Chittela RK. A phenol-chloroform free method for cfDNA isolation from cell conditioned media: development, optimization and comparative analysis. Anal Biochem 2024; 687:115454. [PMID: 38158107 DOI: 10.1016/j.ab.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The non-invasive invasive nature of cell-free DNA (cfDNA) as diagnostic, prognostic, and theragnostic biomarkers has gained immense popularity in recent years. The clinical utility of cfDNA biomarkers may depend on understanding their origin and biological significance. Apoptosis, necrosis, and/or active release are possible mechanisms of cellular DNA release into the cell-free milieu. In-vitro cell culture models can provide useful insights into cfDNA biology. The yields and quality of cfDNA in the cell conditioned media (CCM) are largely dependent on the extraction method used. Here, we developed a phenol-chloroform-free cfDNA extraction method from CCM and compared it with three others published cfDNA extraction methods and four commercially available kits. Real-Time PCR (qPCR) targeting two different loci and a fluorescence-based Qubit assay were performed to quantify the extracted cfDNA. The absolute concentration of the extracted cfDNA varies with the target used for the qPCR assay; however, the relative trend remains similar for both qPCR assays. The cfDNA yield from CCM provided by the developed method was found to be either higher or comparable to the other methods used. In conclusion, we developed a safe, rapid and cost-effective cfDNA extraction protocol with minimal hands-on time; with no compromise in cfDNA yields.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India
| | - Rao Avssn
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
11
|
Kim J, Hong SP, Lee S, Lee W, Lee D, Kim R, Park YJ, Moon S, Park K, Cha B, Kim JI. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids. Hum Genomics 2023; 17:96. [PMID: 37898819 PMCID: PMC10613368 DOI: 10.1186/s40246-023-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Fragmentomics, the investigation of fragmentation patterns of cell-free DNA (cfDNA), has emerged as a promising strategy for the early detection of multiple cancers in the field of liquid biopsy. However, the clinical application of this approach has been hindered by a limited understanding of cfDNA biology. Furthermore, the prevalence of hematopoietic cell-derived cfDNA in plasma complicates the in vivo investigation of tissue-specific cfDNA other than that of hematopoietic origin. While conventional two-dimensional cell lines have contributed to research on cfDNA biology, their limited representation of in vivo tissue contexts underscores the need for more robust models. In this study, we propose three-dimensional organoids as a novel in vitro model for studying cfDNA biology, focusing on multifaceted fragmentomic analyses. RESULTS We established nine patient-derived organoid lines from normal lung airway, normal gastric, and gastric cancer tissues. We then extracted cfDNA from the culture medium of these organoids in both proliferative and apoptotic states. Using whole-genome sequencing data from cfDNA, we analyzed various fragmentomic features, including fragment size, footprints, end motifs, and repeat types at the end. The distribution of cfDNA fragment sizes in organoids, especially in apoptosis samples, was similar to that found in plasma, implying occupancy by mononucleosomes. The footprints determined by sequencing depth exhibited distinct patterns depending on fragment sizes, reflecting occupancy by a variety of DNA-binding proteins. Notably, we discovered that short fragments (< 118 bp) were exclusively enriched in the proliferative state and exhibited distinct fragmentomic profiles, characterized by 3 bp palindromic end motifs and specific repeats. CONCLUSIONS In conclusion, our results highlight the utility of in vitro organoid models as a valuable tool for studying cfDNA biology and its associated fragmentation patterns. This, in turn, will pave the way for further enhancements in noninvasive cancer detection methodologies based on fragmentomics.
Collapse
Affiliation(s)
- Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seyoon Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woochan Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dakyung Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rokhyun Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Verebi C, Nectoux J, Gorwood P, Le Strat Y, Duriez P, Ramoz N, Bienvenu T. A systematic literature review and meta-analysis of circulating nucleic acids as biomarkers in psychiatry. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110770. [PMID: 37068545 DOI: 10.1016/j.pnpbp.2023.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Common mental disorders (CMDs) such as depression, anxiety and post-traumatic stress disorders account for 40% of the global burden of disease. In most psychiatric disorders, both diagnosis and monitoring can be challenging, frequently requiring long-term investigation and follow-up. The discovery of better methods to facilitate accurate and fast diagnosis and monitoring of psychiatric disorders is therefore crucial. Circulating nucleic acids (CNAs) are among these new tools. CNAs (DNA or RNA) can be found circulating in body biofluids, and can be isolated from biological samples such as plasma. They can serve as biomarkers for diagnosis and prognoses. They appear to be promising for disorders (such as psychiatric disorders) that involve organs or structures that are difficult to assess. This review presents an accurate assessment of the current literature about the use of plasma and serum cell-free DNA (cfDNA) as biomarkers for several aspects of psychiatric disorders: diagnosis, prognosis, treatment response, and monitor disease progression. For each psychiatric disorder, we examine the effect sizes to give insights on the efficacy of CNAs as biomarkers. The global effect size for plasma nuclear and mitochondrial cfDNA studies was generally moderate for psychiatric disorders. In addition, we discuss future applications of CNAs and particularly cfDNA as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- Camille Verebi
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, AP.HP.CUP, Paris, France; INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France
| | - Juliette Nectoux
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, AP.HP.CUP, Paris, France
| | - Philip Gorwood
- INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France; Université Paris Cité, GHU Paris Psychiatrie et Neurosciences (CMME), Paris, France
| | - Yann Le Strat
- AP-HP, Department of Psychiatry, Louis Mourier Hospital, Université Paris Cité, Faculté de Médecine, Colombes, France
| | - Philibert Duriez
- INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France; Université Paris Cité, GHU Paris Psychiatrie et Neurosciences (CMME), Paris, France
| | - Nicolas Ramoz
- INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, AP.HP.CUP, Paris, France; INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France.
| |
Collapse
|
13
|
Abramson DH, Mandelker DL, Brannon AR, Dunkel IJ, Benayed R, Berger MF, Arcila ME, Ladanyi M, Friedman DN, Jayakumaran G, Diosdado MS, Robbins MA, Haggag-Lindgren D, Shukla N, Walsh MF, Kothari P, Tsui DWY, Francis JH. Mutant-RB1 circulating tumor DNA in the blood of unilateral retinoblastoma patients: What happens during enucleation surgery: A pilot study. PLoS One 2023; 18:e0271505. [PMID: 36735656 PMCID: PMC9897525 DOI: 10.1371/journal.pone.0271505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cell free DNA (cfDNA) and circulating tumor cell free DNA (ctDNA) from blood (plasma) are increasingly being used in oncology for diagnosis, monitoring response, identifying cancer causing mutations and detecting recurrences. Circulating tumor RB1 DNA (ctDNA) is found in the blood (plasma) of retinoblastoma patients at diagnosis before instituting treatment (naïve). We investigated ctDNA in naïve unilateral patients before enucleation and during enucleation (6 patients/ 8 mutations with specimens collected 5-40 minutes from severing the optic nerve) In our cohort, following transection the optic nerve, ctDNA RB1 VAF was measurably lower than pre-enucleation levels within five minutes, 50% less within 15 minutes and 90% less by 40 minutes.
