1
|
Knechtova V, Mahdal M, Zambo IS, Skoda J, Neradil J. Biomarkers and therapeutic targets in giant cell tumor of bone: A comprehensive review. Bone 2025; 199:117566. [PMID: 40532838 DOI: 10.1016/j.bone.2025.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/26/2025] [Accepted: 06/11/2025] [Indexed: 06/22/2025]
Abstract
Giant cell tumor of bone (GCTB) is an intermediate locally aggressive osteolytic tumor with low metastatic potential and a high recurrence rate. It comprises two main types of cells-neoplastic mononuclear stromal cells and osteoclast-like giant cells-which are responsible for the resorption of bone. In addition to surgery, which is the primary treatment of choice, adjuvant therapy is used to lower the risk of recurrence. However, denosumab, the standard adjuvant treatment currently used, only targets osteoclast-like giant cells and does not affect neoplastic stromal cells. Since some GCTBs are inoperable, or even after surgery, there can be residual tumor cells at the site of the tumor, novel therapies, especially those that target neoplastic stromal cells, are needed. Both cell types in GCTB show altered expression of various specific genes and molecules, and these deregulated molecular profiles could serve as biomarkers and targets for targeted therapy. Herein, we summarize the potential biomarkers for both cell types in GCTB and therapeutic agents targeting these molecules with the hope of finding a therapy with improved outcomes and a lower risk of recurrence.
Collapse
Affiliation(s)
- Veronika Knechtova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Michal Mahdal
- International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic; First Department of Orthopaedic Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Iva Staniczkova Zambo
- International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic; First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
2
|
Zheng C, Zhang C, He Y, Lin S, Zhu Z, Wang H, Chen G. Cbfβ: A key regulator in skeletal stem cell differentiation, bone development, and disease. FASEB J 2025; 39:e70399. [PMID: 39996474 DOI: 10.1096/fj.202500030r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
The skeletal system comprises closely related yet functionally distinct bone and cartilage tissues, regulated by a complex network of transcriptional factors and signaling molecules. Among these, core-binding factor subunit beta (Cbfβ) emerges as a critical co-transcriptional factor that stabilizes Runx proteins, playing indispensable roles in skeletal development and homeostasis. Emerging evidence from genetic mouse models has highlighted the essential role of Cbfβ in directing the lineage commitment of mesenchymal stem cells (MSCs) and their differentiation into osteoblasts and chondrocytes. Notably, Cbfβ deficiency is strongly associated with severe skeletal dysplasia, affecting both endochondral and intramembranous ossification during embryonic and postnatal development. In this review, we synthesize recent advancements in understanding the structural and molecular functions of Cbfβ, with a particular focus on its interactions with key signaling pathways, including BMP/TGF-β, Wnt/β-catenin, Hippo/YAP, and IHH/PTHrP. These pathways converge on the Cbfβ/RUNX2 complex, which orchestrates a gene expression program essential for osteogenesis, bone formation, and cartilage development. The integration of these signaling networks ensures the precise regulation of skeletal development, remodeling, and repair. Furthermore, the successful local delivery of Cbfβ to address bone abnormalities underscores its potential as a novel therapeutic target for skeletal disorders such as cleidocranial dysplasia, osteoarthritis, and bone metastases. By elucidating the molecular mechanisms underlying Cbfβ function and its interactions with key signaling pathways, these insights not only advance our understanding of skeletal biology but also offer promising avenues for clinical intervention, ultimately improving outcomes for patients with skeletal disorders.
