1
|
Chen Z, Zeng Y, Ma P, Xu Q, Zeng L, Song X, Yu F. Integrated GMPS and RAMP3 as a signature to predict prognosis and immune heterogeneity in hepatocellular carcinoma. Gene 2025; 933:148958. [PMID: 39312983 DOI: 10.1016/j.gene.2024.148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly fatal malignant worldwide. As different expression levels of specific genes can lead to different HCC outcomes, we aimed to develop a gene signature capable of predicting HCC prognosis. METHODS In this study, transcriptomic sequencing and relevant clinical data were extracted from public platforms. The guanine monophosphate synthase (GMPS)|receptor activity-modifying protein 3 (RAMP3) gene pair was developed based on the relative values of gene expression levels. Nomograms were developed using R software. Immune status was assessed through single-sample gene set enrichment analysis. GMPS knockdown was achieved through siRNA transfection. Quantitative reverse transcription PCR, apoptosis assays, and cell proliferation were performed to verify the function of GMPS|RAMP3 in HCC cells. RESULTS Here, a gene pair containing GMPS and RAMP3 was successfully constructed. We demonstrated that the GMPS|RAMP3 gene pair was an independent predictor with strong prognostic prediction power, based on which a nomogram was established. Functional analysis revealed that the enrichment of cell cycle-related pathways and immune status differed considerably between the two groups, with cell cycle-related genes highly expressed in the high GMPS|RAMP3 value group. Finally, cell experiments indicated that GMPS knockdown significantly repressed proliferation, promoted apoptosis, and enhanced the sensitivity of HCC cells to gemcitabine. CONCLUSIONS The gene pair GMPS|RAMP3 is a novel prognostic predictor of HCC, providing a promising approach to the treatment and assessment of immune heterogeneity in HCC.
Collapse
Affiliation(s)
- Zhuoyan Chen
- Department of Gastroenterology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Ma
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Huang Z, Xu L, Wu Z, Xiong X, Luo L, Wen Z. CDC25B Is a Prognostic Biomarker Associated With Immune Infiltration and Drug Sensitivity in Hepatocellular Carcinoma. Int J Genomics 2024; 2024:8922878. [PMID: 39371450 PMCID: PMC11455594 DOI: 10.1155/2024/8922878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments. CDC25B expression data of HCC cancer tissues and paracancerous normal samples were obtained from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the relationship between CDC25B expression and the prognosis and degree of tumor differentiation of HCC patients was analyzed. CDC25B expression was verified in clinical HCC tissue samples using fluorescence quantitative polymerase chain reaction (q-PCR) and protein immunoblotting (Western blot). Gene set enrichment analysis (GSEA) was used to identify signaling pathways enriched in CDC25B expression, and differential genes (DEGs) were used to screen out coexpressed hub genes and construct protein-protein interaction (PPI) networks. 5-Ethynyl-2'-deoxyuridine (EDU) staining was used to compare the proliferation and differentiation ability of the HCC cell line (HCC-LM3) after knockdown of CDC25B. Finally, we investigated the mutation of CDC25B in HCC and the relationship between CDC25B expression and tumor cell infiltration of lymphocytes and some immune checkpoints as well as drug sensitivity. CDC25B was overexpressed in HCC tissues and correlated with poor prognosis and the degree of tumor differentiation in patients with HCC. The GSEA and PPI networks together revealed significantly upregulated signaling pathways, as well as functions, associated with the development of HCC when CDC25B was overexpressed. The EDU assay demonstrated that the ability of cells to differentiate value addedly was markedly reduced following the downregulation of CDC25B expression in HCC-LM3s. CDC25B was also involved in the formation of the tumor microenvironment (TME) and immune processes in HCC, and the high expression of CDC25B made patients less sensitive to some drugs. CDC25B can be used as a biomarker and immunotherapeutic target for poor prognosis and partial drug sensitivity in HCC, providing new ideas for HCC treatment.
Collapse
Affiliation(s)
- Zixiang Huang
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Liangzhi Xu
- Department of Hepatobiliary SurgeryEzhou Central Hospital, Ezhou, Hubei, China
| | - Zhengqiang Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Xiaofeng Xiong
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Linfei Luo
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Zhili Wen
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| |
Collapse
|
3
|
Chi XX, Ye P, Cao NQ, Hwang WL, Cha JH, Hung MC, Hsu KW, Yan XW, Yang WH. PPIH as a poor prognostic factor increases cell proliferation and m6A RNA methylation in hepatocellular carcinoma. Am J Cancer Res 2024; 14:3733-3756. [PMID: 39267679 PMCID: PMC11387852 DOI: 10.62347/nzij5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.
Collapse
Affiliation(s)
- Xiao-Xia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital Shenzhen 518053, Guangdong, China
| | - Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400, Guangdong, China
| | - Neng-Qi Cao
- Department of General Surgery, Nanjing Lishui People's Hospital Nanjing 211200, Jiangsu, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, and Cancer Progression Research Center, National Yang Ming Chiao Tung University Taipei 112304, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University Incheon 22212, The Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University Taichung 406040, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University Taichung 404328, Taiwan
| | - Xiu-Wen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, and Cancer Biology and Precision Therapeutics Center, China Medical University Taichung 404327, Taiwan
| |
Collapse
|
4
|
Zhang Y, Feng B, Liang Y, Tang Q, Zhang S, Zhang Z, Xu L, Yin J. Prognostic significance of LRPPRC and its association with immune infiltration in liver hepatocellular carcinoma. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:105-116. [PMID: 39022790 PMCID: PMC11249856 DOI: 10.62347/xtlj1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Leucine rich pentatricopeptide repeat containing (LRPPRC) protein is a multifunctional protein involved in cell cycle progression and tumor development. However, its prognostic significance and association with immune infiltration in Liver hepatocellular carcinoma (LIHC) remain unclear. METHODS We utilized transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases of LIHC patients to investigate the potential pro-cancer role of LRPPRC, including differential expression of LRPPRC in LIHC, prognostic value, clinicopathological features, immune cell infiltration relevance and function enrichment analysis. RESULTS Our findings suggest that LRPPRC is upregulated in LIHC and exhibits correlations with survival, clinical stage, and tumor grade in LIHC patients. Additionally, immune infiltration analysis revealed significant negative correlations between LRPPRC expression and multiple tumor-infiltrating immune cells, including CTLs, DCs, pDCs, B cells, Th17 cells, neutrophils, T cells, Mast cells, Th1 cells, Tregs, and NK cells, whereas a significant positive correlation was observed with infiltration of Th2 cells, T helper cells and Tcms. Furthermore, functional enrichment analysis indicated that LRPPRC may be involved in G2m checkpoint, mitotic spindle, E2f targets, Wnt Beta catenin signaling, spermatogenesis and other processes.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineHefei, Anhui, The People’s Republic of China
| | - Bin Feng
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Qingqin Tang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Sheng Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Zheng Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Li Xu
- Department of Pharmacy, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Jingping Yin
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| |
Collapse
|
5
|
Tang BF, Yan RC, Wang SW, Zeng ZC, Du SS. Maternal embryonic leucine zipper kinase in tumor cell and tumor microenvironment: Emerging player and promising therapeutic opportunities. Cancer Lett 2023; 560:216126. [PMID: 36933780 DOI: 10.1016/j.canlet.2023.216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other proteins, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Ruo-Chen Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Wei Wang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China.
