1
|
Song Z, Ma Z, Feng X, Huang R, An Q, Pan Y, Chang J, Wan B, Wang H, Li J. Comparative assessment of thyroid disrupting effects of ethiprole and its metabolites: In silico, in vitro, and in vivo study. J Environ Sci (China) 2025; 155:278-289. [PMID: 40246465 DOI: 10.1016/j.jes.2024.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 04/19/2025]
Abstract
Ethiprole is widely used as a second-generation phenyl pyrazole insecticide. Previous studies indicated that ethiprole exhibited thyroid toxicity while two main metabolites (ethiprole sulfone (M1) and ethiprole sulfide (M2)) of ethiprole showed higher acute toxicity than ethiprole. Therefore, assessing the thyroid toxicity of its metabolites is crucial for safety assessment. In this study, the thyroid toxicity and underlying mechanisms of ethiprole and its metabolites were explored using in silico, in vitro, and in vivo assays, with the aim of conducting a comparative study on thyroid toxicity. Molecular docking analysis showed that ethiprole, M1 and M2 could bind with thyroid receptor isoforms and exhibited higher binding affinity compared to 3,3',5-triiodothyronine (T3). GH3 cell proliferation assays revealed that ethiprole, M1 and M2 all served as thyroid hormone antagonists to hinder the T3-induced cell proliferation. Using the zebrafish model, we further investigated that exposure to ethiprole, M1, and M2 disrupted thyroid hormone levels and the transcriptional expressions of hypothalamus-pituitary-thyroid (HPT) axis-related genes. Ethiprole induced thyroid disrupting effects by binding with the thyroid receptor beta, M1 mainly through binding with the corticotropin releasing factor receptor-1, and M2 exposure firstly inhibited the thyroid peroxidase enzyme activity. M2 showed the highest developmental toxicity and thyroid disrupting effects, which significantly reducing hatching rates, increasing deformity rates, exhibiting the lowest lethal concentration 50 value and showing the most serious transcription inhibitory effects on the HPT axis. This study suggested the risk assessment of metabolites should be considered in assessing potential environmental risk of ethiprole.
Collapse
Affiliation(s)
- Zheyuan Song
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Ma
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueshan Feng
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Huang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong An
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunrui Pan
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Wan
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huili Wang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianzhong Li
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Mundstock Dias GR, Freitas Ferreira AC, Miranda-Alves L, Graceli JB, Pires de Carvalho D. Endocrine Disruptors Chemicals: Impacts of Bisphenol A, Tributyltin and Lead on Thyroid Function. Mol Cell Endocrinol 2025; 599:112467. [PMID: 39855591 DOI: 10.1016/j.mce.2025.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The large-scale industrial production characteristic of the last century led to an increase in man-made compounds and mobilization of natural compounds, many of which can accumulate in the environment and organisms due to their bioaccumulation and biomagnification properties. The endocrine system is especially vulnerable to these compounds that are known as endocrine disruptor chemicals (EDCs). Thyroid hormones (THs) are essential for normal development and growth, besides being the main regulators of basal metabolic rate. Thus, compounds able to affect THs synthesis, transport, and action could produce important deleterious effects, impacting the development of metabolic and endocrine diseases. Herein, we will review the main effects of EDCs on the thyroid axis, with special emphasis on the widely used substances bisphenol A (BPA), employed in the synthesis of polycarbonate plastics and epoxy resins; tributyltin (TBT), an organotin chemical substance widely used in several agro-industrial applications; and lead (Pb), a ubiquitous environmental and occupational polluting heavy metal. Exposure to these EDCs occurs mainly from the ingestion of contaminated food and beverages. Furthermore, there are few epidemiological studies evaluating human risk, and experimental studies employ different exposure models, making it difficult to integrate results. However, even low doses of these EDCs warn of thyrotoxicity. Since THs homeostasis is essential for health and humans are increasingly being exposed to EDCs, it is important to clarify which substances might act as thyroid hormone system disrupting chemicals and how they act in order to try to overcome their deleterious effects and limit the exposure to these compounds.