Collapse
Affiliation(s)
- Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenyang Zhang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yiliang He
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenya Zhu
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Turano PS, Akbulut E, Dewald HK, Vasilopoulos T, Fitzgerald-Bocarsly P, Herbig U, Martínez-Zamudio RI. Epigenetic mechanisms regulating CD8+ T cell senescence in aging humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633634. [PMID: 39896543 PMCID: PMC11785101 DOI: 10.1101/2025.01.17.633634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aging leads to the decline of immunity, rendering the elderly susceptible to infection and disease. In the CD8+ T cell compartment, aging leads to a substantial increase of cells with high levels of senescence-associated ß-galactosidase activity (SA-ßGal) and other senescence characteristics, including a pro-inflammatory transcriptome and impaired proliferative potential. Using senescent cell isolation coupled with multiomic profiling, here we characterized the epigenetic mechanisms regulating CD8+ T cell senescence in a cohort of younger and older donors. High levels of SA-ßGal activity defined changes to global transcriptomes and chromatin accessibility landscapes, with a minor effect of age. Widespread enhancer remodeling was required for the repression of functional CD8+ T cell genes and upregulation of inflammatory and secretory pathway genes. Mechanistically, the senescence program in CD8+ T cells was controlled by chromatin state-specific transcription factor (TF) networks whose composition was largely insensitive to donor age. Pharmacological inhibition of TF network nodes AP1, KLF5, and RUNX2 modulated the transcriptional output, demonstrating the feasibility of TF network perturbation as an approach to modulate CD8+ T cell senescence. Further, CD8+ T cell senescence gene signatures faithfully predicted refractoriness to chimeric antigen receptor (CAR) T-cell therapy in a cohort of diffuse large B cell lymphomas and were highly enriched in the transcriptomes of peripheral CD8+ T cells of individuals with active systemic lupus erythematosus. Collectively, our findings demonstrate the potential of multiomic profiling in identifying key regulators of senescence across cell types and suggest a critical role of senescent CD8+ T cells in disease progression.
Collapse
Affiliation(s)
- Paolo S Turano
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
| | - Elizabeth Akbulut
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Hannah K Dewald
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Themistoklis Vasilopoulos
- Rutgers Robert Wood Johnson Medical School, Department of Pharmacology, 675 Hoes Lane West, Piscataway, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Utz Herbig
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
| | - Ricardo Iván Martínez-Zamudio
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
- Rutgers Robert Wood Johnson Medical School, Department of Pharmacology, 675 Hoes Lane West, Piscataway, NJ, United States
| |
Collapse
|
4
|
Liu SF, Kucherenko MM, Sang P, Li Q, Yao J, Nambiar Veetil N, Gransar T, Alesutan I, Voelkl J, Salinas G, Grune J, Simmons S, Knosalla C, Kuebler WM. RUNX2 is stabilised by TAZ and drives pulmonary artery calcification and lung vascular remodelling in pulmonary hypertension due to left heart disease. Eur Respir J 2024; 64:2300844. [PMID: 39542509 DOI: 10.1183/13993003.00844-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/13/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Calcification is common in chronic vascular disease, yet its role in pulmonary hypertension due to left heart disease is unknown. Here, we probed for the role of runt-related transcription factor-2 (RUNX2), a master transcription factor in osteogenesis, and its regulation by the HIPPO pathway transcriptional coactivator with PDZ-binding motif (TAZ) in the osteogenic reprogramming of pulmonary artery smooth muscle cells and vascular calcification in patients with pulmonary hypertension due to left heart disease. We similarly examined its role using an established rat model of pulmonary hypertension due to left heart disease induced by supracoronary aortic banding. METHODS Pulmonary artery samples were collected from patients and rats with pulmonary hypertension due to left heart disease. Genome-wide RNA sequencing was performed, and pulmonary artery calcification assessed. Osteogenic signalling via TAZ and RUNX2 was delineated by protein biochemistry. In vivo, the therapeutic potential of RUNX2 or TAZ inhibition by CADD522 or verteporfin was tested in the rat model. RESULTS Gene ontology term analysis identified significant enrichment in ossification and osteoblast differentiation genes, including RUNX2, in pulmonary arteries of patients and lungs of rats with pulmonary hypertension due to left heart disease. Pulmonary artery calcification was evident in both patients and rats. Both TAZ and RUNX2 were upregulated and activated in pulmonary artery smooth muscle cells of patients and rats. Co-immunoprecipitation revealed a direct interaction of RUNX2 with TAZ in pulmonary artery smooth muscle cells. TAZ inhibition or knockdown decreased RUNX2 abundance due to accelerated RUNX2 protein degradation rather than reduced de novo synthesis. Inhibition of either TAZ or RUNX2 attenuated pulmonary artery calcification, distal lung vascular remodelling and pulmonary hypertension development in the rat model. CONCLUSION Pulmonary hypertension due to left heart disease is associated with pulmonary artery calcification that is driven by TAZ-dependent stabilisation of RUNX2, causing osteogenic reprogramming of pulmonary artery smooth muscle cells. The TAZ-RUNX2 axis may present a therapeutic target in pulmonary hypertension due to left heart disease.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- These authors contributed equally to the study