| |
Collapse
|
6
|
Wang Y, Qi J, Ai D. DPADM: a novel algorithm for detecting drug-pathway associations based on high-throughput transcriptional response to compounds. Brief Bioinform 2023; 24:6889446. [PMID: 36511223 DOI: 10.1093/bib/bbac517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
Pathway genes functionally participate in the same biological process. They typically act cooperatively, and none is considered dispensable. The dominant paradigm in drug discovery is the one-to-one strategy, which aims to find the most sensitive drug to act on an individual target. However, many complex diseases, such as cancer, are caused by dysfunction among multiple-gene pathways, not just one. Therefore, identifying pathway genes that are responsive to synthetic compounds in a global physiological environment may be more effective in drug discovery. The high redundancy of crosstalk between biological pathways, though, hints that the covariance matrix, which only connects genes with strong marginal correlations, may miss higher-level interactions, such as group interactions. We herein report the development of DPADM-a Drug-Pathway association Detection Model that infers pathways responsive to specific drugs. This model elucidates higher-level gene-gene interactions by evaluating the conditional dependencies between genes under different drug treatments. The advantage of the proposed method is demonstrated using simulation studies by comparing with another two methods. We applied this model to the Connectivity Map data set (CMap), and demonstrated that DPADM is able to identify many drug-pathway associations, such as mitoxantrone (MTX)- PI3K/AKT association, which targets the topological conditions of DNA transcription. Surprisingly, apart from identifying pathways corresponding to specific drugs, our methodology also revealed new drug-related pathways with functions similarly to those of seed genes.
Collapse
Affiliation(s)
- Yishu Wang
- School of Mathematics and Physics at University of Science and Technology Beijing
| | - Juan Qi
- School of Mathematics and Physics at University of Science and Technology Beijing
| | - Dongmei Ai
- School of Mathematics and Physics at University of Science and Technology Beijing
| |
Collapse
|
7
|
Oku Y, Madia F, Lau P, Paparella M, McGovern T, Luijten M, Jacobs MN. Analyses of Transcriptomics Cell Signalling for Pre-Screening Applications in the Integrated Approach for Testing and Assessment of Non-Genotoxic Carcinogens. Int J Mol Sci 2022; 23:ijms232112718. [PMID: 36361516 PMCID: PMC9659232 DOI: 10.3390/ijms232112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Collapse
Affiliation(s)
- Yusuke Oku
- The Organisation for Economic Cooperation and Development (OECD), 2 Rue Andre Pascal, 75016 Paris, France
- Correspondence: (Y.O.); (M.N.J.)
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martin Paparella
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innbruck, Austria
| | - Timothy McGovern
- US Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA Utrecht, The Netherlands
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazard (CRCE), Public Health England (PHE), Chilton OX11 0RQ, Oxfordshire, UK
- Correspondence: (Y.O.); (M.N.J.)
| |
Collapse
|
8
|
Semibulk RNA-seq analysis as a convenient method for measuring gene expression statuses in a local cellular environment. Sci Rep 2022; 12:15309. [PMID: 36097044 PMCID: PMC9468030 DOI: 10.1038/s41598-022-19391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
When biologically interpretation of the data obtained from the single-cell RNA sequencing (scRNA-seq) analysis is attempted, additional information on the location of the single cells, behavior of the surrounding cells, and the microenvironment they generate, would be very important. We developed an inexpensive, high throughput application while preserving spatial organization, named “semibulk RNA-seq” (sbRNA-seq). We utilized a microfluidic device specifically designed for the experiments to encapsulate both a barcoded bead and a cell aggregate (a semibulk) into a single droplet. Using sbRNA-seq, we firstly analyzed mouse kidney specimens. In the mouse model, we could associate the pathological information with the gene expression information. We validated the results using spatial transcriptome analysis and found them highly consistent. When we applied the sbRNA-seq analysis to the human breast cancer specimens, we identified spatial interactions between a particular population of immune cells and that of cancer-associated fibroblast cells, which were not precisely represented solely by the single-cell analysis. Semibulk analysis may provide a convenient and versatile method, compared to a standard spatial transcriptome sequencing platform, to associate spatial information with transcriptome information.
Collapse
|
9
|
Mukhopadhyay S, Tokumaru Y, Oshi M, Endo I, Yoshida K, Takabe K. Low adipocyte hepatocellular carcinoma is associated with aggressive cancer biology and with worse survival. Am J Cancer Res 2022; 12:4028-4039. [PMID: 36119828 PMCID: PMC9442007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and non-alcoholic fatty liver disease is strongly associated with its development. To explore the role of adipocytes in HCC, we investigated intratumoral adipocytes, also known as cancer-associated adipocytes (CAA). Based on our prior breast cancer findings, we hypothesized that low intratumoral adipocytes would be associated with aggressive cancer biology, worse tumor microenvironment (TME), and clinical outcomes. The Cancer Genome Atlas (TCGA) was used and validated by the Gene Expression Omnibus (GEO) cohort. xCell algorithm was used to quantify intratumoral adipocytes and top 90% were defined as adipocyte high (AH) and bottom 10% as adipocyte low (AL). We found that AL-HCC was significantly associated with worse disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). AL-HCC were higher-grade, had high MKI67 expression, enriched cell proliferation-related gene sets, and had increased altered fraction, aneuploidy, and homologous recombination defects. Also, anti-cancer immune cells, CD8, Th1, and M1 cells, as well as pro-cancer Th2 cells were increased in AL-HCC. Micro-RNAs miR-122 (associated with cholesterol metabolism) and miR-885 (associated with liver pathologies) were significantly increased in the AL TME. In conclusion, we found that AL-HCC has worse patient outcomes and is biologically more aggressive with enhanced cell proliferation. Our findings take initial steps to clarify the role of adipocytes in HCC.