Collapse
Affiliation(s)
- Glaecir Roseni Mundstock Dias
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Andrea Claudia Freitas Ferreira
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Endocrinologia Experimental, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jones Bernardes Graceli
- Departamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil; Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Denise Pires de Carvalho
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Gholve CS, Shete Y, Rakshit S, Kulkarni S. Evaluation of Pendrin Expression Using Nuclear Imaging Modalities and Immunohistochemistry in Animal Thyroid Cancer Model. Indian J Nucl Med 2023; 38:328-333. [PMID: 38390539 PMCID: PMC10880853 DOI: 10.4103/ijnm.ijnm_46_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 02/24/2024] Open
Abstract
Context The impaired ability of thyroid cancer (TC) cells to uptake and concentrate iodine represents a major therapeutic challenge in malignant TC management. This has been reported probably due to reduced or loss of expression of pendrin in thyroid tumors. Aims In view of this, we evaluated the pendrin expression in the chemically induced (using N-bis[2-hydroxypropyl] nitrosamine [DHPN]) TC model in Wistar rats. Methods Uptake in the thyroid gland was evaluated by positron emission tomography with computed tomography (PET-CT) and scintigraphy imaging. Further histopathology (HP) and immunohistochemistry (IHC) were performed for confirming malignancy. Results The altered uptake in the thyroid gland was observed by PET-CT and scintigraphy imaging. Significant pathological changes in the thyroid were observed using 2-deoxy-2-(fluorine-18) fluoro-D-glucose PET-CT, technetium-99m pertechnetate imaging, and reduced iodine-131 uptake (n = 4) in DHPN-induced animals compared to control indicative of thyroid cell proliferation. In treated groups, tissue HP revealed hyperplastic follicular to papillary cell proliferation with variable mitotic activity. The malignant nature of the tissue and variable uptake of the tracer were further reconfirmed by IHC. IHC revealed reduced pendrin expression in malignant thyroid tissue. Conclusions Hence, nuclear imaging techniques can be of aid in the early identification and evaluation of cellular changes during the early development of tumor models in laboratory animals. In conclusion, our study reveals that pendrin expression plays a vital role in thyroid uptake, and its reduction was observed in TC in a chemically induced TC model.
Collapse
Affiliation(s)
| | - Yogita Shete
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Mangion J, Gruppetta M. The environmental burden on endocrine neoplasia: a review on the documented impact of endocrine disrupting chemicals. Expert Rev Endocrinol Metab 2023; 18:513-524. [PMID: 37840278 DOI: 10.1080/17446651.2023.2268215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Endocrine-disrupting chemicals (EDCs) have gained more importance in the past decade, mostly due to their role in the pathogenesis of disease, especially in carcinogenesis. However, there is limited literature on the environmental burden on some of the less common endocrine neoplasia. AREAS COVERED This review focuses on both observational and experimental studies linking exposure to EDCs and endocrine neoplasia specifically pituitary, thyroid, adrenal and neuroendocrine tumors. Following PRISMA guidelines, a search of English peer-reviewed literature was performed using Medline and Google Scholar, giving preference to recent publications. EXPERT OPINION Exposure to EDC occurs not only in the household but also at work, whether it is in the office, factory, or farm and during transport from one location to another. Many studies have evaluated the effect of single environmental agents; however, humans are rarely exposed to only one EDC. Different EDCs and different levels of exposure may interact together to provide either a synergistic and/or an antagonistic disruption on human health, and hence a complex mechanism to elucidate. The ultimate adverse effect is difficult to predict, as it is not only influenced by the degree of exposure, but also by genetics, lifestyle, comorbidities, and other stressors.
