1
|
Wu H, Xu T, Yang N, Xu S. Polystyrene-microplastics and Emamectin Benzoate co-exposure induced lipid remodeling by suppressing PPARα signals to drive ACSL4-dependent ferroptosis and carp splenic injury. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106396. [PMID: 40262874 DOI: 10.1016/j.pestbp.2025.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
Microplastics (MPs) and Emamectin Benzoate (EMB) were identified as hazardous environmental pollutants, frequently coexisting in aquatic ecosystems, posing potential risk in the immune system of human and animal. However, the hazards of concurrent exposed to MPs and EMB on the carp spleen, and the specific mechanisms remain unclear. Here, we employed MPs and EMB-exposed carp models, and cultured splenocytes in vitro, to demonstrate that PPARα signals suppression underlay MPs and EMB-induced carp spleen injury, based on transcriptomics and lipomics analysis. This suppression exacerbated the buildup of polyunsaturated fatty acid (PUFA), and promoted ACSL4 expression, resulting in increased lipid peroxidation. Further studies found that the accumulation of lipid peroxides predominantly occurred in the mitochondria, which evoked mitochondrial homeostasis imbalance and compromised mitochondrial function, thereby initiating ferroptosis. Additionally, enhancing PPARα signaling, inhibiting ACSL4, or scavenging mitochondrial ROS was favor of mitigating accumulation of lipid peroxides, reducing mitochondrial damage and inhibiting ferroptosis. Notably, MPs and EMB co-exposure caused more severe damage than single exposure. These findings uncovered a potential mechanism, involving PPARα signaling inhibition by MPs and EMB co-exposure, which evoked lipid remodeling and increased ACSL4, to drive ferroptosis and carp splenic injury. This study highlighted the potential hazards to the aquaculture environments where co-exposure of MPs and EMB and provided reference for environmental toxicology research and the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Gu J, Shen Y, Guo L, Chen Z, Zhou D, Ji G, Gu A. Investigation of the mechanisms of liver injury induced by emamectin benzoate exposure at environmental concentrations in zebrafish: A multi-omics approach to explore the role of the gut-liver axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138008. [PMID: 40132265 DOI: 10.1016/j.jhazmat.2025.138008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Emamectin benzoate (EMB) is a lipophilic pesticide that enters aquatic systems and adversely affects non-target organisms. This study investigated the long-term effects of EMB on zebrafish, exposing them to concentrations of 0, 0.1, 1, and 10 μg/L from the 4-hour post-fertilization (hpf) embryo stage to the 120-day post-fertilisation (dpf) adult stage. We found that exposure to 1 μg/L EMB induced liver damage, manifested as impaired liver function (elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT)), histopathological damage (lipid accumulation), as well as inflammatory and oxidative damage, with a dose - dependent effect. Non-targeted metabolomic analysis revealed an increase in lipid molecules in the liver, affecting the pathways related to glycerophospholipid metabolism. In addition, EMB exposure resulted in damage to the intestinal barrier and inflammatory responses in zebrafish. 16S rRNA sequencing demonstrated that EMB exposure resulted in notable alterations in the gut microbiota composition. Notably, the abundance of Plesiomonas and Cetobacterium increased in the EMB exposure group and exhibited a positive correlation with the majority of liver lipid metabolites. In contrast, reductions in Muribaculaceae and Alloprevotella were negatively correlated. The results of this study indicate that long-term exposure to EMB disrupts the gut microbiota, leading to the dysregulation of hepatic phospholipid metabolism. These findings provide new insights into the health risks associated with EMB and highlight its potential threats to higher organisms, including mammals.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhicheng Chen
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology,Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Dingyu Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Aihua Gu
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Guo L, Gu J, Yuan W, Hu J, Zhang X, Ji G. Long-term exposure to Emamectin benzoate impairs reproductive health in adult zebrafish and alters neurodevelopment in their offspring. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137007. [PMID: 39764967 DOI: 10.1016/j.jhazmat.2024.137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 03/12/2025]
Abstract
Emamectin benzoate (EMB) is a widely used insecticide that can accumulate in aquatic environments under specific conditions of high application intensity or improper management, posing potential risks to aquatic organisms and human health. This study aimed to evaluate the reproductive toxicity of long-term EMB exposure in zebrafish (Danio rerio) and neurodevelopmental toxicity in their offspring. Zebrafish embryos were exposed to various concentrations of EMB (0, 0.1, 1, and 10 μg/L) for up to 120 days. The results revealed a significant decrease in reproductive capacity and gonadal tissue damage in the F0 generation zebrafish. Additionally, the increased oxidative stress levels induced by EMB exposure further exacerbated reproductive toxicity. The F1 generation of zebrafish exhibited a high rate of deformities, reduced body length, decreased swim bladder area, and abnormal swimming behavior. Compared to the control group, zebrafish larvae in the 1 and 10 μg/L EMB exposure groups showed a significant reduction in distance travelled of 18.3 % and 36.9 % and a significant increase in dwell time of 6.1 % and 17.1 %. Analysis of neurodevelopment and gene expression in the F1 generation revealed that EMB exposure diminished the development of the central nervous system and further aggravated developmental toxicity through pathways such as oxidative stress, inflammatory response, apoptosis. Notably, maternal exposure to EMB exerted a more significant impact on developmental and neurotoxic effects in the offspring. This study demonstrated that long-term EMB exposure causes significant parental reproductive and offspring neurodevelopmental toxicity in aquatic organisms, thus highlighting the importance of environmental risk assessment and pollution control.