Collapse
Affiliation(s)
- Swagoto Mukhopadhyay
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, New York 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
| |
Collapse
|
10
|
Liu H, Yang M, Dong Z. HSPB11 is a Prognostic Biomarker Associated with Immune Infiltrates in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:4017-4027. [PMID: 35444459 PMCID: PMC9014112 DOI: 10.2147/ijgm.s363679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Hui Liu
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Mei Yang
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zhiwei Dong
- Department of General Surgery, Air Force Medical Center, PLA, Beijing, People’s Republic of China
- Correspondence: Zhiwei Dong, Department of General Surgery, Air Force Medical Center, PLA, Beijing, People’s Republic of China, Tel +8617611408626, Fax +86 411-84671291-3106, Email
| |
Collapse
|
11
|
Luo Y, Liu F, Han S, Qi Y, Hu X, Zhou C, Liang H, Zhang Z. Autophagy-Related Gene Pairs Signature for the Prognosis of Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:670241. [PMID: 34095224 PMCID: PMC8173133 DOI: 10.3389/fmolb.2021.670241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been recognized as the third leading cause of cancer-related deaths worldwide. There is increasing evidence that the abnormal expression of autophagy-related genes plays an important role in the occurrence and development of HCC. Therefore, the study of autophagy-related genes can further elucidate the genetic drivers of cancer and provide valuable therapeutic targets for clinical treatment. In this study, we used 232 autophagy-related genes extracted from the Human Autophagy Database (HADb) and Molecular Signatures Database (MSigDB) to construct 1884 autophagy-related gene pairs. On this basis, we developed a prognostic model based on autophagy-related gene pairs using least absolute shrinkage and selection operator (LASSO) Cox regression to evaluate the prognosis of patients after liver cancer resection. We then used 845 liver cancer samples from three different databases to test the reliability of the risk signature through survival analysis, receiver operating characteristic (ROC) curve analysis, univariate and multivariate analysis. To further explore the underlying biological mechanisms, we conducted an enrichment analysis of autophagy-related genes. Finally, we combined the signature with independent prognostic factors to construct a nomogram. Based on the autophagy-related gene pair (ARGP) signature, we can divide patients into high- or low-risk groups. Survival analysis and ROC curve analysis verified the validity of the signature (AUC: 0.786—0.828). Multivariate Cox regression showed that the risk score can be used as an independent predictor of the clinical outcomes of liver cancer patients. Notably, this model has a more accurate predictive effect than most prognostic models for hepatocellular carcinoma. Moreover, our model is a powerful supplement to the HCC staging indicator, and a nomogram comprising both indicators can provide a better prognostic effect. Based on pairs of multiple autophagy-related genes, we proposed a prognostic model for predicting the overall survival rate of HCC patients after surgery, which is a promising prognostic indicator. This study confirms the importance of autophagy in the occurrence and development of HCC, and also provides potential biomarkers for targeted treatments.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xinsheng Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Chenyang Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
12
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Miao Y, Han P, Hua D, Zhou R, Guan Z, Lv Q, Dai X. Cold atmospheric plasma increases IBRV titer in MDBK cells by orchestrating the host cell network. Virulence 2021; 12:679-689. [PMID: 33554733 PMCID: PMC7889027 DOI: 10.1080/21505594.2021.1883933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhancing virus multiplication could assist in the rapid production of vaccines against viral diseases. Cold atmospheric plasma (CAP), a physical approach relying on reactive oxygen species to achieve the desirable cellular outcome, was shown to be effective in enhancing virus propagation, where bovine rhinotrachieitis virus and Madin-Darby Bovine Kidney cells were used as the modeling virus and cell line, respectively. CAP was shown to create synergies with virus infection in arresting host cells at the G2/M stage, decreasing cell membrane potential, increasing intracellular calcium level, and inducing selective autophagy. In addition, CAP was demonstrated to suppress virus-triggered immunogenic signaling as evaluated by IRF7 expression. We presented evidences on CAP-triggered maximization of host resources toward virus multiplication that is advantageous for viral vaccine production, and opened a novel regime for applying CAP in the sector of medical care and health.