| | - Mariya M Kucherenko
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- These authors contributed equally to the study
| | - Pengchao Sang
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Qiuhua Li
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Juquan Yao
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Netra Nambiar Veetil
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
| | - Tara Gransar
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Ioana Alesutan
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Voelkl
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Salinas
- NGS - Integrative Genomics Core Unit (NIG), Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jana Grune
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
| | - Christoph Knosalla
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- These authors share the last authorship
| | - Wolfgang M Kuebler
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- DZL (German Centre for Lung Research), partner site Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Departements of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
- These authors share the last authorship
| |
Collapse
|
5
|
Valenzi E, Jia M, Gerges P, Fan J, Tabib T, Behara R, Zhou Y, Sembrat J, Das J, Benos PV, Singh H, Lafyatis R. Altered AP-1, RUNX and EGR chromatin dynamics drive fibrotic lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619858. [PMID: 39554071 PMCID: PMC11565795 DOI: 10.1101/2024.10.23.619858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pulmonary fibrosis, including systemic sclerosis-associated interstitial lung disease (SSc-ILD), involves myofibroblasts and SPP1hi macrophages as drivers of fibrosis. Single-cell RNA sequencing has delineated fibroblast and macrophages transcriptomes, but limited insight into transcriptional control of profibrotic gene programs. To address this challenge, we analyzed multiomic snATAC/snRNA-seq on explanted SSc-ILD and donor control lungs. The neural network tool ChromBPNet inferred increased TF binding at single base pair resolution to profibrotic genes, including CTHRC1 and ADAM12, in fibroblasts and SPP1 and CCL18 in macrophages. The novel algorithm HALO confirmed AP-1, RUNX, and EGR TF activity controlling profibrotic gene programs and established TF-regulatory element-gene networks. This TF action atlas provides comprehensive insights into the transcriptional regulation of fibroblasts and macrophages in healthy and fibrotic human lungs.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Peter Gerges
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Rithika Behara
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Yuechen Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh
- Department of Epidemiology, University of Florida
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| |
Collapse
|
6
|
Tian K, He X, Lin X, Chen X, Su Y, Lu Z, Chen Z, Zhang L, Li P, Ma L, Lan Z, Zhao X, Fen G, Hai Q, Xue D, Jin Q. Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis. Mol Cell Biol 2024; 44:411-428. [PMID: 39169784 PMCID: PMC11485870 DOI: 10.1080/10985549.2024.2385633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by subchondral osteosclerosis, mainly due to osteoblast activity. This research investigates the function of Sik1, a member of the AMP-activated protein kinase family, in OA. Proteomic analysis was conducted on clinical samples from 30 OA patients, revealing a negative correlation between Sik1 expression and OA. In vitro experiments utilized BMSCs to examine the effect of Sik1 on osteogenic differentiation. BMSCs were cultured and induced toward osteogenesis with specific media. Sik1 overexpression was achieved through lentiviral transfection, followed by analysis of osteogenesis-associated proteins using Western blotting, RT-qPCR, and alkaline phosphate staining. In vivo experiments involved destabilizing the medial meniscus in mice to establish an OA model, assessing the therapeutic potential of Sik1. The CT scans and histological staining were used to analyze subchondral bone alterations and cartilage damage. The findings show that Sik1 downregulation correlates with advanced OA and heightened osteogenic differentiation in BMSCs. Sik1 overexpression inhibits osteogenesis-related markers in vitro and reduces cartilage damage and subchondral osteosclerosis in vivo. Mechanistically, Sik1 modulates osteogenesis and subchondral bone changes through Runx2 activity regulation. The research emphasizes Sik1 as a promising target for treating OA, suggesting its involvement in controlling bone formation and changes in the subchondral osteosclerosis.
