1
|
Hermán-Sánchez N, G-García ME, Jiménez-Vacas JM, Yubero-Serrano EM, López-Sánchez LM, Romero-Martín S, Raya-Povedano JL, Álvarez-Benito M, Castaño JP, Luque RM, Gahete MD. The splicing machinery is dysregulated and represents a therapeutic vulnerability in breast cancer. Cell Mol Life Sci 2024; 82:18. [PMID: 39725737 DOI: 10.1007/s00018-024-05515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024]
Abstract
Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs. control (negative biopsies; n = 50) samples. Among all the components analysed, we highlight the upregulation of ESRP1 and down-regulation of PRPF8 and NOVA1 in BCa vs. control samples. Indeed, ESRP1 was specially overexpressed in triple-negative BCa (TNBCa) and associated with worse prognosis (i.e., higher BCa grade and lower overall survival), suggesting an association of ESRP1 with BCa aggressiveness. On the other hand, PRPF8 expression was generally downregulated in BCa with no associations to clinical characteristics, while NOVA1 expression was lower in TNBCa patients and highly aggressive tumours. Consistently, NOVA1 overexpression in vitro reduced functional parameters of aggressiveness in ER-/PR- cell lines (MDA-MB-231 and BT-549) but not in ER+/PR+ cells (MCF7), suggesting a critical role of NOVA1 in subtype-specific BCa. Finally, the in vitro pharmacological inhibition of splicing machinery using pladienolide B decreased aggressiveness features in all the BCa cell lines, showing a subtype-independent inhibitory potential, but being relatively innocuous in normal-like breast cells. These results demonstrate the profound dysregulation of the splicing machinery in BCa and their potential as source of promising diagnosis/prognosis markers, as well as valuable therapeutic targets for BCa.
Collapse
Affiliation(s)
- Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Miguel E G-García
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Elena M Yubero-Serrano
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
- Lipids and Atherosclerosis Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Laura M López-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Sara Romero-Martín
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Jose L Raya-Povedano
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Marina Álvarez-Benito
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain.
- Reina Sofía University Hospital, Córdoba, 14004, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain.
- Reina Sofía University Hospital, Córdoba, 14004, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain.
- Reina Sofía University Hospital, Córdoba, 14004, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| |
Collapse
|
2
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
3
|
Khasanova A, Henagan TM. Exercise Is Medicine: How Do We Implement It? Nutrients 2023; 15:3164. [PMID: 37513581 PMCID: PMC10385293 DOI: 10.3390/nu15143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Exercise is well known to have beneficial effects on various disease states. In this paper, we broadly describe the fundamental concepts that are shared among various disease states, including obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), heart failure (HF), cancer, and psychological well-being, and the beneficial effects of exercise training within these concepts. We highlight issues involved in implementing exercise recommendations and describe the potential impacts and challenges to medical professionals and patients. Problems are identified and discussed with respect to the future roles of professionals in the current built environment with its limited infrastructure to support current physical activity recommendations.
Collapse
Affiliation(s)
- Aliya Khasanova
- Department of Family Medicine, Baton Rouge General Family Health Center, Baton Rouge, LA 70806, USA
- Department of Family Medicine, Baton Rouge General Hospital, Baton Rouge, LA 70808, USA
| | - Tara M Henagan
- Department of Family Medicine, Baton Rouge General Family Health Center, Baton Rouge, LA 70806, USA
- Department of Family Medicine, Baton Rouge General Hospital, Baton Rouge, LA 70808, USA
| |
Collapse
|
4
|
Kallamadi PR, Esari D, Addi UR, Kesavan R, Putcha UK, Nagini S, Reddy GB. Obesity Associated with Prediabetes Increases the Risk of Breast Cancer Development and Progression-A Study on an Obese Rat Model with Impaired Glucose Tolerance. Int J Mol Sci 2023; 24:11441. [PMID: 37511200 PMCID: PMC10380482 DOI: 10.3390/ijms241411441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with comorbidities of obesity and diabetes are recognized to be at high risk of breast cancer development and face worse breast cancer outcomes. Though several reports showed the reinforced link between obesity, diabetes, and prediabetes with breast cancer, the underlying molecular mechanisms are still unknown. The present study aimed to investigate the underlying molecular link between increased risks of breast cancer due to coincident diabetes or obesity using a spontaneous obese rat model with impaired glucose tolerance (WNIN/GR-Ob rat). A single dose of solubilized DMBA suspension (40 mg/kg body weight) was orally administered to the animals at the age of 60 days to induce breast tumors. The tumor incidence, latency period, tumor frequency, and tumor volume were measured. Histology, immunohistochemistry, and immunoblotting were performed to evaluate the tumor morphology and expression levels of signal molecules. The development of mammary tumors in GR-Ob rats was characterized by early onset and shorter latency periods compared to control lean rats. While 62% of obese rats developed breast tumors, tumor development in lean rats was only 21%. Overexpression of ER, PR, Ki67, and p53 markers was observed in tumor tissues of obese rats in comparison with lean rats. The levels of the hallmarks of cell proliferation and angiogenesis involved in IGF-1/PI3K/Akt/GSK3β/β-catenin signaling pathway molecules were upregulated in obese rat breast tumors compared to lean rats. Furthermore, obesity with prediabetes is associated with changes in IGF-1 signaling and acts on PI3K/Akt/GSK3β/β-catenin signaling, which results in rapid cell proliferation and development of breast tumors in obese rats than the lean rats. These results indicate that tumor onset and development were faster in spontaneous obese rat models with impaired glucose tolerance than in their lean counterparts.