Collapse
Affiliation(s)
- David H. Abramson
- Department of Surgery, Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Ophthalmology, Weill Cornell Medical Center, New York, New York, United States of America
- * E-mail:
| | - Diana L. Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - A. Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ira J. Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pediatrics, Weill Cornell Medical Center, New York, New York, United States of America
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Michael F. Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Danielle Novetsky Friedman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Gowtham Jayakumaran
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Monica S. Diosdado
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Melissa A. Robbins
- Department of Surgery, Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Dianna Haggag-Lindgren
- Department of Surgery, Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Michael F. Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Prachi Kothari
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Dana W. Y. Tsui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Jasmine H. Francis
- Department of Surgery, Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Ophthalmology, Weill Cornell Medical Center, New York, New York, United States of America
| |
Collapse
|
14
|
Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van ’t Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer 2023; 22:15. [PMID: 36681803 PMCID: PMC9862574 DOI: 10.1186/s12943-022-01710-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse. MAIN BODY Recent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility. CONCLUSIONS A deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| |
Collapse
|
15
|
Ruiz Esparza Garrido R, Gutiérrez M, Ángel Velázquez Flores M. Circulating cervical cancer biomarkers potentially useful in medical attention (Review). Mol Clin Oncol 2023; 18:13. [PMID: 36761385 PMCID: PMC9892968 DOI: 10.3892/mco.2023.2609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Cervical cancer (CC) is a public health problem worldwide, including Mexico. This type of cancer is the fourth most frequent in women worldwide; in Mexico it is the second most common type in women after breast cancer. The diagnosis of CC is based mainly on Pap smears and colposcopy and the identification of molecular tools that serve as a support for these methods is urgent. Regarding this, differential expressions of specific circulating biomolecules has been detected and, based on this, they have been postulated as potential biomarkers for CC diagnosis, prognosis, and/or to identify the response to treatments. Importantly, the combined analysis of these molecules considerably improves their efficacy as biomarkers and their potential use in the medical attention is promising.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza Garrido
- Investigadora por México, Non-coding RNAs Laboratory, Medical Research Unit in Human Genetics, Children's Hospital ‘Dr. Silvestre Frenk Freund’, National Medical Center XXI Century, Mexican Institute of Social (Instituto Mexicano del Seguro Social, IMSS), Doctores, Mexico City 06720, Mexico
| | - Mercedes Gutiérrez
- ATSO PHARMA Laboratory, Jardines del Pedregal, Álvaro Obregón, Mexico City 01900, Mexico
| | - Miguel Ángel Velázquez Flores
- Non-coding RNAs Laboratory, Medical Research Unit in Human Genetics, Children's Hospital ‘Dr. Silvestre Frenk Freund’, National Medical Center XXI Century, Mexican Institute of Social (Instituto Mexicano del Seguro Social, IMSS), Doctores, Mexico City 06720, Mexico,Correspondence to: Dr Miguel Ángel Velázquez Flores, Non-coding RNAs Laboratory, Medical Research Unit in Human Genetics, Children's Hospital ‘Dr. Silvestre Frenk Freund’, National Medical Center XXI Century, Mexican Institute of Social Security, 330 Cuauhtémoc Avenue, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
16
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
17
|
Műzes G, Bohusné Barta B, Szabó O, Horgas V, Sipos F. Cell-Free DNA in the Pathogenesis and Therapy of Non-Infectious Inflammations and Tumors. Biomedicines 2022; 10:2853. [PMID: 36359370 PMCID: PMC9687442 DOI: 10.3390/biomedicines10112853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The basic function of the immune system is the protection of the host against infections, along with the preservation of the individual antigenic identity. The process of self-tolerance covers the discrimination between self and foreign antigens, including proteins, nucleic acids, and larger molecules. Consequently, a broken immunological self-tolerance results in the development of autoimmune or autoinflammatory disorders. Immunocompetent cells express pattern-recognition receptors on their cell membrane and cytoplasm. The majority of endogenous DNA is located intracellularly within nuclei and mitochondria. However, extracellular, cell-free DNA (cfDNA) can also be detected in a variety of diseases, such as autoimmune disorders and malignancies, which has sparked interest in using cfDNA as a possible biomarker. In recent years, the widespread use of liquid biopsies and the increasing demand for screening, as well as monitoring disease activity and therapy response, have enabled the revival of cfDNA research. The majority of studies have mainly focused on the function of cfDNA as a biomarker. However, research regarding the immunological consequences of cfDNA, such as its potential immunomodulatory or therapeutic benefits, is still in its infancy. This article discusses the involvement of various DNA-sensing receptors (e.g., absent in melanoma-2; Toll-like receptor 9; cyclic GMP-AMP synthase/activator of interferon genes) in identifying host cfDNA as a potent danger-associated molecular pattern. Furthermore, we aim to summarize the results of the experimental studies that we recently performed and highlight the immunomodulatory capacity of cfDNA, and thus, the potential for possible therapeutic consideration.
Collapse
Affiliation(s)
| | | | | | | | - Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, Szentkirályi Street 46, 1088 Budapest, Hungary
| |
Collapse
|
18
|
Endogenous cell-free DNA in fetal bovine serum introduces artifacts to in vitro cell-free DNA models. Biotechniques 2022; 73:219-226. [DOI: 10.2144/btn-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cell-free DNA (cfDNA) is of growing clinical and research significance. In vitro cfDNA models are a useful tool in cfDNA research; however, artifacts in these models may have implications for the interpretation of new and published data. This report aimed to establish how endogenous cfDNA in fetal bovine serum (FBS) may influence in vitro cfDNA measurements. Three commercial cell culture media, supplemented with 10% FBS, were analyzed for the presence of cfDNA, with and without culture with ovarian cancer cell lines. cfDNA from FBS was identified with all three commercial media and contributed a major portion of 167-bp cfDNA. Future studies should account for bovine cfDNA in FBS-supplemented media when conducting in vitro cfDNA research.