Collapse
Affiliation(s)
- Jessica Mangion
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
5
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
6
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
7
|
Özkan-Kotiloğlu S, Arslan P, Akca G, Günal AÇ. Are BPA-free plastics safe for aquatic life? - Fluorene-9-bisphenol induced thyroid-disrupting effects and histopathological alterations in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109419. [PMID: 35902060 DOI: 10.1016/j.cbpc.2022.109419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
Abstract
Fluorene-9-bisphenol (BPFL) is used as an alternative compound for bisphenol A, an endocrine disruptor compound which is present in various materials including plastic bottles and packaging. Although it is used extensively in products that are labelled BPA-free, its effect on wildlife and humans have not been fully studied. Therefore, this study aimed to investigate the effects of BPFL in adult zebrafish. In the preliminary experiments of the study, the median lethal concentration value (LC50) of BPFL was 0.25 mg/L (95 % confidence interval 0.15-0.41) for 96 h. Following exposure to three different sublethal concentrations of BPFL after 96 h and 15 days, T4 hormone levels, expression levels of genes involved in thyroid metabolism and histopathological alterations were assessed. T4 hormone levels were found to be significantly higher in females at the lowest BPFL concentration following 96 h exposure (P < 0.05). Expression levels of trh, tshba and trhrb genes were upregulated following 96 h exposure at 0.025 mg/L concentration and crh was upregulated following 15 days exposure at 0.025 mg/L concentration in female zebrafish (P < 0.05). The most prominent histopathological findings in zebrafish exposed to 0.025 and 0.125 mg/L of BPFL were observed in the gill, liver, kidney and testis tissues. The gill tissues showed some hyperemia, lamellar fusion, hyperplasia, epithelial lifting, and telangiectasis, while passive hyperemia, hydropic degeneration, and necrosis were observed in the liver tissues. The BPFL is highly toxic to zebrafish even in sublethal concentrations according to the molecular and histopathological responses.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Turkey.
| | - Pınar Arslan
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| | - Gülçin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Aysel Çağlan Günal
- Department of Biology Education, Faculty of Gazi Education, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Halada S, Casado-Medrano V, Baran JA, Lee J, Chinmay P, Bauer AJ, Franco AT. Hormonal Crosstalk Between Thyroid and Breast Cancer. Endocrinology 2022; 163:6588704. [PMID: 35587175 PMCID: PMC9653009 DOI: 10.1210/endocr/bqac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
Differentiated thyroid cancer and breast cancer account for a significant portion of endocrine-related malignancies and predominately affect women. As hormonally responsive tissues, the breast and thyroid share endocrine signaling. Breast cells are responsive to thyroid hormone signaling and are affected by altered thyroid hormone levels. Thyroid cells are responsive to sex hormones, particularly estrogen, and undergo protumorigenic processes upon estrogen stimulation. Thyroid and sex hormones also display significant transcriptional crosstalk that influences oncogenesis and treatment sensitivity. Obesity-related adipocyte alterations-adipocyte estrogen production, inflammation, feeding hormone dysregulation, and metabolic syndromes-promote hormonal alterations in breast and thyroid tissues. Environmental toxicants disrupt endocrine systems, including breast and thyroid homeostasis, and influence pathologic processes in both organs through hormone mimetic action. In this brief review, we discuss the hormonal connections between the breast and thyroid and perspectives on hormonal therapies for breast and thyroid cancer. Future research efforts should acknowledge and further explore the hormonal crosstalk of these tissues in an effort to further understand the prevalence of thyroid and breast cancer in women and to identify potential therapeutic options.