Collapse
Affiliation(s)
- Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaoxin He
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yajing Su
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhidong Lu
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhirong Chen
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Liang Zhang
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Peng Li
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xin Zhao
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Gangning Fen
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qinqin Hai
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qunhua Jin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| |
Collapse
|
7
|
Sharma JR, Dubey A, Yadav UCS. Cigarette smoke-induced galectin-3 as a diagnostic biomarker and therapeutic target in lung tissue remodeling. Life Sci 2024; 339:122433. [PMID: 38237765 DOI: 10.1016/j.lfs.2024.122433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Galectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. We and others have reported that CS induces Gal-3 synthesis and secretion, which modulates the pathological signaling pathways in lung epithelial cells implicating Gal-3 as a novel diagnostic marker and a factor driving LTR in CS-exposed lungs. Therefore, pharmacological interventions targeting Gal-3 and its upstream and downstream signaling pathways can help combat CS-induced LTR. Excitingly, preclinical models have demonstrated the efficacy of interventions such as Gal-3 expression inhibition, Gal-3 receptor blockade, and signaling pathways modulation open up promising avenues for future therapeutic interventions. Furthermore, targeting extracellular vesicles-mediated Gal-3 release and the potential of microRNA-based therapy are emerging as novel therapeutic approaches in CS-induced LTR and have been discussed in this article.
Collapse
Affiliation(s)
- Jiten R Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupama Dubey
- Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Santamarina‐Ojeda P, Tejedor JR, Pérez RF, López V, Roberti A, Mangas C, Fernández AF, Fraga MF. Multi-omic integration of DNA methylation and gene expression data reveals molecular vulnerabilities in glioblastoma. Mol Oncol 2023; 17:1726-1743. [PMID: 37357610 PMCID: PMC10483606 DOI: 10.1002/1878-0261.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive types of cancer and exhibits profound genetic and epigenetic heterogeneity, making the development of an effective treatment a major challenge. The recent incorporation of molecular features into the diagnosis of patients with GBM has led to an improved categorization into various tumour subtypes with different prognoses and disease management. In this work, we have exploited the benefits of genome-wide multi-omic approaches to identify potential molecular vulnerabilities existing in patients with GBM. Integration of gene expression and DNA methylation data from both bulk GBM and patient-derived GBM stem cell lines has revealed the presence of major sources of GBM variability, pinpointing subtype-specific tumour vulnerabilities amenable to pharmacological interventions. In this sense, inhibition of the AP-1, SMAD3 and RUNX1/RUNX2 pathways, in combination or not with the chemotherapeutic agent temozolomide, led to the subtype-specific impairment of tumour growth, particularly in the context of the aggressive, mesenchymal-like subtype. These results emphasize the involvement of these molecular pathways in the development of GBM and have potential implications for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Pablo Santamarina‐Ojeda
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
| | - Juan Ramón Tejedor
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Raúl F. Pérez
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Virginia López
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
| | - Annalisa Roberti
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Cristina Mangas
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
| | - Agustín F. Fernández
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Mario F. Fraga
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| |
Collapse
|
9
|
Green D, Singh A, Tippett VL, Tattersall L, Shah KM, Siachisumo C, Ward NJ, Thomas P, Carter S, Jeys L, Sumathi V, McNamara I, Elliott DJ, Gartland A, Dalmay T, Fraser WD. YBX1-interacting small RNAs and RUNX2 can be blocked in primary bone cancer using CADD522. J Bone Oncol 2023; 39:100474. [PMID: 36936386 PMCID: PMC10015236 DOI: 10.1016/j.jbo.2023.100474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.
Collapse
Key Words
- CADD522
- CADD522, computer aided drug design molecule 522
- CI, confidence interval
- CNV, copy number variant
- CS, chondrosarcoma
- CTC, circulating tumour cell
- DE, differentially expressed
- ES, Ewing sarcoma
- HD, high definition
- HR, hazard ratio
- OS, osteosarcoma
- RBP, RNA binding protein
- RNU6-1, U6 small nuclear 1
- ROI, region-of-interest
- Rnl, T4 RNA ligase
- SNV, single nucleotide variant
- SV, structural variant
- bone cancer
- iCLIP, individual nucleotide resolution cross-linking and immunoprecipitation
- mRNA, messenger RNA
- miRNA
- miRNA, microRNA
- piRNA, piwi interacting RNA
- sRNA, small RNA
- small RNA
- tRF
- tRF, transfer RNA fragment
- tRNA, transfer RNA
- ysRNA, Y RNA-derived sRNA
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Corresponding author.