Collapse
|
19
|
Bożyk A, Nicoś M. The Overview of Perspectives of Clinical Application of Liquid Biopsy in Non-Small-Cell Lung Cancer. Life (Basel) 2022; 12:1640. [PMID: 36295075 PMCID: PMC9604747 DOI: 10.3390/life12101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
The standard diagnostics procedure for non-small-cell lung cancer (NSCLC) requires a pathological evaluation of tissue samples obtained by surgery or biopsy, which are considered invasive sampling procedures. Due to this fact, re-sampling of the primary tumor at the moment of progression is limited and depends on the patient's condition, even if it could reveal a mechanism of resistance to applied therapy. Recently, many studies have indicated that liquid biopsy could be provided for the noninvasive management of NSCLC patients who receive molecularly targeted therapies or immunotherapy. The liquid biopsy of neoplastic patients harbors small fragments of circulating-free DNA (cfDNA) and cell-free RNA (cfRNA) secreted to the circulation from normal cells, as well as a subset of tumor-derived circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA). In NSCLC patients, a longitudinal assessment of genetic alterations in "druggable" genes in liquid biopsy might improve the follow-up of treatment efficacy and allow for the detection of an early progression before it is detectable in computed tomography or a clinical image. However, a liquid biopsy may be used to determine a variety of relevant molecular or genetic information for understanding tumor biology and its evolutionary trajectories. Thus, liquid biopsy is currently associated with greater hope for common diagnostic and clinical applications. In this review, we would like to highlight diagnostic challenges in the application of liquid biopsy into the clinical routine and indicate its implications on the metastatic spread of NSCLC or monitoring of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
20
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
21
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
22
|
Oberhofer A, Bronkhorst AJ, Uhlig C, Ungerer V, Holdenrieder S. Tracing the Origin of Cell-Free DNA Molecules through Tissue-Specific Epigenetic Signatures. Diagnostics (Basel) 2022; 12:diagnostics12081834. [PMID: 36010184 PMCID: PMC9406971 DOI: 10.3390/diagnostics12081834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
All cell and tissue types constantly release DNA fragments into human body fluids by various mechanisms including programmed cell death, accidental cell degradation and active extrusion. Particularly, cell-free DNA (cfDNA) in plasma or serum has been utilized for minimally invasive molecular diagnostics. Disease onset or pathological conditions that lead to increased cell death alter the contribution of different tissues to the total pool of cfDNA. Because cfDNA molecules retain cell-type specific epigenetic features, it is possible to infer tissue-of-origin from epigenetic characteristics. Recent research efforts demonstrated that analysis of, e.g., methylation patterns, nucleosome occupancy, and fragmentomics determined the cell- or tissue-of-origin of individual cfDNA molecules. This novel tissue-of origin-analysis enables to estimate the contributions of different tissues to the total cfDNA pool in body fluids and find tissues with increased cell death (pathologic condition), expanding the portfolio of liquid biopsies towards a wide range of pathologies and early diagnosis. In this review, we summarize the currently available tissue-of-origin approaches and point out the next steps towards clinical implementation.
Collapse
|
23
|
Bera A, Russ E, Karaian J, Landa A, Radhakrishnan S, Subramanian M, Hueman M, Pollard HB, Hu H, Shriver CD, Srivastava M. Circulating Cell-free DNA in Serum as a Marker for the Early Detection of Tumor Recurrence in Breast Cancer Patients. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:285-292. [PMID: 35530653 PMCID: PMC9066529 DOI: 10.21873/cdp.10106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Circulating cell-free DNA (cfDNA) isolated from serum by noninvasive procedures can serve as a potential biomarker for the early detection of many cancers. The aim of this study was to implement a simple, yet effective quantitative method for measuring the cfDNA in serum and to investigate the relationship between cfDNA and the occurrence of recurrence in breast cancer (BrCa) patients. PATIENTS AND METHODS A total of 240 cases were selected, which comprised different subtypes of BrCa patients and control individuals. We selected 20 serum samples from patients which showed recurrence after 4-7 years of disease-free survival. SYBR green was used as a reporter molecule to estimate the amount of cfDNA in these serum samples. RESULTS A global Wilcoxon analysis was performed to compare the cfDNA abundance between non-recurrent and recurrent patients. The amount of cfDNA was higher in recurrent patients (recurrent vs. non-recurrent ratio=1.3; p=0.03; AUC=0.76) compared to non-recurrent patients. The data between normal/healthy controls and non-recurrent patients indicated no significant differences (n=20 in each group, healthy to non-recurrent ratio=1.03; p=0.20; AUC=0.61). CONCLUSION We implemented a straightforward one-step technique to measure the amount of cfDNA in serum, which can translate into a clinical diagnostic tool in the near future. The high levels of cfDNA in the serum of recurrent BrCa patients compared to non-recurrent BrCa patients indicates a possible uncovered role for circulating genetic information, which either contributes to the cancer recurrence phenomenon or at the very least, serves as an identifier for the potential of recurrence.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Eric Russ
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - John Karaian
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Adam Landa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Surya Radhakrishnan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Madhan Subramanian
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Matthew Hueman
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, Bethesda, MD, U.S.A
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine, Windber, PA, U.S.A
| | - Craig D Shriver
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, Bethesda, MD, U.S.A
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| |
Collapse
|
24
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
25
|
Boniface CT, Spellman PT. Blood, Toil, and Taxoteres: Biological Determinates of Treatment-Induce ctDNA Dynamics for Interpreting Tumor Response. Pathol Oncol Res 2022; 28:1610103. [PMID: 35665409 PMCID: PMC9160182 DOI: 10.3389/pore.2022.1610103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Collection and analysis of circulating tumor DNA (ctDNA) is one of the few methods of liquid biopsy that measures generalizable and tumor specific molecules, and is one of the most promising approaches in assessing the effectiveness of cancer care. Clinical assays that utilize ctDNA are commercially available for the identification of actionable mutations prior to treatment and to assess minimal residual disease after treatment. There is currently no clinical ctDNA assay specifically intended to monitor disease response during treatment, partially due to the complex challenge of understanding the biological sources of ctDNA and the underlying principles that govern its release. Although studies have shown pre- and post-treatment ctDNA levels can be prognostic, there is evidence that early, on-treatment changes in ctDNA levels are more accurate in predicting response. Yet, these results also vary widely among cohorts, cancer type, and treatment, likely due to the driving biology of tumor cell proliferation, cell death, and ctDNA clearance kinetics. To realize the full potential of ctDNA monitoring in cancer care, we may need to reorient our thinking toward the fundamental biological underpinnings of ctDNA release and dissemination from merely seeking convenient clinical correlates.