Collapse
Affiliation(s)
- Liguo Guo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Wen Yuan
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Hu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
4
|
Ju Z, Bi Y, Gao M, Yin Y, Xu T, Xu S. Emamectin benzoate and nanoplastics induce PANoptosis of common carp (Cyprinus carpio) gill through MAPK pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106202. [PMID: 39672615 DOI: 10.1016/j.pestbp.2024.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Emamectin benzoate (EMB) is a pesticide that is frequently used. Nanoplastics (NPs) are a recently identified class of pollutants that are ubiquitous in the environment. In the aquatic environment, NPs can appear together with EMB, which may exacerbates the damage to water and aquatic organisms. However, the damage and mechanism of EMB and NPs to the gill tissue of common carp (Cyprinus carpio) remain unclear. Therefore, an EMB or/NPs exposure model was constructed to explore the mechanism of EMB or/NPs exposure on carp gill damage. This study was done by immunofluorescence, RT-qPCR, Western blot and other methods. Both in vitro and in vivo data indicated that EMB or NPs exposure could lead to gill tissue destruction, oxidative stress with the increased of ROS fluorescence intensity, MDA and H2O2 content, and the decreased CAT and GSH-PX activity, and the activation of MAPK pathway. Subsequently, PANoptosomes were activated with the up-regulated mRNA and protein expression of RIPK-1, Caspase-1,NLRP3, ACS, RIPK-3, Caspase-8, resulting in PANoptosis including the increased GSDMD, Caspase-3, MLKL expression. Notably, the results following combined exposure were more pronounced than those observed following exposure alone. The addition of N-acetylcysteine (NAC) and 3-methylindole (3-MI) further evidenced that EMB or/and NPs exposure can induce gill damage via the ROS/MAPK/PANoptosis pathway. Therefore, the present study reveals that EMB or/NPs exposure induces PANoptosis in carp gill by activating ROS/p38/MAPK signaling.
Collapse
Affiliation(s)
- Zhangyi Ju
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural, Harbin, 150030, China.
| |
Collapse
|
5
|
Alabi OA, Ashamo OM, Akinyanju RA, Faleye FY, Afolabi TA, Ayeni FE, Adeoluwa YM. Comparative carcinogenic and non-carcinogenic health risks, and cytogenotoxicity of wastewaters from natural and artificial fishponds indiscriminately disposed in Nigeria. Toxicol Res (Camb) 2024; 13:tfae213. [PMID: 39677496 PMCID: PMC11646070 DOI: 10.1093/toxres/tfae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
As the demand for fish increases, the amount of wastewater generated from fishponds is also increasing with potential environmental and public health effects from their indiscriminate disposal. This study aimed at comparative analyses of the physicochemical and heavy metal constituents and potential DNA damage by wastewaters from natural and artificial fishponds using Allium cepa assay. A. cepa were grown on 3.13, 6.25, 12.5, 25.0, and 50.0% (v/v; wastewater/tap water) concentrations of each wastewater. At 48 and 72 h, respectively, genotoxic and root growth inhibition analyses were carried out on the exposed onions. The onion root tips exposed to wastewaters showed a significant (P < 0.05) inhibition of root growth and cell division in a concentration-dependent manner. Additionally, chromosomal abnormalities like spindle disturbances, sticky chromosomes, micronucleus, bridges, and binucleated cells were observed in the exposed onions and their induction was higher significantly relative to the negative control. Generally, wastewater from the natural fishpond caused higher chromosomal aberrations than the wastewater from artificial fishpond. It is our belief that the cytotoxicity and genotoxicity observed in the onions were primarily caused by heavy metals like Cr, Cd, Fe, Pb, Cu, and Zn found in the wastewaters. These metals also showed a significant carcinogenic and non-carcinogenic risks in children and adults with Cd as the highest contributor to these detrimental risks. Ingestion route was the major exposure route to the toxic metals in these wastewaters. Wastewater from the natural fishpond showed a higher health risk than the wastewater from the artificial fishpond. These findings suggest that the wastewaters from natural and artificial fishpond contain compounds that might induce cytogenotoxicity in exposed organisms.