Collapse
Affiliation(s)
| | - Deepshika Esari
- ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Rushendhiran Kesavan
- UT Southwestern Medical Center, Children Research Institute, Dallas, TX 75390, USA
| | | | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalinagar 608002, India
| | | |
Collapse
|
5
|
Kebede T, Melak T, Sina AAI, Fasil A. Assessment of Serum Uric Acid, Urea, and Glucose Levels and Associated Factors among Breast Cancer Patients Attending A Tertiary Hospital in Bahirdar, Ethiopia: A Comparative Cross-Sectional Study. Ethiop J Health Sci 2022; 32:1183-1192. [PMID: 36475251 PMCID: PMC9692154 DOI: 10.4314/ejhs.v32i6.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer is currently become a major public health problem in both developed and developing regions, it is one of the most common surgical problems in Ethiopia. Therefore, this study assessed serum uric acid, urea, and glucose levels and associated factors among benign, malignant breast cancer patients and apparently healthy women attending at Felege-Hiwot comprehensive Specialized Hospital. Methods Hospital based comparative cross-sectional study was conducted among benign, malignant breast cancer patients and apparently healthy women attending at Felege-Hiwot Comprehensive Specialized Hospital. Out of 178 study participants 66 benign and 23 malignant fine needle aspirate cytology confirmed breast cancer patients and 89 apparently healthy women, included. Multivariable logistic regression models used to measure the strength of associations. A P value of < 0.05 was considered statistically significant. Results Majority of the study participants, 81(91%) controls, 55(83.3%) benign, and 17(73.9%) malignant cases were premenopausal. Serum glucose 144.47±74.35 and uric acid 6.84±2.54 levels were significantly elevated in malignant cases than control (p-value< 0.05). Patients with malignant status were 4.38 times more likely to have hyperglycemia (AOR=4.38, 95%CI: 1.98-19.97) and 5.53 times more likely have hyperuricemia (AOR=20.43-95% CI: 6.80-61.23), 4 times more likely to have uremia (AOR=4.09, 95% CI: 1.06-15.91) compared to apparently healthy women. Conclusion Serum glucose, and uric acid levels were significantly higher in malignant and benign cases compared with apparently healthy women. Family history of breast cancer, body mass index, systolic hypertension, comorbidity, residence and menopausal status were significantly associated with hyperglycemia, uremia and hyperuricemia.
Collapse
Affiliation(s)
- Tinfash Kebede
- Department of Medical Laboratory science, Chief Clinical Chemist at Debark hospital, Debark, Ethiopia
| | - Tadele Melak
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar Ethiopia
| | - Abu Ali Ibn Sina
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alebachew Fasil
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar Ethiopia
| |
Collapse
|
6
|
Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
7
|
da Silva BR, Rufato S, Mialich MS, Cruz LP, Gozzo T, Jordao AA. An Evaluation of Metabolic, Dietetic, and Nutritional Status Reveals Impaired Nutritional Outcomes in Breast Cancer Patients. Nutr Cancer 2022; 74:3611-3622. [PMID: 35762504 DOI: 10.1080/01635581.2022.2093388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nutritional status can change in breast cancer patients after treatment. However, the metabolic implications of those alterations are poorly understood. We used a cross-sectional study design to compare body composition, lipids, glucose levels, and adiposity indices in breast cancer patients with a matched control and a healthy group. We recruited women who completed their chemotherapy (BC group) and compared them with a group of women without cancer age and body mass index-paired (MC group) and a group of healthy women (HC group). We estimated body composition by bioelectrical impedance analysis, physical function by handgrip strength, and food consumption by 24-hour food record. A blood sample was collected. We calculated visceral obesity indices (VAI and LAP) and insulin resistance-triglyceride glucose (TyG). Eighty-eight women were included (BC = 36, MC = 36, HC = 16). BC patients demonstrated worse phase angle values, nutritional risk index and lower handgrip strength. Additionally, according to the indices, BC had impairments in lipids, worse glucose levels, and elevated visceral fat adiposity and presented important unhealthy dietary patterns characterized by under-recommended protein consumption and higher caloric intake than the other groups. No differences were observed between both control groups. Further investigations are required to examine the underlying mechanisms and the potential longitudinal changes during surveillance.