Collapse
Affiliation(s)
- Christopher T. Boniface
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| |
Collapse
|
26
|
Hitchins MP. Methylated circulating tumor DNA biomarkers for the blood-based detection of cancer signals. EPIGENETICS IN PRECISION MEDICINE 2022:471-512. [DOI: 10.1016/b978-0-12-823008-4.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Jain M, Kamalov D, Tivtikyan A, Balatsky A, Samokhodskaya L, Okhobotov D, Kozlova P, Pisarev E, Zvereva M, Kamalov A. Urine TERT promoter mutations-based tumor DNA detection in patients with bladder cancer: A pilot study. Mol Clin Oncol 2021; 15:253. [PMID: 34712485 PMCID: PMC8548999 DOI: 10.3892/mco.2021.2415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations are the most frequent genetic events in bladder cancer (BC). The aim of the present pilot study was to evaluate the diagnostic potential of urine TERT promoter mutations-based liquid biopsy in patients with an ongoing oncological process, as well as in post-resection patients at risk of BC recurrence. A total of 60 patients were enrolled, of whom 27 patients had histologically proven BC; 23 had no signs of BC (control group); and 10 patients underwent transurethral malignancy resection 3-6 months prior to urine donation ('second look' group). Urine TERT promoter mutations were detected using Droplet Digital PCR. Receiver operating characteristic curve analysis revealed significant diagnostic power of the present approach (area under the curve: -0.768). At the cut-off value of tumor DNA fraction 0.34%, the sensitivity and specificity were 55.56 and 100%, respectively. In the positive samples, tumor DNA fraction varied significantly from 0.59 to 48.77%. In the 'second look' group, tumor DNA was detected in 4/10 patients, highlighting the possibility of BC recurrence with its fraction ranging only from 0.90 to 6.61%. Therefore, urine TERT promoter mutations-based liquid biopsy appears to be a promising tool for BC diagnosis and surveillance. The main study will include recruitment of additional patients, extension of the mutation panel, prolonged follow-up of the post-resection patients, as well as screening of industrial workers exposed to specific carcinogens.
Collapse
Affiliation(s)
- Mark Jain
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - David Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Tivtikyan
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Balatsky
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Larisa Samokhodskaya
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry Okhobotov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Polina Kozlova
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eduard Pisarev
- Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Armais Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
28
|
Lananna BV, Imai S. Friends and foes: Extracellular vesicles in aging and rejuvenation. FASEB Bioadv 2021; 3:787-801. [PMID: 34632314 PMCID: PMC8493967 DOI: 10.1096/fba.2021-00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) are released by many different cell types throughout the body and play a role in a diverse range of biological processes. EVs circulating in blood as well as in other body fluids undergo dramatic alterations over an organism's lifespan that are only beginning to be elucidated. The exact nature of these changes is an area of active and intense investigation, but lacks clear consensus due to the substantial heterogeneity in EV subpopulations and insufficiencies in current technologies. Nonetheless, emerging evidence suggests that EVs regulate systemic aging as well as the pathophysiology of age-related diseases. Here, we review the current literature investigating EVs and aging with an emphasis on consequences for the maintenance of human healthspan. Intriguingly, the biological utility of EVs both in vitro and in vivo and across contexts depends on the states of the source cells or tissues. As such, EVs secreted by cells in an aged or pathological state may impose detrimental consequences on recipient cells, while EVs secreted by youthful or healthy cells may promote functional improvement. Thus, it is critical to understand both functions of EVs and tip the balance toward their beneficial effects as an antiaging intervention.
Collapse
Affiliation(s)
- Brian V. Lananna
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
| | - Shin‐ichiro Imai
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
- Department of GerontologyLaboratory of Molecular Life ScienceInstitute of Biomedical Research and InnovationKobeJapan
| |
Collapse
|
29
|
Lamminaho M, Kujala J, Peltonen H, Tengström M, Kosma VM, Mannermaa A. High Cell-Free DNA Integrity Is Associated with Poor Breast Cancer Survival. Cancers (Basel) 2021; 13:cancers13184679. [PMID: 34572906 PMCID: PMC8467852 DOI: 10.3390/cancers13184679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary A recent point of focus in breast cancer (BC) research has been the utilization of cell-free DNA and its concentration (cfDConc) and integrity (cfDI) as potential biomarkers. Though the association of cfDConc and BC survival is already recognized, studies on the prognostic value of cfDI have had contradictory results. The aim of this study was to investigate the prognostic potential of cfDConc and cfDI in Eastern Finnish BC cases with a non-metastatic disease. While the prognostic value of cfDConc remained non-significant in our analyses, high cfDI was an independent prognostic factor for poor overall survival (OS) and breast cancer-specific survival (BCSS). Inclusion of cfDI in the multivariate logistic regression model improved the predictive performance of the model, thus suggesting that the combined use of traditional tumor features and liquid biopsy could help to discriminate BC patients with poor OS and BCSS more accurately at the time of diagnosis. Abstract Background: A recent point of focus in breast cancer (BC) research has been the utilization of cell-free DNA (cfDNA) and its concentration (cfDConc) and integrity (cfDI) as potential biomarkers. Though the association of cfDConc and poor survival is already recognized, studies on the prognostic value of cfDI have had contradictory results. Here, we provide further evidence to support the use of cfDI as a potential biomarker. Methods: We selected 204 Eastern Finnish BC cases with non-metastatic disease and isolated cfDNA from the serum collected at the time of diagnosis before any treatment was given. The cfDConc and cfDI were measured with a fluorometer and electrophoresis and analyzed with 25 years of survival data. Results: High cfDConc was not an independent prognostic factor in our analyses while high cfDI was found to be an independent prognostic factor for poor OS (p = 0.020, hazard ratio (HR) = 1.57, 95% confidence interval (CI) 1.07–2.29, Cox) and BCSS (p = 0.006, HR = 1.93, 95% CI 1.21–3.08)). Inclusion of cfDI in the multivariate logistic regression model improved the predictive performance. Conclusions: Our results show high cfDI is an independent prognostic factor for poor OS and BCSS and improves the predictive performance of logistic regression models, thus supporting its prognostic potential.