Collapse
Affiliation(s)
- Okunola Adenrele Alabi
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| | - Olufemi M Ashamo
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| | - Rhema Adedamola Akinyanju
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| | - Florence Yosola Faleye
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| | - Tomiwa Amos Afolabi
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| | - Funmilayo Esther Ayeni
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| | - Yetunde Mercy Adeoluwa
- Department of Biology, Federal University of Technology, Akure, P.M.B. 704, Akure, 340252, Ondo State, Nigeria
| |
Collapse
|
6
|
Wang X, Zhang M, Zhang D, Yan Y, Liu Q, Xu C, Zhu Z, Wu S, Zong Y, Cao Z, Zhang Y. Emamectin benzoate exposure impaired porcine oocyte maturation. Theriogenology 2023; 206:123-132. [PMID: 37209432 DOI: 10.1016/j.theriogenology.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Emamectin benzoate (EB) is a widely used insecticide that can damage the central nervous and immune systems. EB exposure significantly reduced the number of eggs laid, hatching rate, and developmental rate of lower organisms such as nematodes. However, effects of EB exposure on the maturation of higher animals such as porcine oocytes remains unknown. Here we reported that EB exposure severely impaired porcine oocyte maturation. EB exposure with 200 μM prevented cumulus expansion and reduced the rates of first polar body (pb1) extrusion, cleavage and blastocyst after parthenogenetic activation. Moreover, EB exposure disrupted spindle organization, chromosome alignment, and polymerization of microfilaments, but also apparently decreased the levels of acetylated α-tubulin (Ac-Tub) in oocytes. In addition, EB exposure perturbed mitochondria distribution and increased levels of reactive oxygen species (ROS), but did not affect the distribution of cortical granules (CGs) in oocytes. Excessive ROS caused DNA damage accumulation and induced early apoptosis of oocytes. EB exposure led to the abnormal expression of cumulus expansion and apoptosis-associated genes. Altogether, these results demonstrate that EB exposure impaired nuclear and cytoplasmic maturation of porcine oocytes probably through oxidative stress and early apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mengya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Danruo Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yelian Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuchen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Changzhi Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhihua Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Sucheng Wu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yanfeng Zong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Xiao J, Liu Y, Jiang S, Wang H, Liu Y, Lin F, Liu T, Fang K, Liao M, Shi Y, Cao H. Incorporating Bioaccessibility into Inhalation Exposure Assessment of Emamectin Benzoate from Field Spraying. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7978-7988. [PMID: 37162498 DOI: 10.1021/acs.est.3c02241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The inhalation exposure of pesticide applicators and residents who live close to pesticide-treated fields is a worldwide concern in public health. Quantitative assessment of exposure to pesticide inhalation health risk highlights the need to accurately assess the bioaccessibility rather than the total content in ambient air. Herein, we developed an in vitro method to estimate the inhalation bioaccessibility of emamectin benzoate and validated its applicability using a rat plasma pharmacokinetic bioassay. Emamectin benzoate was extracted using the Gamble solution, with an optimized solid-to-liquid ratio (1/250), extraction time (24 h), and agitation (200 rpm), which obtained in vitro inhalation bioaccessibility consistent with its inhalation bioavailability in vivo (32.33%). The margin of exposure (MOE) was used to assess inhalation exposure risk. The inhalation unit exposures to emamectin benzoate of applicators and residents were 11.05-28.04 and 0.02-0.04 ng/m3, respectively, varying markedly according to the methods of application, e.g., formulations and nozzles. The inhalation risk assessment using present application methods appeared to be acceptable; however, the MOE of emamectin benzoate might be overestimated by 32% without considering inhalation bioaccessibility. Collectively, our findings contribute insights into the assessment of pesticide inhalation exposure based on bioaccessibility and provide guidance for the safe application of pesticides.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuanhui Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Tianhe Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| |
Collapse
|
8
|
Schmidt H, Mauer K, Glaser M, Dezfuli BS, Hellmann SL, Silva Gomes AL, Butter F, Wade RC, Hankeln T, Herlyn H. Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model. BMC Genomics 2022; 23:677. [PMID: 36180835 PMCID: PMC9523657 DOI: 10.1186/s12864-022-08882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 08/30/2023] Open
Abstract
Background With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). Results The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. Conclusions The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08882-1.
Collapse
Affiliation(s)
- Hanno Schmidt
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany. .,Present address: Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katharina Mauer
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuel Glaser
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Sören Lukas Hellmann
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany.,Present address: Nucleic Acids Core Facility, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Center for Molecular Biology (ZMBH) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Mobeen A, Khan QM, Ishrat I, Awan FR, Mansoor S. Toxicity assessment of emamectin benzoate and its commercially available formulations in Pakistan by in vivo and in vitro assays. Food Chem Toxicol 2022; 165:113139. [PMID: 35598805 DOI: 10.1016/j.fct.2022.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Emamectin benzoate (EMB) is generally considered a safe insecticide in agriculture and veterinary practices, yet, it can cause cytotoxic and genotoxic effects. Hence, the aim of this study was to evaluate toxic effects of 80% EMB and its commercially used formulations (Tycon 1.9% EC and Tycon plus 5% EW) in Pakistan and tested for acute toxicity in albino rats, rabbits and fish (Labeo rohita). Genotoxicity was investigated by in vivo comet assay and bone marrow micronucleues test in the rats. In vitro mutagenicity was tested in Salmonella typhimurium TA98 and TA100. The tested EMB formulations were found moderately toxic (oral LD50: 122-168 mg/kg), causing severe eye irritation in rabbits, highly toxic to fish (LC50: 9-43 μg/L) and found non mutagenic. Oral administrations of EMB (80% and 5%) at 100 mg/kg of body weight to male rats reduced red blood cells, hemoglobin, and slightly increased the blood glucose, urea and liver enzymes levels but had no significant damage to DNA. EMB induced bone marrow toxicity was observed as reduction of polychromatic erythrocytes. Overall, EMB exposure was highly toxic to fish, and caused hemo- and hepatotoxicity in rats. These findings warrant cautious use of EMB formulations in agrochemicals and veterinary medicine.