Collapse
Affiliation(s)
- Bruna Ramos da Silva
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Sarah Rufato
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Mirele S Mialich
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Loris P Cruz
- Nursing School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Thais Gozzo
- Nursing School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alceu A Jordao
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
8
|
Cao M, Isaac R, Yan W, Ruan X, Jiang L, Wan Y, Wang J, Wang E, Caron C, Neben S, Drygin D, Pizzo DP, Wu X, Liu X, Chin AR, Fong MY, Gao Z, Guo K, Fadare O, Schwab RB, Yuan Y, Yost SE, Mortimer J, Zhong W, Ying W, Bui JD, Sears DD, Olefsky JM, Wang SE. Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nat Cell Biol 2022; 24:954-967. [PMID: 35637408 PMCID: PMC9233030 DOI: 10.1038/s41556-022-00919-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/20/2022] [Indexed: 12/11/2022]
Abstract
Epidemiological studies demonstrate an association between breast cancer (BC) and systemic dysregulation of glucose metabolism. However, how BC influences glucose homeostasis remains unknown. We show that BC-derived extracellular vesicles (EVs) suppress pancreatic insulin secretion to impair glucose homeostasis. EV-encapsulated miR-122 targets PKM in β-cells to suppress glycolysis and ATP-dependent insulin exocytosis. Mice receiving high-miR-122 EVs or bearing BC tumours exhibit suppressed insulin secretion, enhanced endogenous glucose production, impaired glucose tolerance and fasting hyperglycaemia. These effects contribute to tumour growth and are abolished by inhibiting EV secretion or miR-122, restoring PKM in β-cells or supplementing insulin. Compared with non-cancer controls, patients with BC have higher levels of circulating EV-encapsulated miR-122 and fasting glucose concentrations but lower fasting insulin; miR-122 levels are positively associated with glucose and negatively associated with insulin. Therefore, EV-mediated impairment of whole-body glycaemic control may contribute to tumour progression and incidence of type 2 diabetes in some patients with BC.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Roi Isaac
- Department of Medicine; University of California, San Diego; La Jolla, CA 92093; USA
| | - Wei Yan
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Xianhui Ruan
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Li Jiang
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Yuhao Wan
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Jessica Wang
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Emily Wang
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Christine Caron
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Steven Neben
- Regulus Therapeutics Inc.; San Diego, CA 92121; USA
| | - Denis Drygin
- Regulus Therapeutics Inc.; San Diego, CA 92121; USA
| | - Donald P. Pizzo
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology; City of Hope; Duarte, CA 91010; USA
| | - Xuxiang Liu
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Andrew R. Chin
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Miranda Y. Fong
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Ziting Gao
- Department of Chemistry; University of California, Riverside; Riverside, CA 92521; USA
| | - Kaizhu Guo
- Department of Chemistry; University of California, Riverside; Riverside, CA 92521; USA
| | - Oluwole Fadare
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Richard B. Schwab
- Department of Medicine; University of California, San Diego; La Jolla, CA 92093; USA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research; City of Hope; Duarte, CA 91010; USA
| | - Susan E. Yost
- Department of Medical Oncology & Therapeutics Research; City of Hope; Duarte, CA 91010; USA
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research; City of Hope; Duarte, CA 91010; USA
| | - Wenwan Zhong
- Department of Chemistry; University of California, Riverside; Riverside, CA 92521; USA
| | - Wei Ying
- Department of Medicine; University of California, San Diego; La Jolla, CA 92093; USA
| | - Jack D. Bui
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
| | - Dorothy D. Sears
- Department of Medicine; University of California, San Diego; La Jolla, CA 92093; USA
- College of Health Solutions; Arizona State University; Phoenix, AZ 85004; USA
- Department of Family Medicine; University of California, San Diego; La Jolla, CA 92093; USA
- Moores Cancer Center; University of California, San Diego; La Jolla, CA 92093; USA
| | - Jerrold M. Olefsky
- Department of Medicine; University of California, San Diego; La Jolla, CA 92093; USA
| | - Shizhen Emily Wang
- Department of Pathology; University of California, San Diego; La Jolla, CA 92093; USA
- Moores Cancer Center; University of California, San Diego; La Jolla, CA 92093; USA
| |
Collapse
|
9
|
Flores-García LC, Ventura-Gallegos JL, Romero-Córdoba SL, Hernández-Juárez AJ, Naranjo-Meneses MA, García-García E, Méndez JP, Cabrera-Quintero AJ, Ramírez-Ruíz A, Pedraza-Sánchez S, Meraz-Cruz N, Vadillo-Ortega F, Zentella-Dehesa A. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One 2022; 17:e0266073. [PMID: 35413055 PMCID: PMC9004774 DOI: 10.1371/journal.pone.0266073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is associated with an increased incidence and aggressiveness of breast cancer and is estimated to increment the development of this tumor by 50 to 86%. These associations are driven, in part, by changes in the serum molecules. Epidemiological studies have reported that Metformin reduces the incidence of obesity-associated cancer, probably by regulating the metabolic state. In this study, we evaluated in a breast cancer in-vitro model the activation of the IR-β/Akt/p70S6K pathway by exposure to human sera with different metabolic and hormonal characteristics. Furthermore, we evaluated the effect of brief Metformin treatment on sera of obese postmenopausal women and its impact on Akt and NF-κB activation. We demonstrated that MCF-7 cells represent a robust cellular model to differentiate Akt pathway activation influenced by the stimulation with sera from obese women, resulting in increased cell viability rates compared to cells stimulated with sera from normal-weight women. In particular, stimulation with sera from postmenopausal obese women showed an increase in the phosphorylation of IR-β and Akt proteins. These effects were reversed after exposure of MCF-7 cells to sera from postmenopausal obese women with insulin resistance with Metformin treatment. Whereas sera from women without insulin resistance affected NF-κB regulation. We further demonstrated that sera from post-Metformin obese women induced an increase in p38 phosphorylation, independent of insulin resistance. Our results suggest a possible mechanism in which obesity-mediated serum molecules could enhance the development of luminal A-breast cancer by increasing Akt activation. Further, we provided evidence that the phenomenon was reversed by Metformin treatment in a subgroup of women.