Collapse
Affiliation(s)
- Yujie Miao
- Wuxi School of Medicine, Jiangnan University , Wuxi, China
| | - Peiyu Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Dong Hua
- Affiliated Hospital of Jiangnan University , Wuxi China
| | - Renwu Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney , Sydney, Australia
| | - Zhengbing Guan
- Wuxi School of Medicine, Jiangnan University , Wuxi, China
| | - Qing Lv
- Affiliated Hospital of Jiangnan University , Wuxi China
| | - Xiaofeng Dai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| |
Collapse
|
14
|
Zhang J, Wang J, Wu Y, Li W, Gong K, Zhao P. Identification of SLED1 as a Potential Predictive Biomarker and Therapeutic Target of Post-Infarct Heart Failure by Bioinformatics Analyses. Int Heart J 2021; 62:23-32. [PMID: 33518662 DOI: 10.1536/ihj.20-439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore potential predictive biomarkers and therapeutic targets of post-infarct heart failure (HF) using bioinformatics analyses.CEL raw data of GSE59867 and GSE62646 were downloaded from the GEO database. Differentially expressed genes (DEGs) between patients with ST-segment elevation myocardial infarction (STEMI) and those with stable coronary artery disease (CAD) at admission and DEGs between admission and 6 months after myocardial infarction (MI) in patients with STEMI were analyzed. A gene ontology (GO) analysis and a gene set enrichment analysis (GSEA) were performed, and a protein-protein interaction network was constructed. Critical genes were further analyzed.In total, 147 DEGs were screened between STEMI and CAD at admission, and 62 DEGs were identified in patients with STEMI between admission and 6 months after MI. The results of GO and GSEA indicate that neutrophils, neutrophil-related immunity responses, and monocytes/macrophages play important roles in MI pathogenesis. SLED1 expression was higher in patients with HF than in those without HF at admission and 1 month after MI. GSEA indicates that mTORC1 activation, E2F targets, G2M checkpoint, and MYC targets v1 inhibition may play key roles in the development of post-infarct HF. Furthermore, SLED1 may be involved in the development of post-infarct HF by activating mTORC1 and inhibiting E2F targets, G2M checkpoint, and MYC targets v1.SLED1 may be a novel biomarker of post-infarct HF and may serve as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University
| | - Jun Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University
| | - Yong Wu
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University
| | - Pei Zhao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University
| |
Collapse
|
15
|
Sosnowska M, Kutwin M, Strojny B, Koczoń P, Szczepaniak J, Bałaban J, Daniluk K, Jaworski S, Chwalibog A, Bielawski W, Sawosz E. Graphene oxide nanofilm and chicken embryo extract decrease the invasiveness of HepG2 liver cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-020-00073-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Background
The extracellular matrix (ECM) is a mosaic of various structural and functional proteins that cooperate with the cell, regulate adhesion, and consequently manage its further fate. Liver destruction is accompanied by a disruption of the physicochemical properties of the ECM which deregulates the cell–ECM interaction and can lead to uncontrolled proliferation and neoplastic transformation of cells. Therefore, it can be assumed that ECM modification and restoration of its characteristics for healthy tissue may counteract uncontrolled cell proliferation. The purpose of the presented research model was to optimise the physical characteristics of ECM by introducing a graphene oxide plane/nanofilm (nfGO) and enriching the cell environment with potentially missing proteins by adding a functional protein cocktail (chicken embryo liver extract) and determine the impact of these factors on cell–ECM cooperation and its consequences on adhesion, proliferation, and cell phase, which are factors of the invasiveness of cancer cells.
Results
Experiments were performed with non-cancer HS-5 cells and liver cancer cells HepG2 and C3A. The cells were divided into four groups: (1) control, (2) cultured on nfGO, (3) cultured with the addition of chicken embryo liver extract (CELE) and (4) cultured on the nfGO with the addition of CELE. CELE contained 1735 proteins; the top 57 of these proteins have been presented. The use of nfGO as well as CELE and nfGO + CELE reduced the proliferation of HepG2 cancer cells to the greatest extent; this is in contrast to non-cancer cells and also to C3A cancer cells. Furthermore, the combined use of the CELE protein cocktail and GO substrate effectively resulted in a decrease in the population of HepG2 cells in the G0/G1 phase and an increase of the population in G2/M. Molecular analysis of HepG2 cancer cells also showed an increase in the expression of genes responsible for adhesion such as focal adhesion kinase (fak), e-cadherin, and n-cadherin and a decrease in β-catenin, which is considered a proto-oncogene.
Conclusions
Studies have shown that both the GO surface structure on which the cells are grown as well as the presence of a multi-component natural cocktail of regulatory proteins, can modify the expression of integrins, increase adhesion and, as a consequence, proliferation and the cell cycle—entering the resting phase. For the first time, it has been documented that hepatic cancer cells of the HepG2 line under the influence of stimuli derived from mimic ECM (graphene oxide) in interaction with a unique protein complex derived from chicken liver embryo decreased of the invasiveness of cancer cells.
Collapse
|
16
|
Su Y, Shetty A, Jiang F. Integrated analysis of miRNAs and DNA methylation identifies miR-132-3p as a tumor suppressor in lung adenocarcinoma. Thorac Cancer 2020; 11:2112-2124. [PMID: 32500672 PMCID: PMC7396385 DOI: 10.1111/1759-7714.13497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aberrant miRNA expression and DNA methylation are two major epigenetic events in lung adenocarcinoma (LUAD). We conducted a combined analysis of the molecular changes in LUAD. METHODS We analyzed differentially expressed miRNAs and methylated CpG loci in 489 LUAD tissues versus 49 normal lung tissues of the Cancer Genome Atlas (TCGA). The results were validated in cell lines and xenograft mouse models and additional pairs of 36 LUAD and 36 normal lung tissues. RESULTS A total of 125 differentially expressed miRNAs and 145 differentially methylated CpG loci were identified in the LUAD versus normal lung tissues of TCGA data. Expression of the 22 miRNAs was inversely correlated with the 47 differentially methylated sites located in the miRNAs. Molecular and cellular function analysis showed that the abnormally methylated miRNAs were mainly involved in cell-to-cell signaling and interaction in airway cells. The DNA methylation status and altered expressions of miRNAs and their target genes were confirmed in 36 pairs of lung tumor and noncancerous lung tissues. Furthermore, aberrant miRNA expressions or DNA methylations alone could be involved in tumorigenesis of LUAD via different pathways. In addition, elevated miR-132-3p expression, reduced expression of its targeted gene (ZEB2), and decreased cell proliferation was observed in lung cancer cells treated with DNA methyltransferase inhibitor. Moreover, in vitro and in vivo analyses showed that miR-132-3p-3p downregulation via DNA methylation promoted tumorigenicity of lung cancer by directly regulating ZEB2. CONCLUSIONS The interaction between two epigenetic aberrations could have important functions in LUAD. miR-132-3p might act as a tumor suppressor in the tumorigenicity of LUAD. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Systemically investigating relationship between aberrant miRNA expression and DNA methylation in lung cancer could improve understanding of lung tumorigenesis and develop diagnostic and therapeutic targets. WHAT THIS STUDY ADDS Three forms of relationships between the two epigenetic changes are defined. miR-132-3p is further identified as a tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Yun Su
- Department of Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Jiang Y, He J, Guo Y, Tao H, Pu F, Li Y. Identification of genes related to low‐grade glioma progression and prognosis based on integrated transcriptome analysis. J Cell Biochem 2020; 121:3099-3111. [PMID: 31886582 DOI: 10.1002/jcb.29577] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yao Jiang
- Department of Clinical Laboratory MedicineThe Affiliated Hospital of Southwest Medical University Luzhou China
| | - Jimin He