Collapse
Affiliation(s)
- Ameena Mobeen
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| | - Qaiser M Khan
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| | - Iqra Ishrat
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan; Hefei National Laboratory / University of Science & Technology of China, Hefei, China
| | - Fazli Rabbi Awan
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| |
Collapse
|
10
|
Bragante W, Sinhorin VDG, Sugui MM, da Cunha APS, Dos Santos WB, Sinhorin AP. In vivo mutagenic effects and oxidative stress parameters evaluation of cypermethrin and benzoate of emamectin and their mixtures in female mice. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:211-219. [PMID: 35240941 DOI: 10.1080/03601234.2022.2045841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We evaluated the biological effects of ingestion by gavage, for 28 days, of the pesticides cypermethrin (CP) and emamectin benzoate (EB) and their mixtures in female Swiss mice. The groups were Control (water); CP; EB and three distinct concentrations of CP and EB mixture expressed in mg/kg/day. The biological effects were analyzed in the complete blood count and plasma (alkaline phosphatase (ALP), alanine aminotransferase (ALT) and creatinine); the biochemical parameters of oxidative stress (substances reactive to thiobarbituric acid (TBARS); reduced glutathione (GSH); catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST)), and bone marrow cells obtained from the femur for the micronucleus (MN) test. In the heart, there was a reduction in GSH in the groups (0.5 + 0.67 and 2.5 + 3.37), although in the brain this effect appeared for the other groups, except EB. Brain TBARS increased in CP and in the group (2.5 + 3.37) and platelets increased in the group (12.5 + 16.87). Genotoxic/mutagenic effects, showing a consistent increase dose-dependent effect on micronucleus counting for in the female mice. After 28 days of treatment, we can observe that the pesticide mixtures promoted genotoxic damage and oxidative brain damage in female mice, which can damage the health of these animals and possibly their future offspring.
Collapse
Affiliation(s)
- Wagner Bragante
- Programa de Pós-graduação em Ciências Ambientais; Instituto de Ciências Naturais, Humanas e Sociais, Laboratórios Integrados de Pesquisa em Ciências Químicas (LIPEQ), Universidade Federal de Mato Grosso, Câmpus de Sinop, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-graduação em Ciências Ambientais; Instituto de Ciências Naturais, Humanas e Sociais, Laboratórios Integrados de Pesquisa em Ciências Químicas (LIPEQ), Universidade Federal de Mato Grosso, Câmpus de Sinop, Brazil
| | - Marina Mariko Sugui
- Programa de Pós-graduação em Ciências Ambientais; Instituto de Ciências Naturais, Humanas e Sociais, Laboratórios Integrados de Pesquisa em Ciências Químicas (LIPEQ), Universidade Federal de Mato Grosso, Câmpus de Sinop, Brazil
| | - Ana Paula Simões da Cunha
- Programa de Pós-graduação em Ciências Ambientais; Instituto de Ciências Naturais, Humanas e Sociais, Laboratórios Integrados de Pesquisa em Ciências Químicas (LIPEQ), Universidade Federal de Mato Grosso, Câmpus de Sinop, Brazil
| | | | - Adilson Paulo Sinhorin
- Programa de Pós-graduação em Ciências Ambientais; Instituto de Ciências Naturais, Humanas e Sociais, Laboratórios Integrados de Pesquisa em Ciências Químicas (LIPEQ), Universidade Federal de Mato Grosso, Câmpus de Sinop, Brazil
| |
Collapse
|
11
|
Temiz Ö. In vivo neurotoxic effects of emamectin benzoate in male mice: evaluation with enzymatic and biomolecular multi-biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8921-8932. [PMID: 34498180 DOI: 10.1007/s11356-021-16373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The study of the toxic effects of emamectin benzoate (EMB) was conducted in male mice. Mice were randomly divided into 4 groups; control group, EMB25 group (1/30 LD50 = 25 mg/kg/day), EMB50 group (1/15 LD50 = 50 mg/kg/day), and EMB100 group (1/7.5 LD50 = 100 mg/kg/day). Control group received water (placebo), and EMB groups were administered by oral gavage for 14 days. The superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) enzyme activities, thiobarbituric acid reactive substance (TBARS) and protein carbonyl (PC) levels, and adenosine triphosphatase (ATPases) enzymes, which are ion transport enzymes (Na+/K+ ATPase, Ca+2 ATPase, Mg+2 ATPase), acetylcholinesterase (AChE, neurotoxicity biomarker), and myeloperoxidase (MPO) enzyme activities (inflammatory biomarker), were measured by spectrophotometric methods. 8-Hydroxy-2'-deoxyguanosine level (8-OHdG, DNA oxidation biomarker) was measured by enzyme-linked immunosorbent analysis (ELISA) technique. The results showed a decrease in SOD, CAT and GPx enzyme activities in the brain tissue and an increase in GST enzyme activity in the EMB groups compared to the control group. Meanwhile, the enzyme activities of the ion transport enzymes Na+/K+ ATPase, Ca+2 ATPase, and Mg+2 ATPase, and AChE enzyme activity showed significant inhibition. In addition, MPO enzyme activity, 8-OHdG, PC, and TBARS levels were increased. The results showed that dose-dependent EMB exposure induced different physiological processes with enzymatic and biomolecular multi-biomarkers in the brain tissue of male mice and caused neurotoxic effects.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| |