Collapse
Affiliation(s)
- Laura C. Flores-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Alfredo J. Hernández-Juárez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - María A. Naranjo-Meneses
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Eduardo García-García
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Antonio Ramírez-Ruíz
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| |
Collapse
|
10
|
Insulin resistance and the development of breast cancer in premenopausal women: the Kangbuk Samsung Health Study. Breast Cancer Res Treat 2022; 192:401-409. [PMID: 34997879 DOI: 10.1007/s10549-022-06513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Research on the role of insulin resistance (IR) in breast cancer risk in premenopausal women is scarce. We aimed to investigate the relationship between IR and the development of breast cancer in premenopausal women. METHODS We analyzed the prospective association of IR and incident breast cancer in premenopausal women without breast cancer at baseline using a subsample of the Kangbuk Samsung Health Study. RESULTS Among 134,488 Korean premenopausal women, 696 women developed incident breast cancers during a median follow-up of 4.34 years. After adjustment for dense breast and other potential confounders, HR (95% CI) for incident breast cancer comparing HOMA-IR quintiles 2, 3, 4, and 5 to the first quintile was 0.91 (0.71-1.17), 0.89 (0.69-1.15), 0.75 (0.57-0.98), and 0.87 (0.65-1.16), respectively (P for trend = 0.117), while HR (95% CI) comparing insulin quintiles 2, 3, 4, and 5 to the first quintile was 1.02 (0.80-1.30), 0.90 (0.69-1.16), 0.72 (0.54-0.96), and 0.96 (0.72-1.28), respectively (P for trend = 0.151). This pattern did not significantly differ by obesity. These results were attenuated and no longer significant in time-dependent analyses where updated status of insulin and other covariates over time were treated as time-varying covariates. CONCLUSION Our findings do not support the positive relationship of IR with the development of breast cancer in premenopausal women, unlike in postmenopausal women. Thus, the role of IR as a risk factor for breast cancer may differ by menopausal status.
Collapse
|
11
|
Nabati M, Janbabai G, Najjarpor M, Yazdani J. Late consequences of chemotherapy on left ventricular function in women with breast cancer. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:511-518. [PMID: 35974948 PMCID: PMC9348204 DOI: 10.22088/cjim.13.3.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 08/14/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death among breast cancer survivors. Several chemotherapy drugs may cause cardiovascular toxicity. Our study aimed to assess the late effects of chemotherapy on left ventricular (LV) systolic and diastolic function in a group of female breast cancer survivors. METHODS Our study was a case-control study consisted of 60 breast cancer survivors who had undergone chemotherapy for more than 5 years and a control group of 49 women without breast cancer. All patients underwent echocardiography and left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), pulse-Doppler early transmitral peak flow velocity (E wave), early diastolic (e'), and left atrial (LA) diameter were calculated. RESULTS The mean LVEF and GLS were reduced in chemotherapy group (51.63±7.93% vs. 55.37±3.50%, P=0.002 and -17.99±3.27% vs. -19.25±2.27%, P=0.025). Also, the chemotherapy group had a larger left ventricular end-systolic internal diameter than the control group (1.74±0.44cm/m2 vs. 1.58±0.22cm/m2, P= 0.011). Logistic regression analysis showed among the different cardiovascular risk factors, chemotherapy had an association with decreasing LVEF. CONCLUSION Breast cancer survivors might have an excess risk of having subclinical LV dysfunction over time. These findings present the potential benefits of echocardiographic assessment in breast cancer survivors.
Collapse
Affiliation(s)
- Maryam Nabati
- Department of Cardiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Cardiovascular Research Center, Sari, Iran,Correspondence: Maryam Nabati, Department of Cardiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Cardiovascular Research Center, Fatemeh Zahra Teaching Hospital, Artesh Boulevard, Sari, 48188-13771, Iran. E-mail: , Tel: 0098 1133324002, Fax: 0098 1133324002
| | - Ghasem Janbabai
- Department of Hematology, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Najjarpor
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamshid Yazdani
- Department of Biostatics, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Mathur T, Yee D. The Emerging Role of the Fetal Insulin Receptor in Hormone-refractory Breast Cancer. Endocrinology 2021; 162:bqab147. [PMID: 34304271 PMCID: PMC8787423 DOI: 10.1210/endocr/bqab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
Type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane tyrosine kinase receptor and a mediator of the biologic effects of insulin-like growth factor (IGF)-I and -II. Inhibitors of IGF-1R signaling were tested in clinical cancer trials aiming to assess the utility of this receptor as a therapeutic target; essentially all IGF-1R inhibitors failed to provide an additional benefit compared with standard-of-care therapy. In this review, we will evaluate the role the insulin receptor (IR) plays in mediating IGF signaling and subsequent metabolic and mitogenic effects as 1 possible reason for these failures. IR is expressed as 2 isoforms, with the fetal isoform IR-A derived from alternative splicing and loss of exon 11, the adult isoform (IR-B) includes this exon. Cancer frequently re-expresses fetal proteins and this appears to be the case in cancer with a re-expression of the fetal isoform and an increased IR-A:IR-B ratio. The biological effects of IR isoform signaling are complex and not completely understood although it has been suggested that IR-A could stimulate mitogenic signaling pathways, play a role in cancer cell stemness, and mediate tolerance to cancer therapies. From a clinical perspective, the IR-A overexpression in cancer may explain why targeting IGF-1R alone was not successful. However, given the predominance of IR-A expression in cancer, it may also be possible to develop isoform specific inhibitors and avoid the metabolic consequences of inhibiting IR-B. If such inhibitors could be developed, then IR-A expression could serve as a predictive biomarker, and cotargeting IR-A and IGF-1R could provide a novel, more effective therapy method.