Collapse
Affiliation(s)
- Stephen Halada
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia A Baran
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joshua Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Poojita Chinmay
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aime T Franco
- Correspondence: Aime T. Franco, Ph.D., Pediatric Thyroid Center Translational Laboratory, The University of Pennsylvania and Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Long-Term Exposure to Decabromodiphenyl Ether Promotes the Proliferation and Tumourigenesis of Papillary Thyroid Carcinoma by Inhibiting TRß. Cancers (Basel) 2022; 14:cancers14112772. [PMID: 35681752 PMCID: PMC9179891 DOI: 10.3390/cancers14112772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary PBDEs have been reported to have endocrine-disrupting and tumour-promoting activity; however, the effects of BDE209 (the highest brominated PBDEs) on the thyroid and the underlying mechanisms are unclear. In this study, we found that long-term exposure to BDE209 could cause chronic toxicity and potential tumourigenesis by inhibiting the expression and function of TRß, which induces the proliferation of thyroid tissue and the oncogenesis of thyroid carcinoma. These findings emphasize the damaging effects that exposure to BDE209 has on human thyroid and papillary thyroid carcinoma. Abstract Polybrominated diphenyl ethers (PBDEs) have been reported to possess endocrine-disrupting and tumour-promoting activity. However, the effects of long-term exposure to decabromodiphenyl ether (BDE209) on thyroid tumourigenesis of papillary thyroid carcinoma (PTC) and the underlying mechanisms remain poorly defined. In this study, functional assays in vitro and mouse models in vivo were used to evaluate the toxic effects of long-term exposure to environmental concentrations of BDE209 on the pathogenesis and progression of PTC. MTS, EdU and colony-forming assays confirmed the chronic toxicity of BDE209 on the proliferation of human normal follicular epithelial cell line (Nthy-ori 3-1) and PTC-derived cell lines (TPC-1 and BCPAP). Wound and Transwell assays showed that BDE209 exacerbated the aggressiveness of PTC cells. BDE209 significantly promoted cell proliferation during the S and G2/M phases of the cell cycle. Mechanistically, BDE209 altered the thyroid system by acting as a competitive inhibitor of thyroid receptor beta (TRß) expression and function, which was further proven by public databases and RNA-seq bioinformation analysis. Taken together, these results demonstrated that BDE209 has chronic toxicity and potential tumourigenic effects on the thyroid by inhibiting TRß.
Collapse
|
10
|
Maddela NR, Ramakrishnan B, Kakarla D, Venkateswarlu K, Megharaj M. Major contaminants of emerging concern in soils: a perspective on potential health risks. RSC Adv 2022; 12:12396-12415. [PMID: 35480371 PMCID: PMC9036571 DOI: 10.1039/d1ra09072k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to μmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
| | | | - Dhatri Kakarla
- University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University Anantapuramu 515003 India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
11
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
12
|
Zhang X, Guo N, Jin H, Liu R, Zhang Z, Cheng C, Fan Z, Zhang G, Xiao M, Wu S, Zhao Y, Lu X. Bisphenol A drives di(2-ethylhexyl) phthalate promoting thyroid tumorigenesis via regulating HDAC6/PTEN and c-MYC signaling. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127911. [PMID: 34910997 DOI: 10.1016/j.jhazmat.2021.127911] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) and di-(2-ethylhcxyl) phthalate (DEHP) are exist widespread in the environment and produce adverse effect to human as environmental disruptors (EDCs). Epidemiological studies have found that the exposure of DEHP and BPA could increase the susceptibility to thyroid diseases including thyroid cancer and benign thyroid nodules. Due to the existence of multiple pollutants in our daily life, the mixed toxic effects of exposure and their interrelationships may distinguish from the exposure to a single chemical, so it is of great significance to explore the mixed toxic effect of DEHP and BPA co-exposure. Thyroid, as one of the target organs of EDCs, is prone to tumor occurrence, however, whether the mixture of BPA and DEHP will affect the occurrence of thyroid cancer is still obscure. We aim to investigate the effect of single or combined exposure to BPA and DEHP on the occurrence of thyroid cancer. An animal model of exposure to BPA and DEHP was firstly established to evaluate their effect on DMD-induced thyroid cancer. Additionally, human thyroid cancer cells BCPAP and thyroid cells Nthy-ori3-1 were used to further clarify some possible mechanisms of BPA and MEHP, the main metabolite of DEHP. Consequently, we found that BPA alone could increase the incidence of thyroid tumors in female rats compared with DEHP, and DEHP enhanced the effect of BPA on cancer promotion. BPA alone and in combination with DEHP mainly induced the expression of HDAC6, inhibited tumor suppressor gene PTEN upregulated the expression of oncogene c-MYC, and eventually elevate the susceptibility to thyroid tumors. Mechanistically, BPA alone and in combination with MEHP could significantly induce the proliferation of BCPAP cells depending on HDAC6, which could modulate H3K9ac to inhibit PTEN, activate AKT signaling pathway, and simultaneously upregulate the expression of c-MYC. Interestingly, we found that BPA alone and in combination with MEHP could significantly induce the proliferation of Nthy-ori3-1 cells independent on HDAC6 via activating ERK signaling pathway. Taken together, these findings not only provide new evidence of the promoting effect of BPA and DEHP on thyroid cancer but also discusses some possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Nan Guo
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China
| | - Hao Jin
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Renqi Liu
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Zhen Zhang
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Cheng Cheng
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Zhijun Fan
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Mingyang Xiao
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Yuejiao Zhao
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China.