Collapse
|
12
|
Hepatoprotective Effects of Chitosan and Chitosan Nanoparticles against Biochemical, Genetic, and Histological Disorders Induced by the Toxicity of Emamectin Benzoate. Rep Biochem Mol Biol 2022; 10:506-514. [PMID: 34981029 DOI: 10.52547/rbmb.10.3.506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/26/2021] [Indexed: 01/24/2023]
Abstract
Background Emamectin benzoate (EMB) is a biopesticide which used in agriculture as an insecticide. It is easier to reach ecologically and affects human health. This study aims to evaluate the protective effect of chitosan and chitosan nanoparticles against EMB-induced hepatotoxicity. Methods Male mice were distributed into four groups: G1: the negative control, G2: EMB group (5 mg/kg diet), G3: EMB with Chitosan, (600 mg/kg diet), and G4: EMB with Chitosan nanoparticles (600 mg/kg diet). The experiment continues for 8 weeks, and the animals were sacrificed, and their organs were removed and immediately weighed after sacrifice. The liver was quickly removed and processed for histopathological and genetic studies. Results Emamectin benzoate (EMB) treatment induced oxidative stress by increased levels of Malondialdehyde (MDA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) with inhibition of acetylcholinesterase (AChE), Superoxide dismutase (SOD) and Catalase (CAT) levels. EMB produced several histopathological changes in the liver. Relative expressions of studied genes elevated in the liver with increase in DNA damage. Co-treatment with chitosan and chitosan nanoparticles reduced EMB related liver toxicity that belong to biochemical, histopathological, gene expression, and DNA damage by increasing antioxidant capacity. Conclusion This study offers insight into the potential for Chitosan and chitosan nanoparticles as a novel natural material against the oxidative stress induced by EMB.
Collapse
|
13
|
Kocadal K, Alkas FB, Ulutas OK, Kurt MA, Battal D, Sardas S, Etikan I, Saygi S. Biomonitoring of Heavy Metal(oid)s in the Residents of Abandoned Mining District in Northern Cyprus. Biol Trace Elem Res 2021; 199:3667-3676. [PMID: 33409917 DOI: 10.1007/s12011-020-02520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Several heavy metal(oid)s are known mutagens and/or carcinogens. Exposure to these elements can lead to the development of malignancies. Gemikonagi, which is in the western part of Cyprus, was the hometown of mining operations. It is believed that the mining site is a significant heavy metal(oid) source for the environment and residents. In this biomonitoring study, a total of 60 blood samples from Gemikonagi region (n = 30) and from a control region located 40 km northeast from the mining site, Tepebasi (n = 30), and 5 soil samples from each region were collected to conduct heavy metal analysis using ICP-MS. To conduct genotoxicity analysis, alkaline comet assay and in vivo micronucleus assays were used. t test for independent samples and Mann-Whitney U tests were applied. Copper and iron were found to be enriched in Gemikonagi, while arsenic was found to be enriched in Tepebasi. Genotoxicity analyses demonstrated a statistically significant increase in parameters of micronuclei frequency (p value = 0.0001) and Comet Assay statistics upon exposure to some elements, such as arsenic (p value = 0.04) and copper (p value = 0.012). The results indicate that a general enrichment in heavy elements is not endemic to Gemikonagi, but a problem that might be generalized to the entirety of Cyprus. Graphical abstract.
Collapse
Affiliation(s)
- Kumsal Kocadal
- Department of Toxicology, Faculty of Pharmacy, Near East University, 99138, Nicosia, North Cyprus
| | - Fehmi Burak Alkas
- Department of Toxicology, Faculty of Pharmacy, Near East University, 99138, Nicosia, North Cyprus
| | - Onur Kenan Ulutas
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - Mehmet Ali Kurt
- Department of Env. Eng., Faculty of Engineering, Mersin University, 33169, Mersin, Turkey
| | - Dilek Battal
- Department of Toxicology, Faculty of Pharmacy, Near East University, 99138, Nicosia, North Cyprus.