Collapse
Affiliation(s)
- Tanvi Mathur
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Gahete MD, Granata R, Luque RM. Editorial: Pathophysiological Interrelationship Between Obesity, Metabolic Diseases, and Cancer. Front Oncol 2021; 11:755735. [PMID: 34595124 PMCID: PMC8476874 DOI: 10.3389/fonc.2021.755735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Manuel D. Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Raúl M. Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| |
Collapse
|
14
|
Jaiswal P, Tripathi V, Nayak A, Kataria S, Lukashevich V, Das A, Parmar HS. A molecular link between diabetes and breast cancer: Therapeutic potential of repurposing incretin-based therapies for breast cancer. Curr Cancer Drug Targets 2021; 21:829-848. [PMID: 34468298 DOI: 10.2174/1568009621666210901101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Female breast cancer recently surpassed lung cancer and became the most commonly diagnosed cancer worldwide. As per the recent data from WHO, breast cancer accounts for one out of every 8 cancer cases diagnosed among an estimated 2.3 million new cancer cases. Breast cancer is the most prevailing cancer type among women causing the highest number of cancer-related mortality. It has been estimated that in 2020, 68,5000 women died due to this disease. Breast cancers have varying degrees of molecular heterogeneity; therefore, they are divided into various molecular clinical sub types. Recent reports suggest that type 2 diabetes (one of the common chronic diseases worldwide) is linked to the higher incidence, accelerated progression, and aggressiveness of different cancers; especially breast cancer. Breast cancer is hormone-dependent in nature and has a cross-talk with metabolism. A number of antidiabetic therapies are known to exert beneficial effects on various types of cancers, including breast cancer. However, only a few reports are available on the role of incretin-based antidiabetic therapies in cancer as a whole and in breast cancer in particular. The present review sheds light on the potential of incretin based therapies on breast cancer and explores the plausible underlying mechanisms. Additionally, we have also discussed the sub types of breast cancer as well as the intricate relationship between diabetes and breast cancer.
Collapse
Affiliation(s)
- Pooja Jaiswal
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Versha Tripathi
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Shreya Kataria
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Vladimir Lukashevich
- Institute of Physiology of the National Academy of Sciences of Belarus, Minsk-220072. Belarus
| | - Apurba Das
- Department of Chemical Sciences, IIT, Indore, Simrol, Indore, M.P., India
| | | |
Collapse
|
15
|
León-González AJ, Jiménez-Vacas JM, Fuentes-Fayos AC, Sarmento-Cabral A, Herrera-Martínez AD, Gahete MD, Luque RM. Role of metformin and other metabolic drugs in the prevention and therapy of endocrine-related cancers. Curr Opin Pharmacol 2021; 60:17-26. [PMID: 34311387 DOI: 10.1016/j.coph.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is associated with chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. This review summarizes the current evidence on the antitumor effects of some relevant drugs currently used to manage metabolic-related pathologies (i.e. insulin and its analogs, metformin, statins, etc.) in endocrine-related cancers including breast cancer, prostate cancer, pituitary cancer, ovarian cancer, and neuroendocrine neoplasms. Although current evidence does not provide a clear antitumor role of several of these drugs, metformin seems to be a promising chemopreventive and adjuvant agent in cancer management, modulating tumor cell metabolism and microenvironment, through both AMP-activated protein kinase-dependent and -independent mechanisms. Moreover, its combination with statins might represent a promising therapeutic strategy to tackle the progression of endocrine-related tumors. However, further studies are needed to endorse the clinical relevance of these drugs as adjuvants for cancer chemotherapy.
Collapse
Affiliation(s)
- Antonio J León-González
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain; Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Andre Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain.
| |
Collapse
|
16
|
Zhao C, Hu W, Xu Y, Wang D, Wang Y, Lv W, Xiong M, Yi Y, Wang H, Zhang Q, Wu Y. Current Landscape: The Mechanism and Therapeutic Impact of Obesity for Breast Cancer. Front Oncol 2021; 11:704893. [PMID: 34350120 PMCID: PMC8326839 DOI: 10.3389/fonc.2021.704893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis. Obesity is a widespread health problem with increasing prevalence worldwide. Breast cancer (BC) has already been the most common cancer and one of the leading causes of cancer death in women worldwide. Nowadays, the impact of the rising prevalence of obesity has been recognized as a nonnegligible issue for BC development, outcome, and management. Adipokines, insulin and insulin-like growth factor, sex hormone and the chronic inflammation state play critical roles in the vicious crosstalk between obesity and BC. Furthermore, obesity can affect the efficacy and side effects of multiple therapies such as surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy and weight management of BC. In this review, we focus on the current landscape of the mechanisms of obesity in fueling BC and the impact of obesity on diverse therapeutic interventions. An in-depth exploration of the underlying mechanisms linking obesity and BC will improve the efficiency of the existing treatments and even provide novel treatment strategies for BC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiping Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Association of vitamin D deficiency and insulin resistance with breast cancer in premenopausal Algerian women: A cross-sectional study. ANNALES D'ENDOCRINOLOGIE 2021; 82:597-605. [PMID: 34166649 DOI: 10.1016/j.ando.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Low 25(OH)D levels are mainly related to breast cancer (BC) risk in postmenopausal women, while the impact of insulin resistance (IR) on BC prognosis is controversial. OBJECTIVE Considering the high prevalence of BC in younger Algerian women, this cross-sectional study analyzed whether vitamin D status and IR are biomarkers for breast tumor status in premenopausal women. METHODS In 96 women (mean age, 40.96±0.65years) newly diagnosed with BC, tumor status was determined immunohistochemically, classified by molecular subtype, then correlated with body-mass index, total plasma 25(OH)D, insulin and glucose levels and HOMA-IR, using chi², Student t, Spearman and ANOVA tests and multivariate logistic regression. RESULTS 66 of the 98 patients (68.75%) showed vitamin D deficiency (9.74ng/mL). Overweight and obese patients with HOMA-IR >2.5, positive for HER2 and with high Ki-67 index had the most severe vitamin D deficiency. There was a significant association between vitamin D deficiency, high Ki-67 index (OR, 14.55; 95% CI, 3.43-82.59; p=0.00078) and IR (OR, 4.99; 95% CI, 1.27-24.47; p=0.03), and between IR and HER2-positivity (OR, 3.23; 95% CI, 1.05-10.56; p=0.04). CONCLUSIONS Vitamin D deficiency and IR are potential biomarkers for poorer prognosis in BC patients, independently of and/or synergically with high Ki-67 index and HER2-positivity in premenopausal overweight or obese women. The potential relationship of vitamin D receptor gene expression with breast cancer survival in Algerian patients will be investigated in a large cohort.