| |
Collapse
|
13
|
Fathoming the link between anthropogenic chemical contamination and thyroid cancer. Crit Rev Oncol Hematol 2020; 150:102950. [DOI: 10.1016/j.critrevonc.2020.102950] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
|
14
|
Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2654. [PMID: 32294918 PMCID: PMC7216215 DOI: 10.3390/ijerph17082654] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.
Collapse
|
15
|
Friques AG, Santos FD, Angeli DB, Silva FAC, Dias AT, Aires R, Leal MA, Nogueira BV, Amorim FG, Campagnaro BP, Pereira TMC, Campos-Toimil M, Meyrelles SS, Vasquez EC. Bisphenol A contamination in infant rats: molecular, structural, and physiological cardiovascular changes and the protective role of kefir. J Nutr Biochem 2020; 75:108254. [DOI: 10.1016/j.jnutbio.2019.108254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
|
16
|
Abstract
In recent decades, attention has been directed toward the effects of bisphenol A (BPA) on human health. BPA has estrogenic activity and is regarded as a representative endocrine disruptor. In addition, mounting evidence indicates that BPA can disrupt thyroid hormone and its action. This review examined human epidemiological studies to investigate the association between BPA exposure and thyroid hormone levels, and analyzed in vivo and in vitro experiments to identify the causal relationship and its mechanism of action. BPA is involved in thyroid hormone action not only as a thyroid hormone receptor antagonist, but also through several other mechanisms. Since the use of bisphenols other than BPA has recently increased, we also reviewed the effects of other bisphenols on thyroid hormone action.
Collapse
Affiliation(s)
- Min Joo Kim
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
da Silva BS, Pietrobon CB, Bertasso IM, Lopes BP, Carvalho JC, Peixoto-Silva N, Santos TR, Claudio-Neto S, Manhães AC, Oliveira E, de Moura EG, Lisboa PC. Short and long-term effects of bisphenol S (BPS) exposure during pregnancy and lactation on plasma lipids, hormones, and behavior in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:312-322. [PMID: 31003143 DOI: 10.1016/j.envpol.2019.03.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol S (BPS) has replaced bisphenol A (BPA), a known non-persistent endocrine disrupting chemical, in several products. Considering that little is known regarding BPS effects, especially during critical windows of ontogenetic development, and that BPA, which is quite similar to BPS, is know to be transferred to the offspring via the placenta and milk, in the present study we investigated the behavioral, biochemical and endocrine profiles of Wistar rats born from dams that were BPS-exposed [groups: BPS10 (10 μg/kg/day), BPS50 (50 μg/kg/day)] during pregnancy and lactation. Due to the non-monotonic dose-response effect of bisphenol, the data of both BPS groups were directly compared with those of the controls, not to each other. Males and females were analyzed separately. At weaning, male BPS50 offspring had hypotriglyceridemia and hyperthyroxinemia, whereas BPS50 females showed higher 25(OH)D levels. At adulthood, BPS offspring of both sexes had lower food intake. BPS males showed lower visceral adiposity. BPS50 females had smaller fat droplets in brown adipocytes. BPS males showed higher anxiety and higher locomotor activity, while BPS10 females showed lower exploration. During a food challenge test at adulthood, BPS males consumed more high-fat diet at 30 min. BPS10 females initially (at 30 min) consumed more high-fat diet but, after 12 h, less of this diet was consumed. BPS50 males had hypertriglyceridemia and lower plasma T3, while BPS females showed lower plasma T4. BPS10 females had lower progesterone, whereas BPS50 females had higher plasma 25(OH)D. Maternal BPS exposure has adverse effects on the triacylglycerol, hormones levels and behavior of the progeny. Furthermore, the increased preference for the fat-enriched diet suggests an increased risk for obesity and its health consequences in the long term.