- Department of Toxicology, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey.
| | - Semra Sardas
- Department of Toxicology, Faculty of Pharmacy, Near East University, 99138, Nicosia, North Cyprus
- Department of Toxicology, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
| | - Ilker Etikan
- Department of Biostatistics, Faculty of Medicine, Near East University, 99138, Nicosia, North Cyprus
| | - Sahan Saygi
- Department of Toxicology, Faculty of Pharmacy, Near East University, 99138, Nicosia, North Cyprus
| |
Collapse
|
14
|
Nassar AMK, Abdel-Halim KY, Abbassy MA. Mitochondrial biochemical and histopathological defects induced by the herbicide pendimethalin in tilapia fish (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108949. [PMID: 33309702 DOI: 10.1016/j.cbpc.2020.108949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
The mitochondrial defects were evaluated after administering tilapia fish, Oreochromis niloticus to sublethal doses (1.02 and 5.10 mg kg-1) of the herbicide pendimethalin (PD). All treatments exhibited a decrease in the cytochrome contents of gills, liver, and brain samples after 12, 24, and 48 h compared with the untreated individuals. However, malondialdehyde (MDA) levels were significantly increased in gills and liver samples. Also, the histopathological profiles showed significant swelling in mitochondria and intracellular spaces in cytoplasm of gills samples. The mitochondrial defects in the treated fish showed a slight decline in cytoplasm/mitochondria ratio (0.92-fold) compared to the control. In hepato-sections of treated fish, destructed mitochondria with less dense matrix as well as some vacuolated mitochondria with matrix disoriented cristae were noted. Similar patterns were observed in brain sections, where destructed axons and a significant decline in cytoplasm/mitochondria ratio (0.52-fold) were found. Therefore, the use of mitochondrial defects and histopathological alterations might represent good markers to assess the impact of herbicides on aquatic organisms. Moreover, the disorganization of cell components is considered an important sign of organ dysfunction.
Collapse
Affiliation(s)
- Atef M K Nassar
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, El-Beheira, PO Box 59, Egypt.
| | - Khaled Y Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC), 12618 Dokki, Giza, Egypt
| | - Moustafa A Abbassy
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, El-Beheira, PO Box 59, Egypt
| |
Collapse
|
15
|
Temiz Ö. Biopesticide emamectin benzoate in the liver of male mice: evaluation of oxidative toxicity with stress protein, DNA oxidation, and apoptosis biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23199-23205. [PMID: 32333357 DOI: 10.1007/s11356-020-08923-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Emamectin benzoate (EMB), which is used as a pesticide in agriculture, household, and veterinary medicine, can cause tissue damage with oxidative toxicity and can be considered as inducing apoptosis. In the present study, male mice were conducted by oral administration in EMB doses 25, 50, and 100 (mg/kg/day) for 14 days. Glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) levels using spectrophotometric methods were measured. 8-hydroxy-2'-deoxyguanosine (8-OHdG) which is DNA oxidation biomarker and, stress protein (HSP70) levels, caspase 3 enzyme activities were measured by ELISA techniques. This study shows that in vivo administration of EMB caused a marked induction of oxidative damage in liver tissue as demonstrated by an increased level of TBARS and reduced GSH level. The increase in HSP70 level did not prevent the apoptosis caused by the increase of caspase 3 enzyme activity. Toxicity caused by EMB also showed the formation of genotoxicity with an increase in DNA oxidation biomarker 8-OHdG levels. As a result of the study, the effects of toxicity caused by EMB on lipid; protein; and DNA, structural macromolecules in cells, and the importance of enzymatic and non-enzymatic bonds of the cell's protective systems were determined. Consequently, under experimental conditions, EMB exposure caused toxicity in the liver of male mice, and significant adverse effects were determined with biomarkers.
Collapse
Affiliation(s)
- Özge Temiz
- Department of Biology, Faculty of Science and Letters, University of Cukurova, Adana, Turkey.
| |
Collapse
|
16
|
Niu C, Wang C, Wu G, Yang J, Wen Y, Meng S, Lin X, Pang X, An L. Toxic effects of the Emamectin Benzoate exposure on cultured human bronchial epithelial (16HBE) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113618. [PMID: 31784274 DOI: 10.1016/j.envpol.2019.113618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Pesticides pollution has caused serious environmental problems in recent years, and mounting evidence has shown that more and more insecticides have serious risk in human health. Emamectin Benzoate formally regarded as a highly safety insecticide based on its exclusive targets, but the cytotoxicity to human lung was ignored for a long time. In the present study, bioassay experiments were used to assess the toxicity of the Emamectin Benzoatein on human non-target cells including cell viability assay, DNA damage assay, flow cytometer assay and western blotting assay. The results indicated that Emamectin Benzoatecan cause the inhibition of the proliferation, cytochrome c release, activation of caspase-3/9 and increase Bax/Bcl-2 ratio, which means it induced the cytotoxicity on 16HBE cells associated with the mitochondrial apoptosis. Besides, the DNA damge caused by the Emamectin Benzoate suggest it has a potential genotoxic effect on human lung cells.
Collapse
Affiliation(s)
- Chenguang Niu
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Chunli Wang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Guangyao Wu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Jingnan Yang
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Yanan Wen
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Shuangshuang Meng
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Xuhong Lin
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Xiaobin Pang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China.