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Victoria L. Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | | | - Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich, UK
| | - Simon Carter
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Lee Jeys
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Vaiyapuri Sumathi
- Musculoskeletal Pathology, University Hospitals Birmingham, Royal Orthopaedic Hospital, Birmingham, UK
| | - Iain McNamara
- Orthopaedics & Trauma, Norfolk and Norwich University Hospital, Norwich, UK
| | | | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - William D. Fraser
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
10
|
Sharma JR, Agraval H, Yadav UCS. Cigarette smoke induces epithelial-to-mesenchymal transition, stemness, and metastasis in lung adenocarcinoma cells via upregulated RUNX-2/galectin-3 pathway. Life Sci 2023; 318:121480. [PMID: 36775116 DOI: 10.1016/j.lfs.2023.121480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
AIMS An elevated level of galectin-3, a carbohydrate-binding lectin implicated in tumorigenesis, metastasis, and epithelial-mesenchymal transition (EMT), has been found in cigarette smokers. However, the regulation of its expression and role in the pathogenesis of CS-induced EMT and lung cancer metastasis is unclear. Here, we have investigated the mechanism of CS-induced and galectin-3-mediated EMT in airway epithelial cells (AECs). MAIN METHODS A549 adenocarcinoma cells and primary small airway epithelial cells cultured on an air-liquid interface (ALI) were exposed to cigarette smoke extract (CSE), and MTT, trypan blue, migration, invasion, tumor spheroid and colony formation assays were performed to assess EMT phenotype. Immunoblotting was performed to assess EMT and stemness markers and other regulatory proteins. KEY FINDINGS CSE exposure affected cell survival and morphology, migration, invasion, and clonogenicity of AECs, which were concomitant with an increase in the expression of EMT markers, galectin-3, and runt-related transcription factor-2 (RUNX-2), an osteogenic transcription factor and upstream regulator of galectin-3. Chemical inhibition or silencing of RUNX-2 downregulated galectin-3 and modulated EMT marker expression, migration, invasion, and clonogenicity in CSE-exposed AECs. Recombinant human galectin-3 also induced EMT and stemness-associated changes in the AECs, and GB1107, a galectin-3 inhibitor, ameliorated these changes. Further, CSE-induced intracellular ROS enabled an increase in RUNX-2 and galectin-3 expression, which were reversed by n-acetyl-cysteine. SIGNIFICANCE These results provide a novel mechanistic insight into CSE-induced EMT via RUNX-2/galectin-3 axis mediated through ROS, which promoted EMT-associated changes, including invasion, migration, and stemness in AECs, which could be implicated in CS-induced lung cancer progression.
Collapse
Affiliation(s)
- Jiten R Sharma
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
11
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
12
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 489] [Impact Index Per Article: 244.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Ebrahimighaei R, Sala-Newby GB, Hudson C, Kimura TE, Hathway T, Hawkins J, McNeill MC, Richardson R, Newby AC, Bond M. Combined role for YAP-TEAD and YAP-RUNX2 signalling in substrate-stiffness regulation of cardiac fibroblast proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119329. [PMID: 35905788 PMCID: PMC7616274 DOI: 10.1016/j.bbamcr.2022.119329] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cardiac fibrosis is associated with increased stiffness of the myocardial extracellular matrix (ECM) in part mediated by increased cardiac fibroblast proliferation However, our understanding of the mechanisms regulating cardiac fibroblast proliferation are incomplete. Here we characterise a novel mechanism involving a combined activation of Yes-associated protein (YAP) targets RUNX Family Transcription Factor 2 (RUNX2) and TEA Domain Transcription Factor (TEAD). We demonstrate that cardiac fibroblast proliferation is enhanced by interaction with a stiff ECM compared to a soft ECM. This is associated with activation of the transcriptional co-factor, YAP. We demonstrate that this stiffness induced activation of YAP enhances the transcriptional activity of both TEAD and RUNX2 transcription factors. Inhibition of either TEAD or RUNX2, using gene silencing, expression of dominant-negative mutants or pharmacological inhibition, reduces cardiac fibroblast proliferation. Using mutants of YAP, defective in TEAD or RUNX2 activation ability, we demonstrate a dual role of YAP-mediated activation of TEAD and RUNX2 for substrate stiffness induced cardiac fibroblast proliferation. Our data highlights a previously unrecognised role of YAP mediated RUNX2 activation for cardiac fibroblast proliferation in response to increased ECM stiffness.