Collapse
Affiliation(s)
- Beatriz Souza da Silva
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Janaine Cavalcanti Carvalho
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Nayara Peixoto-Silva
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tatianne Rosa Santos
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Sylvio Claudio-Neto
- Laboratory of Neurophysiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Elaine Oliveira
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
Oliveira KJ, Chiamolera MI, Giannocco G, Pazos-Moura CC, Ortiga-Carvalho TM. Thyroid Function Disruptors: from nature to chemicals. J Mol Endocrinol 2018; 62:JME-18-0081. [PMID: 30006341 DOI: 10.1530/jme-18-0081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
The modern concept of thyroid disruptors includes man-made chemicals and bioactive compounds from food that interfere with any aspect of the hypothalamus-pituitary-thyroid axis, thyroid hormone biosynthesis and secretion, blood and transmembrane transport, metabolism and local action of thyroid hormones. This review highlights relevant disruptors that effect populations through their diet: directly from food itself (fish oil and polyunsaturated fatty acids, pepper, coffee, cinnamon and resveratrol/grapes), through vegetable cultivation (pesticides) and from containers for food storage and cooking (bisphenol A, phthalates and polybrominated diphenyl ethers). Due to the vital role of thyroid hormones during every stage of life, we review effects from the gestational period through to adulthood, including evidence from in vitro studies, rodent models, human trials and epidemiological studies.
Collapse
Affiliation(s)
- Karen J Oliveira
- K Oliveira, Laboratório de Fisiologia Endócrina e Metabologia, Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | - Maria Izabel Chiamolera
- M Chiamolera, Endocrinology, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Gisele Giannocco
- G Giannocco, Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Carmen Cabanelas Pazos-Moura
- C Pazos-Moura, Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- T Ortiga-Carvalho, Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Zheng X, Jia B, Song X, Kong QY, Wu ML, Qiu ZW, Li H, Liu J. Preventive Potential of Resveratrol in Carcinogen-Induced Rat Thyroid Tumorigenesis. Nutrients 2018; 10:E279. [PMID: 29495605 PMCID: PMC5872697 DOI: 10.3390/nu10030279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/18/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy without reliable preventive agent. Resveratrol possesses in vitro anti-TC activities; while its effect(s) on thyroid tumorigenesis remains unknown. This study aims to address this issue using DEN/MNU/DHPN-induced rat carcinogenesis model. 50 male Sprague-Dawley rats were separated into four groups as Group-1 (5 rats); normally fed; Group-2 (15 rats); DEN/MNU/DHPN treatment only; Group-3 (15 rats) and -4 (15 rats); DEN/MNU/DHPN treatment; followed by resveratrol intragastric (IG) injection and intraperitoneal (IP) injection; respectively; in two-day intervals for 30 weeks. The results revealed that the average resveratrol concentration in thyroid tissues was 1.278 ± 0.419 nmol/g in IG group and 1.752 ± 0.398 nmol/g in IP group. The final body weights of Group-3 and Group-4 were lighter than that (p > 0.05) of Group-1; but heavier than Group-2 (p < 0.05). TC-related lesions (hyperplasia and adenomas) were found in 53.3% of Group-2; 33.3% Group-3 and 26.7% Group-4. Lower serum carcino-embryonic antigen (CEA) and thyroglobulin (Tg) levels; down-regulated expression of IL-6 and cyclooxygenase-2 (COX-2); reduction of NF-κB/p65 nuclear translocation; and elevated IkBα expression were found in the thyroid tissues of Group-3 and Group-4 in comparison with that of Group-2. These results demonstrate that IG and IP administered resveratrol efficiently reduces the frequency and severity of DEN/MNU/DHPN-caused TC-related lesions and would be of values in thyroid tumor prevention.
Collapse
Affiliation(s)
- Xu Zheng
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Bin Jia
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Ze-Wen Qiu
- Laboratory Animal Center, Dalian Medical University, Dalian 116044, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|