- Department of NeurosurgerySuining Central Hospital Suining China
| | - Yongcan Guo
- Department of Clinical Laboratory Medicine, Clinical Laboratory of Traditional Chinese Medicine HospitalSouthwest Medical University Luzhou China
| | - Hualin Tao
- Department of Clinical Laboratory MedicineThe Affiliated Hospital of Southwest Medical University Luzhou China
| | - Fei Pu
- Department of Clinical Laboratory MedicineThe Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yiqin Li
- Department of Clinical Laboratory MedicineThe Affiliated Hospital of Southwest Medical University Luzhou China
| |
Collapse
|
18
|
Lee TY, Huang KY, Chuang CH, Lee CY, Chang TH. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Comput Biol Chem 2020; 87:107277. [PMID: 32512487 DOI: 10.1016/j.compbiolchem.2020.107277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most occurring cancer type, and its mortality rate is also the highest, among them lung adenocarcinoma (LUAD) accounts for about 40 % of lung cancer. There is an urgent need to develop a prognosis prediction model for lung adenocarcinoma. Previous LUAD prognosis studies only took single-omics data, such as mRNA or miRNA, into consideration. To this end, we proposed a deep learning-based autoencoding approach for combination of four-omics data, mRNA, miRNA, DNA methylation and copy number variations, to construct an autoencoder model, which learned representative features to differentiate the two optimal patient subgroups with a significant difference in survival (P = 4.08e-09) and good consistency index (C-index = 0.65). The multi-omics model was validated though four independent datasets, i.e. GSE81089 for mRNA (n = 198, P = 0.0083), GSE63805 for miRNA (n = 32, P = 0.018), GSE63384 for DNA methylation (n = 35, P = 0.009), and TCGA independent samples for copy number variations (n = 94, P = 0.0052). Finally, a functional analysis was performed on two survival subgroups to discover genes involved in biological processes and pathways. This is the first study incorporating deep autoencoding and four-omics data to construct a robust survival prediction model, and results show the approach is useful at predicting LUAD prognostication.
Collapse
Affiliation(s)
- Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Cheng-Hsiang Chuang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan.
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan.
| |
Collapse
|
19
|
Wang P, Peng J, Gong Y, Shen N. CDC25B is associated with the risk of hepatocellular carcinoma, but not related to persistent infection of hepatitis B virus in a Chinese population. Mol Biol Rep 2020; 47:3361-3368. [PMID: 32248384 DOI: 10.1007/s11033-020-05408-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 11/25/2022]
Abstract
The cell division cycle 25 (CDC25) gene members, including CDC25A, CDC25B and CDC25C, are reported to be associated with several human cancers. Here, we aim to investigate the association of functional polymorphisms of CDC25 gene family with the risk of hepatocellular carcinoma (HCC) and persistent infection of Hepatitis B virus (HBV) in a Chinese HBV-related population. First, we used bioinformatics tools to systematically screen functional polymorphisms within CDC25 gene family. Second, we evaluated the effects of candidate polymorphisms by recruiting 790 HCC cases, 709 persistent HBV carriers (PHC), and 741 subjects with HBV natural clearance (SHNC). MassARRAY platform was used for genotyping. At last, we conducted functional prediction and assay to further explore the pathogenic mechanism of the identified polymorphism. Our results demonstrated that CDC25B rs2295348 played a protective role in HCC risk in a HBV-related Chinese population (adjusted odds ratio [OR] = 0.77, 95% confidence interval [CI] 0.65-0.93, P = 0.006). It showed a more significantly reduced HCC risk in the SHNC population (adjusted OR = 0.73, 95% CI 0.59-0.89, P = 0.002). However, we did not observe the association between CDC25B rs2295348 and the risk of persistent HBV infection. Further functional prediction and assay demonstrated that the mutant A allele of CDC25B rs2295348 might significantly decrease gene expression to modify the HCC risk. Our results suggest that CDC25B rs2295348 may confer a protective effect on HCC risk in a HBV-related Chinese population, but do not influence the susceptibility to persistent HBV infection.
Collapse
Affiliation(s)
- Peng Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Peng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Lei Y, Zhou S, Hu Q, Chen X, Gu J. Carbohydrate response element binding protein (ChREBP) correlates with colon cancer progression and contributes to cell proliferation. Sci Rep 2020; 10:4233. [PMID: 32144313 PMCID: PMC7060312 DOI: 10.1038/s41598-020-60903-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
Cancers are characterized by reprogrammed glucose metabolisms to fuel cell growth and proliferation. Carbohydrate response element binding protein (ChREBP) is a glucose-mediated transcription factor that strongly regulates glycolytic and lipogenic pathways. It has been shown to associate with metabolic diseases, such as obesity, diabetes and non-alcoholic fatty liver diseases. However, how it associates with cancers has not been well understood. In this study, ChREBP expression was assessed by immunohistochemistry in colon tissue arrays containing normal colon tissue and cancer tissue at different clinical stages. Tissue mRNA levels of ChREBP were also measured in a cohort of colon cancer patients. We found that ChREBP mRNA and protein expression were significantly increased in colon cancer tissue compared to healthy colon (p < 0.001), and their expression was positively correlated to colon malignancy (for mRNA, p = 0.002; for protein p < 0.001). Expression of lipogenic genes (ELOVL6 and SCD1) in colon cancer was also positively associated with colon malignancy (for both genes, p < 0.001). In vitro, ChREBP knockdown with siRNA transfection inhibited cell proliferation and induced cell cycle arrest without changes in apoptosis in colon cancer cell lines (HT29, DLD1 and SW480). Glycolytic and lipogenic pathways were inhibited but the p53 pathway was activated after ChREBP knockdown. Taken together, ChREBP expression is associated with colon malignancy and it might contribute to cell proliferation via promoting anabolic pathways and inhibiting p53. In addition, ChREBP might represent a novel clinical useful biomarker to evaluate the malignancy of colon cancer.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Shuling Zhou
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qiaoling Hu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xueling Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
| |
Collapse
|
21
|
Li H, Wei N, Ma Y, Wang X, Zhang Z, Zheng S, Yu X, Liu S, He L. Integrative module analysis of HCC gene expression landscapes. Exp Ther Med 2020; 19:1779-1788. [PMID: 32104233 PMCID: PMC7027144 DOI: 10.3892/etm.2020.8437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Despite hepatocellular carcinoma (HCC) being a common cancer globally, its initiation and progression are not well understood. The present study was designed to investigate the hub genes and biological processes of HCC, which change substantially during its progression. Three gene expression profiles of 480 patients with HCC were obtained from the Gene Expression Omnibus database. Subsequent to performing functional annotations and constructing protein-protein interaction (PPI) networks, 657 differentially expressed genes were identified, which were subsequently used to screen candidate hub genes. PPI networks were modularized using the weighted gene correlation network analysis algorithm, the topological overlapping matrix and the hierarchical cluster tree, which were utilized via STRING. Clinical data obtained from The Cancer Genome Atlas were then analyzed to validate the experiments performed using six hub genes. Additionally, a transcription factor and microRNA-mRNA network were constructed to determine the potential regulatory mechanisms of six hub genes. The results revealed that the oxidation-reduction process and cell cycle associated processes were markedly involved in HCC progression. Six highly expressed genes, including cyclin B2, cell division cycle 20, mitotic arrest deficient 2 like 1, minichromosome maintenance complex component 2, centromere protein F and BUB mitotic checkpoint serine/threonine kinase B, were confirmed as hub genes and validated via experiments associated with cell division. These hub genes are necessary for confirmatory experiments and may be used in clinical gene therapy as biomarkers or drug targets.