Collapse
Affiliation(s)
- Maria Lamminaho
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.L.); (J.K.); (H.P.); (V.-M.K.)
| | - Jouni Kujala
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.L.); (J.K.); (H.P.); (V.-M.K.)
| | - Hanna Peltonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.L.); (J.K.); (H.P.); (V.-M.K.)
| | - Maria Tengström
- Cancer Center, Kuopio University Hospital, FI-70029 Kuopio, Finland;
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.L.); (J.K.); (H.P.); (V.-M.K.)
- Department of Clinical Pathology, Kuopio University Hospital, FI-70029 Kuopio, Finland
- Multidisciplinary Cancer Research Community (RC Cancer), University of Eastern Finland, FI-70211 Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, FI-70029 Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (M.L.); (J.K.); (H.P.); (V.-M.K.)
- Multidisciplinary Cancer Research Community (RC Cancer), University of Eastern Finland, FI-70211 Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, FI-70029 Kuopio, Finland
- Correspondence:
| |
Collapse
|
30
|
Stawski R, Stec-Martyna E, Chmielecki A, Nowak D, Perdas E. Current Trends in Cell-Free DNA Applications. Scoping Review of Clinical Trials. BIOLOGY 2021; 10:906. [PMID: 34571783 PMCID: PMC8468988 DOI: 10.3390/biology10090906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023]
Abstract
We aimed to summarize the current knowledge about the trends in cfDNA application based on the analysis of clinical trials registered until April 2021. International Clinical Trials Registry Platform (ICTRP) and Clinicaltrials.gov were searched with the keywords: "cf-DNA"; "Circulating DNA"; "Deoxyribonucleic Acid"; and "Cell-Free Deoxyribonucleic Acid". Of 605 clinical trials, we excluded 237 trials, and 368 remaining ones were subject to further analysis. The subject, number of participants, and study design were analyzed. Our scoping review revealed three main trends: oncology (n = 255), non-invasive prenatal diagnostic (n = 48), and organ transplantation (n = 41), and many (n = 22) less common such as sepsis, sport, or autoimmune diseases in 368 clinical trials. Clinical trials are translating theory into clinical care. However, the diagnostic value of cfDNA remains controversial, and diagnostic accuracy still needs to be evaluated. Thus, further studies are necessary until cfDNA turns into a standard in clinical practice.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Emilia Stec-Martyna
- Central Scientific Laboratory, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland;
| | - Adam Chmielecki
- Sport Centre of the Medical University of Lodz, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
31
|
Udomruk S, Orrapin S, Pruksakorn D, Chaiyawat P. Size distribution of cell-free DNA in oncology. Crit Rev Oncol Hematol 2021; 166:103455. [PMID: 34464717 DOI: 10.1016/j.critrevonc.2021.103455] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA (cfDNA) in liquid biopsy test is a novel promising biomarker in the advancement of cancer management, including early diagnosis, screening, prognosis, identification of actionable targets, and serial tumor monitoring. The specific size pattern of DNA fragments derived from cancer cells is observed to differ from that of cfDNA fragments shed by non-cancer cells. Research into the physiological and biological properties of cfDNA reveals the molecular signature carried by each cfDNA fragments, which can reflect their tissue origins, as well as the mutational profiles with significant genetic alterations. Understanding the fragmentation and size distribution of cfDNA might be a valuable hotspot in liquid biopsy research, with the potential to drive innovation in oncology.
Collapse
Affiliation(s)
- Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhasiri Orrapin
- Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Orthopedics, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai 50200, Thailand.
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
32
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
33
|
Hashimoto T, Yoshida K, Hashiramoto A, Matsui K. Cell-Free DNA in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:8941. [PMID: 34445645 PMCID: PMC8396202 DOI: 10.3390/ijms22168941] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous DNA derived from the nuclei or mitochondria is released into the bloodstream following cell damage or death. Extracellular DNA, called cell-free DNA (cfDNA), is associated with various pathological conditions. Recently, multiple aspects of cfDNA have been assessed, including cfDNA levels, integrity, methylation, and mutations. Rheumatoid arthritis (RA) is the most common form of autoimmune arthritis, and treatment of RA has highly varied outcomes. cfDNA in patients with RA is elevated in peripheral blood and synovial fluid and is associated with disease activity. Profiling of cfDNA in patients with RA may then be utilized in various aspects of clinical practice, such as the prediction of prognosis and treatment responses; monitoring disease state; and as a diagnostic marker. In this review, we discuss cfDNA in patients with RA, particularly the sources of cfDNA and the correlation of cfDNA with RA pathogenesis. We also highlight the potential of analyzing cfDNA profiles to guide individualized treatment approaches for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Kiyoshi Matsui
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| |
Collapse
|
34
|
Foley JF, Elgart B, Alex Merrick B, Phadke DP, Cook ME, Malphurs JA, Solomon GG, Shah RR, Fessler MB, Miller FW, Gerrish KE. Whole genome sequencing of low input circulating cell-free DNA obtained from normal human subjects. Physiol Rep 2021; 9:e14993. [PMID: 34350716 PMCID: PMC8339531 DOI: 10.14814/phy2.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cell-free DNA circulates in plasma at low levels as a normal by-product of cellular apoptosis. Multiple clinical pathologies, as well as environmental stressors can lead to increased circulating cell-free DNA (ccfDNA) levels. Plasma DNA studies frequently employ targeted amplicon deep sequencing platforms due to limited concentrations (ng/ml) of ccfDNA in the blood. Here, we report whole genome sequencing (WGS) and read distribution across chromosomes of ccfDNA extracted from two human plasma samples from normal, healthy subjects, representative of limited clinical samples at <1 ml. Amplification was sufficiently robust with ~90% of the reference genome (GRCh38.p2) exhibiting 10X coverage. Chromosome read coverage was uniform and directly proportional to the number of reads for each chromosome across both samples. Almost 99% of the identified genomic sequence variants were known annotated dbSNP variants in the hg38 reference genome. A high prevalence of C>T and T>C mutations was present along with a strong concordance of variants shared between the germline genome databases; gnomAD (81.1%) and the 1000 Genome Project (93.6%). This study demonstrates isolation and amplification procedures from low input ccfDNA samples that can detect sequence variants across the whole genome from amplified human plasma ccfDNA that can translate to multiple clinical research disciplines.