Collapse
|
18
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
19
|
Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front Oncol 2021; 11:628359. [PMID: 33718202 PMCID: PMC7947364 DOI: 10.3389/fonc.2021.628359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Female breast cancer is a complex, multifactorial disease. Studies have shown that hyperglycemia is one of the most important contributing factors to increasing the risk of breast cancer that also has a major impact on the efficacy of chemotherapy. At the cellular level, hyperglycemia can promote the proliferation, invasion, and migration of breast cancer cells and can also induce anti-apoptotic responses to enhance the chemoresistance of tumors via abnormal glucose metabolism. In this article, we focus on the latest progress in defining the mechanisms of chemotherapy resistance in hyperglycemic patients including the abnormal behaviors of cancer cells in the hyperglycemic microenvironment and the impact of abnormal glucose metabolism on key signaling pathways. To better understand the advantages and challenges of breast cancer treatments, we explore the causes of drug resistance in hyperglycemic patients that may help to better inform the development of effective treatments.
Collapse
Affiliation(s)
- Jie Qiu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
20
|
Das M, Ellies LG, Kumar D, Sauceda C, Oberg A, Gross E, Mandt T, Newton IG, Kaur M, Sears DD, Webster NJG. Time-restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese postmenopausal mouse models. Nat Commun 2021; 12:565. [PMID: 33495474 PMCID: PMC7835248 DOI: 10.1038/s41467-020-20743-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/04/2020] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence indicates that obesity with its associated metabolic dysregulation, including hyperinsulinemia and aberrant circadian rhythms, increases the risk for a variety of cancers including postmenopausal breast cancer. Caloric restriction can ameliorate the harmful metabolic effects of obesity and inhibit cancer progression but is difficult to implement and maintain outside of the clinic. In this study, we aim to test a time-restricted feeding (TRF) approach on mouse models of obesity-driven postmenopausal breast cancer. We show that TRF abrogates the obesity-enhanced mammary tumor growth in two orthotopic models in the absence of calorie restriction or weight loss. TRF also reduces breast cancer metastasis to the lung. Furthermore, TRF delays tumor initiation in a transgenic model of mammary tumorigenesis prior to the onset of obesity. Notably, TRF increases whole-body insulin sensitivity, reduces hyperinsulinemia, restores diurnal gene expression rhythms in the tumor, and attenuates tumor growth and insulin signaling. Importantly, inhibition of insulin secretion with diazoxide mimics TRF whereas artificial elevation of insulin through insulin pumps implantation reverses the effect of TRF, suggesting that TRF acts through modulating hyperinsulinemia. Our data suggest that TRF is likely to be effective in breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Deepak Kumar
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Consuelo Sauceda
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Alexis Oberg
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Emilie Gross
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Tyler Mandt
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Isabel G Newton
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Mehak Kaur
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Dorothy D Sears
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, Division of Preventive Medicine, University of California San Diego, La Jolla, CA, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Pan K, Chlebowski RT, Mortimer JE, Gunter MJ, Rohan T, Vitolins MZ, Adams-Campbell LL, Ho GYF, Cheng TYD, Nelson RA. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women's Health Initiative. Cancer 2020; 126:3638-3647. [PMID: 32530506 DOI: 10.1002/cncr.33002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Insulin resistance is associated with higher all-cause and cancer-specific mortality in postmenopausal women. However, to the authors' knowledge, information regarding insulin resistance and breast cancer mortality risk is limited. Therefore, the authors examined associations between insulin resistance and breast cancer incidence and mortality in a subsample of Women's Health Initiative participants. METHODS A total of 22,837 postmenopausal women with fasting baseline glucose and insulin levels were followed for incident breast cancer and breast cancer mortality. Breast cancers were verified by medical record review and serial National Death Index linkage-enhanced mortality findings. Insulin resistance was estimated using the homeostatic model assessment of insulin resistance (HOMA-IR). Multivariable Cox proportional hazards models were used to compute hazard ratios (HRs) with 95% confidence intervals (95% CIs) for quartile comparisons. Outcomes included breast cancer incidence, deaths from breast cancer, and deaths after breast cancer (breast cancer followed by death from any cause). RESULTS During a median of 19.8 years of follow-up of 1328 breast cancer cases, there were 512 deaths reported, 151 of which were from breast cancer. Breast cancer incidence was higher in women in the highest HOMA-IR quartile (HR, 1.34; 95% CI, 1.12-1.61 [P for trend = .003]). Although HOMA-IR was not found to be associated with risk of death from breast cancer (HR, 1.04; 95% CI, 0.60-1.79), women in the highest versus those in the lowest HOMA-IR quartile were at a higher risk of death after breast cancer (HR, 1.78; 95% CI, 1.32-2.39 [P for trend <.001]). CONCLUSIONS Higher levels of insulin resistance in postmenopausal women are associated with higher breast cancer incidence and higher all-cause mortality after breast cancer.