Collapse
Affiliation(s)
- Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Claire Hudson
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Tomomi E Kimura
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Tom Hathway
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joseph Hawkins
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Rebecca Richardson
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
14
|
Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022; 61:827-838. [PMID: 35723497 PMCID: PMC9378505 DOI: 10.1002/mc.23436] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Antonino Passaniti
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), VA Maryland Health Care System (VAMHCS), Baltimore VA Medical Center, Baltimore, Maryland, USA
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Myoung Sook Kim
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore Maryland, USA
| |
Collapse
|
15
|
Othman A, Winogradzki M, Lee L, Tandon M, Blank A, Pratap J. Bone Metastatic Breast Cancer: Advances in Cell Signaling and Autophagy Related Mechanisms. Cancers (Basel) 2021; 13:cancers13174310. [PMID: 34503118 PMCID: PMC8431094 DOI: 10.3390/cancers13174310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is a frequent complication of breast cancer with nearly 70% of metastatic breast cancer patients developing bone metastasis during the course of their disease. The bone represents a dynamic microenvironment which provides a fertile soil for disseminated tumor cells, however, the mechanisms which regulate the interactions between a metastatic tumor and the bone microenvironment remain poorly understood. Recent studies indicate that during the metastatic process a bidirectional relationship between metastatic tumor cells and the bone microenvironment begins to develop. Metastatic cells display aberrant expression of genes typically reserved for skeletal development and alter the activity of resident cells within the bone microenvironment to promote tumor development, resulting in the severe bone loss. While transcriptional regulation of the metastatic process has been well established, recent findings from our and other research groups highlight the role of the autophagy and secretory pathways in interactions between resident and tumor cells during bone metastatic tumor growth. These reports show high levels of autophagy-related markers, regulatory factors of the autophagy pathway, and autophagy-mediated secretion of matrix metalloproteinases (MMP's), receptor activator of nuclear factor kappa B ligand (RANKL), parathyroid hormone related protein (PTHrP), as well as WNT5A in bone metastatic breast cancer cells. In this review, we discuss the recently elucidated mechanisms and their crosstalk with signaling pathways, and potential therapeutic targets for bone metastatic disease.
Collapse
|
16
|
Zhu Y, Chen QY, Jordan A, Sun H, Roy N, Costa M. RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 2021; 46:154. [PMID: 34109987 DOI: 10.3892/or.2021.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| |
Collapse
|
17
|
Li Y, Ge C, Franceschi RT. Role of Runx2 in prostate development and stem cell function. Prostate 2021; 81:231-241. [PMID: 33411419 PMCID: PMC7856111 DOI: 10.1002/pros.24099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND RUNX2, a critical transcription factor in bone development, is also expressed in prostate and breast where it has been linked to cancer progression and cancer stem cells. However, its role in normal prostate biology has not been previously examined. METHODS Selective growth of murine prostate epithelium under non-adherent conditions was used to enrich for stem cells. Expression of runt domain transcription factors, stem cell and prostate marker messenger RNAs (mRNAs) was determined by quantitative reverse transcription polymerase chain reaction. Effects of Runx2 loss and gain-of-function on prostate epithelial cells were assessed using cells isolated from Runx2loxp/loxp mice transduced with Adeno-Cre or by Adeno-Runx2 transduction of wild type cells. Cellular distribution of RUNX2 and prostate-associated proteins was assessed using immunofluorescence microscopy. In vivo Runx2 knock out was achieved by tamoxifen treatment of Nkx3.1CreERT; Runx2loxp/loxp mice. RESULTS Prostate epithelium-derived spheroids, which are enriched in stem cells, were shown to contain elevated levels of Runx2 mRNA. Spheroid formation required Runx2 since adenovirus-Cre mediated knockout of Runx2 in prostatic epithelial cells from Runx2loxp/loxp mice severely reduced spheroid formation and stem cell markers while Runx2 overexpression was stimulatory. In vivo, Runx2 was detected during early prostate development (E16.5) and in adult mice where it was present in basal and luminal cells of ventral and anterior lobes. Prostate-selective deletion of Runx2 in tamoxifen-treated Nkx3.1CreERT; Runx2loxp/loxp mice severely inhibited growth and maturation of tubules in the anterior prostate and reduced expression of stem cell markers and prostate-associated genes. CONCLUSION This study demonstrates an important role for Runx2 in prostate development that may be explained by actions in prostate epithelial stem cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan School of Engineering, Ann Arbor, MI