Collapse
Affiliation(s)
- Julie F. Foley
- Division of National Toxicology ProgramNIEHSDurhamNorth CarolinaUSA
| | | | - B. Alex Merrick
- Division of National Toxicology ProgramNIEHSDurhamNorth CarolinaUSA
| | | | - Molly E. Cook
- Division of Intramural ResearchNIEHSDurhamNorth CarolinaUSA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. The Role of Cell-Free Circulating DNA in the Diagnosis and Prognosis of Breast Cancer. ANNALS OF CANCER RESEARCH AND THERAPY 2021; 29:169-177. [DOI: 10.4993/acrt.29.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne
| |
Collapse
|
36
|
Ungerer V, Bronkhorst AJ, Van den Ackerveken P, Herzog M, Holdenrieder S. Serial profiling of cell-free DNA and nucleosome histone modifications in cell cultures. Sci Rep 2021; 11:9460. [PMID: 33947882 PMCID: PMC8096822 DOI: 10.1038/s41598-021-88866-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in basic research have unveiled several strategies for improving the sensitivity and specificity of cell-free DNA (cfDNA) based assays, which is a prerequisite for broadening its clinical use. Included among these strategies is leveraging knowledge of both the biogenesis and physico-chemical properties of cfDNA towards the identification of better disease-defining features and optimization of methods. While good progress has been made on this front, much of cfDNA biology remains uncharted. Here, we correlated serial measurements of cfDNA size, concentration and nucleosome histone modifications with various cellular parameters, including cell growth rate, viability, apoptosis, necrosis, and cell cycle phase in three different cell lines. Collectively, the picture emerged that temporal changes in cfDNA levels are rather irregular and not the result of constitutive release from live cells. Instead, changes in cfDNA levels correlated with intermittent cell death events, wherein apoptosis contributed more to cfDNA release in non-cancer cells and necrosis more in cancer cells. Interestingly, the presence of a ~ 3 kbp cfDNA population, which is often deemed to originate from accidental cell lysis or active release, was found to originate from necrosis. High-resolution analysis of this cfDNA population revealed an underlying DNA laddering pattern consisting of several oligo-nucleosomes, identical to those generated by apoptosis. This suggests that necrosis may contribute significantly to the pool of mono-nucleosomal cfDNA fragments that are generally interrogated for cancer mutational profiling. Furthermore, since active steps are often taken to exclude longer oligo-nucleosomes from clinical biospecimens and subsequent assays this raises the question of whether important pathological information is lost.
Collapse
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Abel J Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany
| | | | - Marielle Herzog
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany.
| |
Collapse
|
37
|
Karamitrousis EI, Balgkouranidou I, Xenidis N, Amarantidis K, Biziota E, Koukaki T, Trypsianis G, Karayiannakis A, Bolanaki H, Kolios G, Lianidou E, Kakolyris S. Prognostic Role of RASSF1A, SOX17 and Wif-1 Promoter Methylation Status in Cell-Free DNA of Advanced Gastric Cancer Patients. Technol Cancer Res Treat 2021; 20:1533033820973279. [PMID: 33928818 PMCID: PMC8113658 DOI: 10.1177/1533033820973279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modification of several genes is a key component in the development of gastric cancer. The methylation status of RASSF1A, SOX17 and Wif-1 genes was evaluated in the cell free circulating DNA of 70 patients with advanced gastric cancer, using methylation-specific PCR. Patients with higher cell-free DNA concentration seem to have lower PFS, than patients with lower cell-free DNA concentration (p = 0.001). RASSF1A was the tumor suppressor gene, most frequently methylated in metastatic gastric cancer patients, followed by SOX17 and Wif-1 (74.3%, 60.0% and 47.1%, respectively). Patients having the SOX17 promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p < 0.001). Patients having the Wif-1 promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p = 0.001). Patients having the RASSF1A promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p = 0.004). Promoter methylation of the examined genes was significantly associated with a decrease in progression free survival and overall survival, comparing to that of patients without methylation. Simultaneous methylation of the above genes was associated with even worse progression free survival and overall survival. The methylation of RASSF1A, SOX-17 and Wif-1 and genes, is a frequent epigenetic event in patients with advanced gastric cancer.
Collapse
Affiliation(s)
| | - Ioanna Balgkouranidou
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Xenidis
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kyriakos Amarantidis
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Biziota
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllia Koukaki
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Grigorios Trypsianis
- Department of Medical Statistics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasios Karayiannakis
- Second Department of Surgery, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Helen Bolanaki
- Second Department of Surgery, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evi Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, University of Athens, Athens, Greece
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
38
|
Rostami A, Lambie M, Yu CW, Stambolic V, Waldron JN, Bratman SV. Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep 2021; 31:107830. [PMID: 32610131 DOI: 10.1016/j.celrep.2020.107830] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/22/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
The kinetics of circulating cell-free DNA (cfDNA) release may provide a real-time assessment of induced cell death. However, there is a limited understanding of the underlying biological rationale for cfDNA release following distinct treatments and cell death mechanisms. Here, we uncover a complex interplay between apoptosis, necrosis, and senescence in determining cfDNA release kinetics. Utilizing multiple in vitro and in vivo preclinical models, we show how cfDNA release is modulated through a combination of apoptotic and senescent triggers and inhibitors. Interestingly, we identify treatment-induced senescence as a previously unrecognized determinant of cfDNA kinetics that can counteract its release. Necrosis is the predominant cell death mechanism that consistently contributes to cfDNA release in response to ionizing radiation, and, surprisingly, apoptosis plays a comparatively minor role in some tumors. Based on our results, we propose a model to explain cfDNA release from cells over time, with important implications for future studies.