Collapse
Affiliation(s)
- Hongshi Li
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Ning Wei
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Yi Ma
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xiaozhou Wang
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Zhiqiang Zhang
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Shuang Zheng
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xi Yu
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Shuang Liu
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Lijie He
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
22
|
Li C, Xu J. Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma. Sci Rep 2019; 9:17283. [PMID: 31754223 PMCID: PMC6872594 DOI: 10.1038/s41598-019-53471-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/01/2019] [Indexed: 02/08/2023] Open
Abstract
This study aimed to select the feature genes of hepatocellular carcinoma (HCC) with the Fisher score algorithm and to identify hub genes with the Maximal Clique Centrality (MCC) algorithm. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to examine the enrichment of terms. Gene set enrichment analysis (GSEA) was used to identify the classes of genes that are overrepresented. Following the construction of a protein-protein interaction network with the feature genes, hub genes were identified with the MCC algorithm. The Kaplan–Meier plotter was utilized to assess the prognosis of patients based on expression of the hub genes. The feature genes were closely associated with cancer and the cell cycle, as revealed by GO, KEGG and GSEA enrichment analyses. Survival analysis showed that the overexpression of the Fisher score–selected hub genes was associated with decreased survival time (P < 0.05). Weighted gene co-expression network analysis (WGCNA), Lasso, ReliefF and random forest were used for comparison with the Fisher score algorithm. The comparison among these approaches showed that the Fisher score algorithm is superior to the Lasso and ReliefF algorithms in terms of hub gene identification and has similar performance to the WGCNA and random forest algorithms. Our results demonstrated that the Fisher score followed by the application of the MCC algorithm can accurately identify hub genes in HCC.
Collapse
Affiliation(s)
- Chengzhang Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, Henan Province, China.,Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jiucheng Xu
- Engineering Lab of Intelligence Business & Internet of Things, College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, Henan Province, China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, Henan Province, China.
| |
Collapse
|
23
|
Song X, Du R, Gui H, Zhou M, Zhong W, Mao C, Ma J. Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis. Oncol Rep 2019; 43:133-146. [PMID: 31746405 PMCID: PMC6908929 DOI: 10.3892/or.2019.7400] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths among cancer patients. Genes correlated with the progression and prognosis of HCC are critically needed to be identified. In the present study, 3 Gene Expression Omnibus (GEO) datasets (GSE46408, GSE65372 and GSE84402) were used to analyze the differentially expressed genes (DEGs) between HCC and non-tumor liver tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to clarify the functional roles of DEGs. A protein-protein interaction network was established to screen the hub genes associated with HCC. The prognostic values of hub genes in HCC patients were analyzed using The Cancer Genome Atlas (TCGA) database. The expression levels of hub genes were validated based on ONCOMINE, TCGA and Human Protein Atlas (HPA) databases. Notably, 56 upregulated and 33 downregulated DEGs were markedly enriched under various GO terms and four KEGG terms. Among these DEGs, 10 hub genes with high connectivity degree were identified, including cyclin B1, cyclin A2, cyclin B2, condensin complex subunit 3, PDZ binding kinase, nucleolar and spindle-associated protein 1, aurora kinase A, ZW10 interacting kinetochore protein, protein regulator of cytokinesis 1 and kinesin family member 4A. The upregulated expression levels of these hub genes in HCC tissues were further confirmed by ONCOMINE, TCGA, and HPA databases. Additionally, the increased mRNA expression of each hub gene was related to the unfavorable disease-free survival and overall survival of HCC patients. The present study identified ten genes associated with HCC, which may help to provide candidate targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiudao Song
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Rao Du
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Huan Gui
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Mi Zhou
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Wen Zhong
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Chenmei Mao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
24
|
Li L, Mei H, Commey ANA. Application of RNA-sequencing to identify transcriptome modification by DCLK1 in colorectal cancer cells. Cancer Gene Ther 2019; 27:691-701. [PMID: 31636360 PMCID: PMC7170768 DOI: 10.1038/s41417-019-0144-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/02/2022]
Abstract