| |
Collapse
|
18
|
Kim MS, Gernapudi R, Cedeño YC, Polster BM, Martinez R, Shapiro P, Kesari S, Nurmemmedov E, Passaniti A. Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Oncotarget 2020; 11:3863-3885. [PMID: 33196708 PMCID: PMC7597410 DOI: 10.18632/oncotarget.27743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and β subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| |
Collapse
|
19
|
Rothzerg E, Ingley E, Mullin B, Xue W, Wood D, Xu J. The Hippo in the room: Targeting the Hippo signalling pathway for osteosarcoma therapies. J Cell Physiol 2020; 236:1606-1615. [PMID: 32697358 DOI: 10.1002/jcp.29967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumour which usually occurs in children and adolescents. OS is primarily a result of chromosomal aberrations, a combination of acquired genetic changes and, hereditary, resulting in the dysregulation of cellular functions. The Hippo signalling pathway regulates cell and tissue growth by modulating cell proliferation, differentiation, and migration in developing organs. Mammalian STE20-like 1/2 (MST1/2) protein kinases are activated by neurofibromatosis type 2, Ras association domain family member 2, kidney and brain protein, or other factors. Interactions between MST1/2 and salvador family WW domain-containing protein 1 activate large tumour suppressor kinase 1/2 proteins, which in turn phosphorylate the downstream Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). Moreover, dysregulation of this pathway can lead to aberrant cell growth, resulting in tumorigenesis. Interestingly, small molecules targeting the Hippo signalling pathways, through affecting YAP/TAZ cellular localisation and their interaction with members of the TEA/ATTS domain family of transcriptional enhancers are being developed and hold promise for the treatment of OS. This review discusses the existing knowledge about the involvement of the Hippo signalling cascade in OS and highlights several small molecule inhibitors as potential novel therapeutics.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Benjamin Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Wei Xue
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou, Guangdong, China
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Sweeney K, Cameron ER, Blyth K. Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night. Mol Cells 2020; 43:188-197. [PMID: 32041394 PMCID: PMC7057843 DOI: 10.14348/molcells.2019.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.
Collapse
Affiliation(s)
- Kerri Sweeney
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
| | - Ewan R. Cameron
- Glasgow Veterinary School, University of Glasgow, Glasgow G61 1QH, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
21
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
22
|
Bagnati M, Moreno-Moral A, Ko JH, Nicod J, Harmston N, Imprialou M, Game L, Gil J, Petretto E, Behmoaras J. Systems genetics identifies a macrophage cholesterol network associated with physiological wound healing. JCI Insight 2019; 4:e125736. [PMID: 30674726 PMCID: PMC6413785 DOI: 10.1172/jci.insight.125736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Among other cells, macrophages regulate the inflammatory and reparative phases during wound healing but genetic determinants and detailed molecular pathways that modulate these processes are not fully elucidated. Here, we took advantage of normal variation in wound healing in 1,378 genetically outbred mice, and carried out macrophage RNA-sequencing profiling of mice with extreme wound healing phenotypes (i.e., slow and fast healers, n = 146 in total). The resulting macrophage coexpression networks were genetically mapped and led to the identification of a unique module under strong trans-acting genetic control by the Runx2 locus. This macrophage-mediated healing network was specifically enriched for cholesterol and fatty acid biosynthetic processes. Pharmacological blockage of fatty acid synthesis with cerulenin resulted in delayed wound healing in vivo, and increased macrophage infiltration in the wounded skin, suggesting the persistence of an unresolved inflammation. We show how naturally occurring sequence variation controls transcriptional networks in macrophages, which in turn regulate specific metabolic pathways that could be targeted in wound healing.
Collapse
Affiliation(s)
- Marta Bagnati
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | | | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | - Jérôme Nicod
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Martha Imprialou
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | - Laurence Game
- Genomics Laboratory, Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Jesus Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore, Singapore
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| |
Collapse
|