Collapse
Affiliation(s)
- Ariana Rostami
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Meghan Lambie
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Caberry W Yu
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - John N Waldron
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada.
| |
Collapse
|
39
|
Fernández-Domínguez IJ, Manzo-Merino J, Taja-Chayeb L, Dueñas-González A, Pérez-Cárdenas E, Trejo-Becerril C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol Ther 2021; 22:267-278. [PMID: 33858306 DOI: 10.1080/15384047.2021.1890319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nowadays, extracellular DNA or circulating cell-free DNA is considered to be a molecule with clinical applications (diagnosis, prognosis, monitoring of treatment responses, or patient follow-up) in diverse pathologies, especially in cancer. Nevertheless, because of its molecular characteristics, it can have many other functions. This review focuses on the participation of extracellular DNA (exDNA) in fundamental processes such as cell signaling, coagulation, immunity, evolution through horizontal transfer of genetic information, and adaptive response to inflammatory processes. A deeper understanding of its role in each of these processes will allow development of better tools to monitor and control pathologies, as well as helping to generate new therapeutic options, beyond the applicability of DNA in liquid biopsy.
Collapse
Affiliation(s)
| | | | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, México City
| | - Alfonso Dueñas-González
- Division of Basic Research, Instituto Nacional de Cancerología, México City.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
40
|
Wang YF, Wang XJ, Lu Z, Liu SR, Jiang Y, Wan XQ, Cheng CC, Shi LH, Wang LH, Ding Y. Overexpression of Stat3 increases circulating cfDNA in breast cancer. Breast Cancer Res Treat 2021; 187:69-80. [PMID: 33630196 DOI: 10.1007/s10549-021-06142-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Current studies on circulating cell-free DNA (cfDNA) have been focusing on its potential as biomarkers in liquid biopsy by detecting its content or genetic and epigenetic changes for the evaluation of tumor burden and therapeutic efficacy. However, the regulatory mechanism of cfDNA release remains unclear. Stat3 has been documented as an oncogene for the development and metastasis of breast cancer cells. In this study, we investigated whether Stat3 affects the release of cfDNA into blood and its association with the number of circulating tumor cells (CTCs). METHODS The cfDNA level in plasma of patients with breast cancer and healthy volunteers were determined by quantitative real-time PCR. Three mouse breast cancer models with different Stat3 expression were generated and used to established three breast cancer orthotopic animal models to examine the effect of Stat3 on cfDNA release in vivo. Stat3 mediated Epithelial-mesenchymal phenotype transition of CTCs was determined by immunofluorescence assay and Western blot assay. RESULTS The data showed that Stat3 increased circulating cfDNA, which is correlated with the increased volume of primary tumors and number of CTCs, accompanied with the dynamic EMT changes regulated by Snail induction. Furthermore, the high level of total circulating cfDNA and Stat3-cfDNA in patients with breast cancer were detected by quantitative real-time PCR using GAPDH and Stat3 primers. CONCLUSION Our results suggested that Stat3 increases the circulating cfDNA and CTCs in breast cancer.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xue-Jian Wang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Zhong Lu
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shu-Rong Liu
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yu Jiang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiao-Qing Wan
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China
| | - Cong-Cong Cheng
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Li-Hong Shi
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Li-Hua Wang
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China.,Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yi Ding
- Laboratory of Molecular Oncology, Weifang Medical College, Weifang, 261053, Shandong, China. .,Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
41
|
Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13040728. [PMID: 33578793 PMCID: PMC7916622 DOI: 10.3390/cancers13040728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our research focuses in the elucidation of the nature of circulating cell-free DNA (ccfDNA) as a biological entity and its exploitation as a liquid biopsy biomaterial. Working on breast cancer, it became clear that although a promising biosource, its clinical exploitation is burdened mainly by gaps in knowledge about its biology and specific characteristics. The current review covers multiple aspects of ccfDNA in breast cancer. We cover key issues such as quantity, integrity, releasing structures, methylation specific changes, release mechanisms, biological role. Machine learning approaches for analyzing ccfDNA-generated data to produce classifiers for clinical use are also discussed. Abstract Breast cancer (BC) is a leading cause of death between women. Mortality is significantly raised due to drug resistance and metastasis, while personalized treatment options are obstructed by the limitations of conventional biopsy follow-up. Lately, research is focusing on circulating biomarkers as minimally invasive choices for diagnosis, prognosis and treatment monitoring. Circulating cell-free DNA (ccfDNA) is a promising liquid biopsy biomaterial of great potential as it is thought to mirror the tumor’s lifespan; however, its clinical exploitation is burdened mainly by gaps in knowledge of its biology and specific characteristics. The current review aims to gather latest findings about the nature of ccfDNA and its multiple molecular and biological characteristics in breast cancer, covering basic and translational research and giving insights about its validity in a clinical setting.
Collapse
|
42
|
Kobayashi M, Ito J, Shirasuna K, Kuwayama T, Iwata H. Comparative analysis of cell-free DNA content in culture medium and mitochondrial DNA copy number in porcine parthenogenetically activated embryos. J Reprod Dev 2020; 66:539-546. [PMID: 32908082 PMCID: PMC7768170 DOI: 10.1262/jrd.2020-097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined the effect of ploidy on mitochondrial DNA (mtDNA) copy number in embryos and the amount of cell-free mitochondrial and nucleic DNA content (cf-mtDNA and cf-nDNA) in spent culture medium (SCM). Oocytes collected from the ovaries were matured, activated, incubated in medium containing cycloheximide (CHX) or CHX and cytochalasin B (CB) for 4.5 h to produce haploid or diploid embryos (H-group and D-group embryos). These embryos were cultured for 7 days, and the blastocysts and SCM were examined. The amount of mtDNA and nDNA was determined by real-time PCR. The rate of development to the blastocyst stage was higher for the D-group than for the H-group. Moreover, D-group blastocysts had less mtDNA compared to the H-group blastocysts. After activation, the mitochondrial content was constant before the blastocyst stage in D-group embryos, but increased earlier in H-group embryos. The amount of cf-mtDNA in the SCM of D-group blastocysts was greater than that of H-group blastocysts. However, when the cf-mtDNA in the SCM of 2 cell-stage embryos (day 2 post-activation) was examined, the amount of cf-mtDNA was greater in the H-group than in the D-group embryos. When D-group embryos were cultured for 7 days, a significant correlation was observed between the total cell number of blastocysts and cf-nDNA content in the SCM. Hence, although careful consideration is needed regarding the time point for evaluating mtDNA content in the embryos and SCM, this study demonstrates that mtDNA in the embryos and SCM was affected by the ploidy of the embryos.