Doublecortin like kinase 1 (DCLK1) is a cancer stem cell marker for the colorectal cancer (CRC). It plays critical roles in the oncogenesis, progression and metastasis of CRC. DCLK1 can be an intriguing therapeutic target for CRC treatment. However, the molecular mechanism of how DCLK1 functions is unclear currently. In our research, we aim to apply RNA-Sequencing (RNA Seq) technology, a high throughput massively Next Generation Sequencing approach, to monitor transcriptome changes due to DCLK1 over-expression in the CRC cells. In order to achieve our goal, RNA from quadruplicate samples from two clones of isogenic DCLK1 stable over-expression cells and the parental wild type HCT116 cells was sent for RNA Seq on the Illumina NextSeq500 platform. Differentially expressed (DE) genes were evaluated by t-test (P <0.05 and fold-change ±1.5 or greater) using two methods: (1) FWER; and (2) Benjamani and Hochberg FDR (false discovery rate) which corrects for multiple comparisons. Gene networks and functional analysis were evaluated using Ingenuity Pathways Analysis (IPA). We identified 1463 DE genes common for both DCLK1 overexpression clone A and clone B cells. IPA results indicated that 72 canonical pathways were significantly modified by DCLK1 over-expression (P<0.05), among which 9 out of the top 10 pathways are involved in the cell cycle regulation, indicating that DCLK1 might play its tumorigenesis role via activation of pathways facilitating cell proliferation, repression of pathways inhibiting cells proliferation and function against pathways facilitating cell apoptosis. Cell cycle analysis results confirmed the IPA findings, which demonstrated that DCLK1 over-expression cells had much less G0/G1 cells but much more S and G2/M cells (P<0.05). In conclusion, DCLK1 over-expression significantly modified transcriptome profile of CRC cancer cells. Control of the cell cycle regulation might be one of the critical mechanism for DCLK1 function. Our findings provide more direct evidence for the development of DCLK1 as a therapeutic target for CRC treatment, and will be of great benefit for the discovery of novel therapeutic target within the DCLK1 molecular network for the treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Lianna Li
- Biology Department, Tougaloo College, 500 West County Line Road, Tougaloo, MS, 39174, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | | |
Collapse
|
25
|
Lv X, Zhao Y, Zhang L, Zhou S, Zhang B, Zhang Q, Jiang L, Li X, Wu H, Zhao L, Wei M, He M. Development of a novel gene signature in patients without Helicobacter pylori infection gastric cancer. J Cell Biochem 2019; 121:1842-1854. [PMID: 31633246 DOI: 10.1002/jcb.29419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the most fatal common cancers in worldwide. Helicobacter pylori (H. pylori) infection is closely related to the development of GC, although the mechanism is still unclear. In our study, we aim to develop a robust messenger RNA (mRNA) signature associated with H. pylori (-) GC that can sensitively and efficiently predict the prognostic. The RNA-seq expression profile and corresponding clinical data of 598 gastric cancer samples and 63 normal samples obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Using gene set enrichment analysis H. pylori (+) GC and H. pylori (-) GC patients and normal samples to select certain genes for further analysis. Using univariate and multivariate Cox regression model to establish a gene signature for predicting the overall survival (OS). Finally, we identified G2/M related seven-mRNA signature (TGFB1, EGF, MKI67, ILF3, INCENP, TNPO2, and CHAF1A) closely related to the prognosis of patients with H. pylori (-) GC. The seven-mRNA signature was identified to act as an independent prognostic biomarker by stratified analysis and multivariate Cox regression analysis. It was also validated on two test groups from TCGA and GSE15460 and shown that patients with high-risk scores based on the expression of the seven mRNAs had significantly shorter survival times compared to patients with low-risk scores (P < .0001). In this study, we developed a seven-mRNA signature related to G2/M checkpoint from H. pylori (-) GCs that as an independent biomarker potentially with a good performance in predicting OS and might be valuable for the clinical management for patients with GC.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Shuqi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Bing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
26
|
Liu ZK, Zhang RY, Yong YL, Zhang ZY, Li C, Chen ZN, Bian H. Identification of crucial genes based on expression profiles of hepatocellular carcinomas by bioinformatics analysis. PeerJ 2019; 7:e7436. [PMID: 31410310 PMCID: PMC6689388 DOI: 10.7717/peerj.7436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant cancers with no effective targets and treatments. However, the molecular pathogenesis of HCC remains largely uncertain. The aims of our study were to find crucial genes involved in HCC through multidimensional methods and revealed potential molecular mechanisms. Here, we reported the gene expression profile GSE121248 findings from 70 HCC and 37 adjacent normal tissues, all of which had chronic hepatitis B virus (HBV) infection, we were seeking to identify the dysregulated pathways, crucial genes and therapeutic targets implicated in HBV-associated HCC. We found 164 differentially expressed genes (DEGs) (92 downregulated genes and 72 upregulated genes). Gene ontology (GO) analysis of DEGs revealed significant functional enrichment of mitotic nuclear division, cell division, and the epoxygenase P450 pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly enriched in metabolism, cell cycle regulation and the p53 signaling pathway. The Mcode plugin was calculated to construct a module complex of DEGs, and the module was mainly enriched in cell cycle checkpoints, RHO GTPase effectors and cytochrome P450. Considering a weak contribution of each gene, gene set enrichment analysis (GSEA) was performed, revealing results consistent with those described above. Six crucial proteins were selected based on the degree of centrality, including NDC80, ESR1, ZWINT, NCAPG, ENO3 and CENPF. Real-time quantitative PCR analysis validated the six crucial genes had the same expression trend as predicted. Furthermore, the methylation data of The Cancer Genome Atlas (TCGA) with HCC showed that mRNA expression of crucial genes was negatively correlated with methylation levels of their promoter region. The overall survival reflected that high expression of NDC80, CENPF, ZWINT, and NCAPG significantly predicted poor prognosis, whereas ESR1 high expression exhibited a favorable prognosis. The identification of the crucial genes and pathways would contribute to the development of novel molecular targets and biomarker-driven treatments for HCC.