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China; Institutes of Biomedical Sciences, Henan Medical School, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
17
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
18
|
Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi A, Shukla JP, Trivedi SP. A protective study of curcumin associated with Cr 6+ induced oxidative stress, genetic damage, transcription of genes related to apoptosis and histopathology of fish, Channa punctatus (Bloch, 1793). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103209. [PMID: 31207396 DOI: 10.1016/j.etap.2019.103209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Ameliorative potential of curcumin against Cr6+-induced eco-toxicological manifestations was assessed in liver of exposed Channa punctatus (Actinopterygii) in six groups for 45 d; Group I as control. Group II with 3 mg/L of curcumin; group III with 7.89 mg/L of Cr6+. Groups IV, V and VI were simultaneously co-exposed with 7.89 mg/L of Cr6+ and three different curcumin concentrations, 1, 2, and 3 mg/L, respectively. In group III, SOD-CAT, GR significantly (p < 0.05) increased; decreased GSH level; elevated MN and AC frequencies; and a significant (p < 0.05) up-regulation of cat (2.72-fold), p53 (1.73-fold), bax (1.33-fold) and apaf-1 (2.13-fold) together with a significant (p < 0.05) down-regulation of bcl-2 (0.51-fold). Co-exposure significantly (p < 0.05) brought down activities of SOD-CAT, GR, raised GSH, decreased micronuclei and apoptotic frequencies along with recovery of histopathological anomalies in liver. This study establishes the protective role of curcumin against Cr6+-induced hepatotoxicity in fish.
Collapse
Affiliation(s)
- Yashika Awasthi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Arun Ratn
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Rajesh Prasad
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Abha Trivedi
- Department of Zoology, MJP Rohilkhand University, Bareilly, 243006, India
| | - J P Shukla
- Department of Zoology, S. Kisan P.G College, Siddharth University, Kapilvastu, 272205, India
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
19
|
Zhang Y, Kong C, Chi H, Li J, Xing J, Wang F, Shao L, Zhai Q. Effect of a beta-cypermethrin and emamectin benzoate pesticide mixture on reproductive toxicity in male mice in a greenhouse environment. Toxicol Mech Methods 2019; 30:100-106. [PMID: 31532271 DOI: 10.1080/15376516.2019.1669241] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the widespread use of pesticides, the resistance to pesticides of pests has gradually increased, caused mixed pesticides to become even more widely used for practical applications. To investigate the effects of mixed pesticides on reproductive health in an occupational greenhouse environment, the greenhouse environment and the characteristics of the actual application were constructed, and then the male mice were comprehensively exposed to a mixture of the beta-cypermethrin and emamectin benzoate environmental. Additionally, the effect of the beta-cypermethrin and emamectin benzoate mixture on the reproductive health of male mice was known. The results showed that with the prolongation of exposure duration, the activities of Glutathione Peroxidase (GSH-Px), Total Superoxide Dismutase (T-SOD), Lactate dehydrogenase (LDH) and Acid phosphatase (ACP) in the testes of mice gradually decreased and the activity of Malondialdehyde (MDA) gradually increased. It was also found that the apoptosis rate of murine testicular cells increased and that DNA damage occurred with prolonged exposure duration. Therefore, it can be inferred that exposure to a mixture of the pesticides beta-cypermethrin and emamectin benzoate in the greenhouse environment may have adverse effects on the reproductive health of male mice.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Chang Kong
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Huimin Chi
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Junxia Li
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jie Xing
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Fei Wang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Lijun Shao
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Qingfeng Zhai
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Kocadal K, Alkas FB, Battal D, Saygi S. Cellular pathologies and genotoxic effects arising secondary to heavy metal exposure: A review. Hum Exp Toxicol 2019; 39:3-13. [DOI: 10.1177/0960327119874439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Environmental pollution is significant and oftentimes hazardous in the areas, where mining, foundries and smelters and other metallurgical operations are located. Systematic research on the chronic effects of metals started during the past century; nevertheless, it is evident that even today, there are large gaps in knowledge regarding the assessment of the health effects caused by environmental and occupational exposures to these metals. Heavy metals induce the production of reactive oxygen species (ROS) causing oxidative stress, make several repair-inhibiting cellular changes and alter the DNA repair processes. They favour the ‘false’ repairing of double-strand breaks (DSBs), propagate DNA mutations and induce carcinogenesis. A detailed literature search was performed using the MedLine/PubMed database. Depending on the mechanism of action, arsenicals can act as genotoxins, non-genotoxic agents and carcinogens. Cadmium can bind to proteins, reduce DNA repair, activate protein degradation, up-regulate cytokines and proto-oncogenes (c-fos, c-jun and c-myc), induce the expression of metallothionein, haeme-oxygenases, glutathione transferases, heat-shock proteins, acute-phase reactants and DNA polymerase β at lower concentrations. Inorganic mercury damages oxidative phosphorylation and electron transport pathways at the ubiquinone–cytochrome b5 locus and thus induces ROS production. Abandoned mining areas generate environmentally persistent waste. These specific sites urgently require maximally efficient and cheap remediation. This bears the need for methodologies employing green and sustainable remediation. Phytoremediation is important in that it is a prevalent in situ remediation technique. Its advantages include the use of solar energy, cost-effectiveness, easy operation, reduction in secondary contaminants, the use of biomass for biofuel production and low-cost adsorbents.