Collapse
Affiliation(s)
- Kathy Pan
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | - Rowan T Chlebowski
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | | | - Marc J Gunter
- The International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Mara Z Vitolins
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Gloria Y F Ho
- Division of Epidemiology, Northwell Health, Great Neck, New York
| | - Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida at Gainesville, Gainesville, Florida
| | | |
Collapse
|
22
|
Relationships Between Serum Expression of IGF-1 and Metabolic Syndrome Metrics in Syrian Women with Breast Cancer. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2020. [DOI: 10.2478/rjdnmd-2019-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background and aims: Insulin-like Growth Factors (IGF-1) plays as mediator between metabolic syndrome (MetS), oxidative stress and breast cancer (BrCa) progression. The objective of this study was to examine the relationships between IGF-1 serum levels and metabolic profile biomarkers in a population group of BrCa patients.
Material and methods: 126 Syrian women with breast lesions were assigned in 3 study groups: I. Malignant breast tumor group, II. Benign breast tumor group and a Normal (control) group. The following biochemical parameters were measured: IGF-1, HDL-cholesterol, LDL-cholesterol, triglycerides (TG) and glucose.
Results: The mean levels of serum IGF- 1 in patients with breast cancer was significantly higher than those with benign tumors but we did not find any correlation between IGF-1 serum levels and tumor stage or lymph nodes metastases. Total cholesterol and LDL-cholesterol levels, along with TG were significantly higher in patients with BrCa versus benign and normal subjects.
Conclusion: Results support the link of metabolic dysregulation and oxidative stress in BrCa progression as elevation of serum IGF-1 levels in BrCa patients are associated with metabolic syndrome markers which eventually adds more risk in cancer progression.
Collapse
|
23
|
Atoum MF, Alzoughool F, Al-Hourani H. Linkage Between Obesity Leptin and Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223419898458. [PMID: 31975779 PMCID: PMC6956603 DOI: 10.1177/1178223419898458] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Many cancers might be influenced by obesity, including breast cancer, the leading cause of cancer death among women. Obesity is a complex state associated with multiple physiological and molecular changes capable of modulating the behavior of breast tumor cells and the surrounding microenvironment. This review discussed the inverse association between obesity and breast cancer among premenopausal breast cancer females and the positive association among postmenopausal. Four mechanisms may link obesity and breast cancer including leptin and leptin receptor expression, adipose chronic inflammation, sex hormone alternation, and insulin and insulinlike growth factor 1 (IGF-1) signaling. Leptin has been involved in breast cancer initiation, development, and progression through signaling transduction network. Leptin functions are strengthened through cross talk with multiple oncogenes, cytokines, and growth factors. Adipose chronic inflammation promotes cancer growth and angiogenesis and modifies the immune responses. A pro-inflammatory microenvironment at tumor site promotes cytokines and pro-inflammatory mediators adjacent to the tumor. Leptin stimulates pro-inflammatory cytokines and promotes T-helper 1 responses. Obesity is common of chronic inflammation. In obese patients, white adipose tissue (WAT) will promote pro-inflammatory mediators that will encourage tumor growth and WAT inflammation. Sex hormone alternation of estrogens is associated with increased risk for hormone-sensitive breast cancers. Estrogens cause tumorigenesis by its effect on signaling pathways that lead to DNA damage, stimulation angiogenesis, mutagenesis, and cell proliferation. In postmenopausal females, and due to termination of ovarian function, estrogens were produced extra gonadally, mainly in peripheral adipose tissues where adrenal-produced androgen precursors are converted to estrogens. Active estradiol leads to breast cancer development by binding to ERα, which is modified by receptor’s interaction of various signal transduction pathways. Hyperinsulinemia and IGF-1 activate the MAPK and PI3K pathways, leading to cancer-promoting effects. Cross talk between insulin/IGF and estrogen signaling pathways promotes hormone-sensitive breast cancer development. Hyperinsulinemia is a risk factor for breast cancer that explains the obesity-breast cancer association. Controlling IGF-1 level and targeting IGF-1 receptors among different breast cancer subtypes may be useful for breast cancer treatment. This review discussed several leptin signaling pathways, highlighting the potential advantage of targeting leptin as a potential target of the novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Foad Alzoughool
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Huda Al-Hourani
- Department of Clinical Nutrition and Dietetics, Hashemite University, Zarqa, Jordan
| |
Collapse
|
24
|
Dong S, Ruiz-Calderon B, Rathinam R, Eastlack S, Maziveyi M, Alahari SK. Knockout model reveals the role of Nischarin in mammary gland development, breast tumorigenesis and response to metformin treatment. Int J Cancer 2019; 146:2576-2587. [PMID: 31525254 DOI: 10.1002/ijc.32690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Previously, our lab discovered the protein Nischarin and uncovered its role in regulating cell migration and invasion via its interactions with several proteins. We subsequently described a role for Nischarin in breast cancer, in which it is frequently underexpressed. To characterize Nischarin's role in breast tumorigenesis and mammary gland development more completely, we deleted a critical region of the Nisch gene (exons 7-10) from the mouse genome and observed the effects. Mammary glands in mutant animals showed delayed terminal end bud formation but did not develop breast tumors spontaneously. Therefore, we interbred the animals with transgenic mice expressing the mouse mammary tumor virus-polyoma middle T-antigen (MMTV-PyMT) oncogene. The MMTV-PyMT mammary glands lacking Nischarin showed increased hyperplasia compared to wild-type animal tissues. Furthermore, we observed significantly increased tumor growth and metastasis in Nischarin mutant animals. Surprisingly, Nischarin deletion decreased activity of AMPK and subsequently its downstream effectors. Given this finding, we treated these animals with metformin, which enhances AMPK activity. Here, we show for the first time, metformin activates AMPK signaling and inhibits tumor growth of Nischarin lacking PyMT tumors suggesting a potential use for metformin as a cancer therapeutic, particularly in the case of Nischarin-deficient breast cancers.