Collapse
Affiliation(s)
- Ze-Kun Liu
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Ren-Yu Zhang
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Yu-Le Yong
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Zhi-Yun Zhang
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Can Li
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Zhi-Nan Chen
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| | - Huijie Bian
- Fourth Military Medical University, Department of Cell Biology, National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Yin L, Wang Y, Lin Y, Yu G, Xia Q. Explorative analysis of the gene expression profile during liver regeneration of mouse: a microarray-based study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1113-1121. [PMID: 30963776 DOI: 10.1080/21691401.2019.1593851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The liver is an amazing organ due to its powerful regenerative capacity. Although many studies on liver regeneration have been documented, the detailed mechanisms remain unclear. Two-third partial hepatectomy (PH) in rodents plays a crucial role in the study of liver regeneration. In this study, the time series data of gene expression during liver regeneration in mouse were analyzed using the gene set numbered GSE6998 in GEO. A variety of bioinformatics methods, including masigPro, Weighted Gene Co-expression Network Analysis (WGCNA), spatial analysis of functional enrichment (SAFE) and ingenuity canonical pathway analysis (IPA) were used to identify and compare the significantly changed pathways, potential upstream regulators and key genes during liver regeneration. Our study showed that liver regeneration in the mouse is a coordinated process, which cell-cycle-related progress are at the centre of the interaction network involved in liver regeneration. Several candidate upstream regulators including PPARA, NFE2L2, MAD1 and CNR1 and some key genes such as Cdk1, Plk1, Cdc20, Aurka, Racgap1, Cenpa, Rrm1, Rrm2 were identified. In conclusion, these findings could contribute to revealing the molecular mechanism of liver regeneration after PH, which could provide new ideas and treatment methods for regenerative medicine, oncological drug development and oncological treatment.
Collapse
Affiliation(s)
- Li Yin
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Yuanyuan Wang
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Yingzi Lin
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Guoying Yu
- b State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development , Henan Normal University , Xinxiang , Henan , China
| | - Qianfeng Xia
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| |
Collapse
|
28
|
Zeng C, Xing W, Liu Y. Identification of UGP2 as a progression marker that promotes cell growth and motility in human glioma. J Cell Biochem 2019; 120:12489-12499. [PMID: 30816613 DOI: 10.1002/jcb.28515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Chun Zeng
- Department of Neurosurgery, West China Hospital Sichuan University Chengdu Sichuan China
| | - Wenli Xing
- Department of Neurosurgery Suining Central Hospital Suining China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
29
|
Sun B, Lin G, Ji D, Li S, Chi G, Jin X. Dysfunction of Sister Chromatids Separation Promotes Progression of Hepatocellular Carcinoma According to Analysis of Gene Expression Profiling. Front Physiol 2018; 9:1019. [PMID: 30100882 PMCID: PMC6072861 DOI: 10.3389/fphys.2018.01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Despite studying the various molecular mechanisms of hepatocellular carcinoma (HCC), effective drugs and biomarkers in HCC therapy are still scarce. The present study was designed to investigate dysregulated pathways, novel biomarkers and therapeutic targets for HCC. The gene expression dataset of GSE14520, which included 362 tumor and their paired non-tumor tissues of HCC, was extracted for processing by the Robust multi-array average (RMA) algorithm in the R environment. SAM methods were leveraged to identify differentially expressed genes (DEGs). Functional analysis of DEGs was performed using DAVID. The GeneMania and Cytohubba were used to construct the PPI network. To avoid individual bias, GSEA and survival analysis were employed to verify the results. The results of these analyses indicated that separation of sister chromatids was the most aberrant phase in the progression of HCC, and the most frequently involved genes, EZH2, GINS1, TPX2, CENPF, and BUB1B, require further study to be used as drug targets or biomarkers in diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Baozhen Sun
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guibo Lin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Degang Ji
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Li
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guonan Chi
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xingyi Jin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Cao L, Chen Y, Zhang M, Xu DQ, Liu Y, Liu T, Liu SX, Wang P. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. PeerJ 2018; 6:e5180. [PMID: 30002985 PMCID: PMC6033081 DOI: 10.7717/peerj.5180] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Gastric cancer (GC) is the fourth most common cause of cancer-related deaths in the world. In the current study, we aim to identify the hub genes and uncover the molecular mechanisms of GC. Methods The expression profiles of the genes and the miRNAs were extracted from the Gene Expression Omnibus database. The identification of the differentially expressed genes (DEGs), including miRNAs, was performed by the GEO2R. Database for Annotation, Visualization and Integrated Discovery was used to perform GO and KEGG pathway enrichment analysis. The protein–protein interaction (PPI) network and miRNA-gene network were constructed using Cytoscape software. The hub genes were identified by the Molecular Complex Detection (MCODE) plugin, the CytoHubba plugin and miRNA-gene network. Then, the identified genes were verified by Kaplan–Meier plotter database and quantitative real-time PCR (qRT-PCR) in GC tissue samples. Results A total of three mRNA expression profiles (GSE13911, GSE79973 and GSE19826) were downloaded from the Gene Expression Omnibus (GEO) database, including 69, 20 and 27cases separately. A total of 120 overlapped upregulated genes and 246 downregulated genes were identified. The majority of the DEGs were enriched in extracellular matrix organization, collagen catabolic process, collagen fibril organization and cell adhesion. In addition, three KEGG pathways were significantly enriched, including ECM-receptor interaction, protein digestion and absorption, and the focal adhesion pathways. In the PPI network, five significant modules were detected, while the genes in the modules were mainly involved in the ECM-receptor interaction and focal adhesion pathways. By combining the results of MCODE, CytoHubba and miRNA-gene network, a total of six hub genes including COL1A2, COL1A1, COL4A1, COL5A2, THBS2 and ITGA5 were chosen. The Kaplan–Meier plotter database confirmed that higher expression levels of these genes were related to lower overall survival, except for COL5A2. Experimental validation showed that the rest of the five genes had the same expression trend as predicted. Conclusion In conclusion, COL1A2, COL1A1, COL4A1, THBS2 and ITGA5 may be potential biomarkers and therapeutic targets for GC. Moreover, ECM-receptor interaction and focal adhesion pathways play significant roles in the progression of GC.
Collapse
Affiliation(s)
- Ling Cao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, Tianjin, China.,Department of Radiation Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Zhang
- Department of Radiation Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin, China
| | - De-Quan Xu
- Department of Radiation Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin, China
| | - Yan Liu
- Medical Oncology Translational Research Lab, Cancer Hospital of Jilin Province, Changchun, Jilin, China
| | - Tonglin Liu
- Information Centre, Cancer Hospital of Jilin Province, Changchun, Jilin, China
| | - Shi-Xin Liu
- Department of Radiation Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, Tianjin, China
| |
Collapse
|