Collapse
Affiliation(s)
- K Kocadal
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| | - FB Alkas
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| | - D Battal
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
- Department of Toxicology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - S Saygi
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| |
Collapse
|
21
|
Luan S, Muhayimana S, Xu J, Zhang X, Xiao C, Huang Q. The effect of α-tocopherol and dithiothreitol in ameliorating emamectin benzoate cytotoxicity in human K562 cells involving the modulation of ROS accumulation and NF-κB signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:114-121. [PMID: 30315996 DOI: 10.1016/j.ecoenv.2018.09.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Emamectin benzoate (EMB) toxicity contributes a potential risk to environment and human health. To investigate the effect of α-tocopherol (VitE) and dithiothreitol (DTT) in ameliorating EMB-induced cytotoxicity in human K562 cells, in vitro cultured human K562 cells were incubated with different concentrations of EMB in supplement with VitE and DTT when the cells were in the logarithmic phase. Next, the cell growth inhibition was evaluated using the MTT assay and cellular morphology observation. Reactive oxygen species (ROS) production was monitored using DCFH-DA probe and NF-κB signaling was determined using Western blotting. The results demonstrated that treatment with EMB (time- and concentration-dependent) showed significantly greater inhibition on K562 cell viability, heavier chromatin condensation and DNA fragmentation, and stronger suppression of NF-κB/p105 and p65/RelA expression of K562 cells than the control group (p < 0.01). The supplementation of VitE or DTT could help protect K562 cells against EMB-induced cytotoxicity by improving cell viability, preventing ROS accumulation and up-regulating NF-κB signaling through their ameliorating effects against oxidative stress induced by EMB. VitE had a stronger synergistic effect in limiting EMB cytotoxicity than DTT. Our findings indicate that VitE and DTT are potent antioxidants for human K562 cells, offering a promising means of ameliorating EMB cytotoxicity.
Collapse
Affiliation(s)
- Shaorong Luan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ciying Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Iyer S, Pham N, Marty M, Sandy M, Solomon G, Zeise L. An Integrated Approach Using Publicly Available Resources for Identifying and Characterizing Chemicals of Potential Toxicity Concern: Proof-of-Concept With Chemicals That Affect Cancer Pathways. Toxicol Sci 2019; 169:14-24. [DOI: 10.1093/toxsci/kfz017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Shoba Iyer
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Oakland, California
| | - Nathalie Pham
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Sacramento, California
| | - Melanie Marty
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Sacramento, California
| | - Martha Sandy
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Oakland, California
| | - Gina Solomon
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency’s (CalEPA’s), Oakland, California
| |
Collapse
|
23
|
Liu L, Sun Y, Zhao Y, Wang Q, Guo H, Guo R, Liu Y, Fu S, Zhang L, Li Y, Meng Y. Urea transport B gene induces melanoma B16 cell death via activation of p53 and mitochondrial apoptosis. Cancer Sci 2018; 109:3762-3773. [PMID: 30290033 PMCID: PMC6272101 DOI: 10.1111/cas.13825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urea Transporter B (UT-B) is a membrane channel protein that mediates the rapid transmembrane transport of urea and participates in urine concentration. Urea Transporter B is expressed in skin, but we found that there is little expression in human melanoma tissue. In this study, we examined the effects of UT-B overexpression in melanoma. The results indicated that there is no UT-B mRNA expression in B16 cells, and UT-B overexpression repressed B16 cell proliferation and induced apoptosis in vitro. We show that UT-B overexpression causes increased reactive oxygen species production, which may be caused by mitochondria dysfunction. The mitochondrial membrane potential (ΨΔm) was lower in UT-B-overexpressing B16 cells. The proteins involved in complexes I, III, IV and V of the respiratory chain were clearly downregulated in UT-B-overexpressing B16 cells, which would strongly reduce the activity of the electron transport chain. We found that mitochondrial release of cytochrome C into the cytoplasm also increased, indicating that apoptosis had been activated. In addition, UT-B overexpression reduced AKT phosphorylation and MDM2 expression and increased p53 expression; p53 activation may be involved in the anticancer effects of UT-B overexpression. Urea Transporter B overexpression also inhibited tumor growth in vivo. In conclusion, we demonstrated that UT-B may be related to the occurrence of melanoma and play a role in tumor development.
Collapse
Affiliation(s)
- Lianqin Liu
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Yuxin Sun
- Department of Otorhinolaryngology‐Head and Neck SurgeryChina‐Japan Union HospitalJilin UniversityChangchunChina
| | - Yunxia Zhao
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Qian Wang
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Hua Guo
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Rui Guo
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Yanan Liu
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Shuang Fu
- Department of Histology and EmbryologyChangchun University of Traditional Chinese MedicineChangchunChina
| | - Ling Zhang
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Yang Li
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| | - Yan Meng
- Department of PathophysiologyProstate Diseases Prevention and Treatment Research CenterCollege of Basic Medical ScienceJilin UniversityChangchunChina
| |
Collapse
|
24
|
Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice. Biomed Pharmacother 2018; 98:242-251. [DOI: 10.1016/j.biopha.2017.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
|