Collapse
Affiliation(s)
- Shengli Dong
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | | | - Rajamani Rathinam
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Steven Eastlack
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, New Orleans, LA
| |
Collapse
|
25
|
Fresques T, Zirbes A, Shalabi S, Samson S, Preto S, Stampfer MR, LaBarge MA. Breast Tissue Biology Expands the Possibilities for Prevention of Age-Related Breast Cancers. Front Cell Dev Biol 2019; 7:174. [PMID: 31555644 PMCID: PMC6722426 DOI: 10.3389/fcell.2019.00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
Preventing breast cancer before it is able to form is an ideal way to stop breast cancer. However, there are limited existing options for prevention of breast cancer. Changes in the breast tissue resulting from the aging process contribute to breast cancer susceptibility and progression and may therefore provide promising targets for prevention. Here, we describe new potential targets, immortalization and inflammaging, that may be useful for prevention of age-related breast cancers. We also summarize existing studies of warfarin and metformin, current drugs used for non-cancerous diseases, that also may be repurposed for breast cancer prevention.
Collapse
Affiliation(s)
- Tara Fresques
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Arrianna Zirbes
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Sundus Shalabi
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Susan Samson
- Breast Science Advocacy Core, Breast Oncology Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Martha R Stampfer
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mark A LaBarge
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
26
|
Abstract
Menopause, the permanent cessation of the menstrual cycle, marks the end of a woman's reproductive lifespan. In addition to changes in sex hormone levels associated with menopause, its timing is another predictor of future health outcomes such as duration of the presence of vasomotor symptoms (VMS) and the risk of hormone-related cancers. With ageing of the population, it is estimated that worldwide 1·2 billion women will be menopausal by the year 2030. Previously the effects of reproductive factors (e.g. parity, age at menarche, pregnancy) and socio-demographic factors on intermediate and long-term health outcomes of menopause have been widely documented. However, little is known about whether diet could have an impact on these. Therefore, we review current evidence on the associations of diet with menopause, presence of VMS and the risk of hormone-related cancers such as ovarian, endometrial and breast cancer. Dietary factors could influence the lifespan of the ovaries and sex-hormones levels, hence the timing of natural menopause. Few studies reported an association between diet, in particular soya consumption, and a reduced risk of VMS. Sustained oestrogen exposure has been associated with a higher risk of hormone-related cancers and thus high-fat and meat diets have been linked with an increased risk of these cancers. However, to better understand the mechanistic pathways involved and to make stronger conclusions for these relationships, further studies investigating the associations of dietary intakes and dietary patterns with menopause, presence of VMS and the risk of hormone-related cancers are required.
Collapse
|
27
|
Suman S, Sharma RK, Kumar V, Sinha N, Shukla Y. Metabolic fingerprinting in breast cancer stages through 1H NMR spectroscopy-based metabolomic analysis of plasma. J Pharm Biomed Anal 2018; 160:38-45. [PMID: 30059813 DOI: 10.1016/j.jpba.2018.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is one of the most common malignancies among women worldwide, which is indeed associated with metabolic reprogramming. However, BC is a very complex and heterogeneous disease, which can relate with the changes in metabolic profiles during BC progression. Hence, investigating the metabolic alterations during BC stage progression may reveal the deregulated pathways and useful metabolic signatures of BC. To demonstrate the metabolic insights, we opted 1H NMR spectroscopy based metabolomics of blood plasma of early and late stage BC (N = 72) with age and gender matched healthy subjects (N = 50). Further, the metabolic profiles were analyzed to delineate the potential signatures of BC by performing multivariate and nonparametric statistical analysis in early and late stages of BC in comparison with healthy subjects. Sixteen metabolites levels were differentially changed (p < 0.05) in the early and late stages of BC from healthy subjects. Among them, the levels of hydroxybutyrate, lysine, glutamate, glucose, N-acetyl glycoprotein, Lactate were highly distinguished in BC stages and showed a good biomarker potential using receiver-operating curves based diagnostic models. Furthermore, the significant modulation and good diagnostic performances of glutamate, N-acetyl glycoprotein and Lactate in LBC as compared to EBC give their significance in the BC progression. In general, our observations demonstrate that these panels of metabolites may act as vital component of the metabolism of early to late stage BC progression. Our results also open new avenue towards early and late stage BC diagnosis and intervention implying metabolomics approaches.
Collapse
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, 31 Vishvigyan Bhawan, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Post Box 80, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Raj Kumar Sharma
- Center of Biomedical Research, SGPGIMS-campus, Raibareilly Road, Lucknow, U.P., 226014, India
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Chowk, Lucknow, 226003, India
| | - Neeraj Sinha
- Center of Biomedical Research, SGPGIMS-campus, Raibareilly Road, Lucknow, U.P., 226014, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, 31 Vishvigyan Bhawan, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Post Box 80, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|