Collapse
Affiliation(s)
- Mitsuru Kobayashi
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
43
|
Ray SK, Mukherjee S. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in Cancer- An evolving aspect in Medical Biotechnology. Curr Pharm Biotechnol 2020; 23:112-122. [PMID: 33308128 DOI: 10.2174/1389201021666201211102710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
44
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
45
|
Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol 2020; 15:1701-1714. [PMID: 32767659 PMCID: PMC8169445 DOI: 10.1002/1878-0261.12777] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.
Collapse
Affiliation(s)
- Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christine Semira
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
46
|
Magkouta SF, Pappas AG, Vaitsi PC, Agioutantis PC, Pateras IS, Moschos CA, Iliopoulou MP, Kosti CN, Loutrari HV, Gorgoulis VG, Kalomenidis IT. MTH1 favors mesothelioma progression and mediates paracrine rescue of bystander endothelium from oxidative damage. JCI Insight 2020; 5:134885. [PMID: 32554927 DOI: 10.1172/jci.insight.134885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress and inadequate redox homeostasis is crucial for tumor initiation and progression. MTH1 (NUDT1) enzyme prevents incorporation of oxidized dNTPs by sanitizing the deoxynucleoside triphosphate (dNTP) pool and is therefore vital for the survival of tumor cells. MTH1 inhibition has been found to inhibit the growth of several experimental tumors, but its role in mesothelioma progression remained elusive. Moreover, although MTH1 is nonessential to normal cells, its role in survival of host cells in tumor milieu, especially tumor endothelium, is unclear. We validated a clinically relevant MTH1 inhibitor (Karonudib) in mesothelioma treatment using human xenografts and syngeneic murine models. We show that MTH1 inhibition impedes mesothelioma progression and that inherent tumoral MTH1 levels are associated with a tumor's response. We also identified tumor endothelial cells as selective targets of Karonudib and propose a model of intercellular signaling among tumor cells and bystander tumor endothelium. We finally determined the major biological processes associated with elevated MTH1 gene expression in human mesotheliomas.
Collapse
Affiliation(s)
- Sophia F Magkouta
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Apostolos G Pappas
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Photene C Vaitsi
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Panagiotis C Agioutantis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Charalampos A Moschos
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Marianthi P Iliopoulou
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Chrysavgi N Kosti
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Heleni V Loutrari
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ioannis T Kalomenidis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
47
|
Kolenčík D, Shishido SN, Pitule P, Mason J, Hicks J, Kuhn P. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Cancers (Basel) 2020; 12:E1376. [PMID: 32471160 PMCID: PMC7352156 DOI: 10.3390/cancers12061376] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
Collapse
Affiliation(s)
- Drahomír Kolenčík
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Pavel Pitule
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| |
Collapse
|
48
|
van der Leest P, Boonstra PA, ter Elst A, van Kempen LC, Tibbesma M, Koopmans J, Miedema A, Tamminga M, Groen HJM, Reyners AKL, Schuuring E. Comparison of Circulating Cell-Free DNA Extraction Methods for Downstream Analysis in Cancer Patients. Cancers (Basel) 2020; 12:E1222. [PMID: 32414097 PMCID: PMC7281769 DOI: 10.3390/cancers12051222] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Circulating cell-free DNA (ccfDNA) may contain DNA originating from the tumor in plasma of cancer patients (ctDNA) and enables noninvasive cancer diagnosis, treatment predictive testing, and response monitoring. A recent multicenter evaluation of workflows by the CANCER-ID consortium using artificial spiked-in plasma showed significant differences and consequently the importance of carefully selecting ccfDNA extraction methods. Here, the quantity and integrity of extracted ccfDNA from the plasma of cancer patients were assessed. Twenty-one cancer patient-derived cell-free plasma samples were selected to compare the Qiagen CNA, Maxwell RSC ccfDNA plasma, and Zymo manual quick ccfDNA kit. High-volume citrate plasma samples collected by diagnostic leukapheresis from six cancer patients were used to compare the Qiagen CNA (2 mL) and QIAamp MinElute ccfDNA kit (8 mL). This study revealed similar integrity and similar levels of amplified short-sized fragments and tumor-specific mutants comparing the CNA and RSC kits. However, the CNA kit consistently showed the highest yield of ccfDNA and short-sized fragments, while the RSC and ME kits showed higher variant allelic frequencies (VAFs). Our study pinpoints the importance of standardizing preanalytical conditions as well as consensus on defining the input of ccfDNA to accurately detect ctDNA and be able to compare results in a clinical routine practice, within and between clinical studies.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Pieter A. Boonstra
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.A.B.); (A.K.L.R.)
| | - Arja ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Marco Tibbesma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Jill Koopmans
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Anneke Miedema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.); (H.J.M.G.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.); (H.J.M.G.)
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.A.B.); (A.K.L.R.)
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| |
Collapse
|
49
|
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit Rev Clin Lab Sci 2020; 57:484-507. [DOI: 10.1080/10408363.2020.1750558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Abel J. Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
50
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the isolation of cell-free DNA from cell culture supernatant. Tumour Biol 2020; 42:1010428320916314. [PMID: 32338581 DOI: 10.1177/1010428320916314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In vitro characterization of cell-free DNA using two-dimensional cell culture models is emerging as an important step toward an improved understanding of the physical and biological characteristics of cell-free DNA in human biology. However, precise measurement of the cell-free DNA in cell culture medium is highly dependent on the efficacy of the method used for DNA purification, and is often a juncture of experimental confusion. Therefore, in this study, we compared six commercially available cell-free DNA isolation kits for the recovery of cell-free DNA from the cell culture supernatant of a human bone cancer cell line (143B), including two magnetic bead-based manual kits, one automated magnetic bead-based extraction method, and three manual spin-column kits. Based on cell-free DNA quantitation and sizing, using the Qubit dsDNA HS assay and Bioanalyzer HS DNA assay, respectively, the different methods showed significant variability concerning recovery, reproducibility, and size discrimination. These findings highlight the importance of selecting a cell-free DNA extraction method that is appropriate for the aims of a study. For example, mutational analysis of cell-free DNA may be enhanced by a method that favors a high yield or is biased toward the isolation of short cell-free DNA fragments. In contrast, quantitative analysis of cell-free DNA in a comparative setting (e.g. measuring the fluctuation of cell-free DNA levels over time) may require the selection of a cell-free DNA isolation method that forgoes a high recovery for high reproducibility and minimal size bias.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|