1
|
Cheng H, Liu Y, Cheng M, Li W, Sun M, Tang Q, Ma J, Li P, Gong T. IDH2 regulates U2AF1 expression and hydroxymethylation in MDS patients. Biotechnol Genet Eng Rev 2024; 40:788-799. [PMID: 36942631 DOI: 10.1080/02648725.2023.2190953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The expression of some genes regulated by their DNA methylation is involved in pathogenesis and disease progression of myelodysplastic syndrome (MDS), which is characterised by abnormal differentiation and development of myeloid cells. Therefore, it is significant for us to work on investigating what factors regulate U2AF1 expression and hydroxymethylation in MDS patients. However, the members of TET protein family can change 5-methylcytosine (5mC) into 5-hydroxymethylcytosine5-methyl cytosine (5hmC). In general, 5mC and 5hmC levels maintain dynamic equilibrium, and their imbalance is associated with the onset and progression of some tumors. In this study, the expression and 5mC and 5hmC levels of U2AF1 gene decreased significantly after the treatment by decitabine in Mutz-1 cells. The decreased degree of 5hmC is far greater than that of 5mC. IDH2 expression decreased significantly followed by U2AF1 5hmC levels. However, the expression of other hydroxymethylation-related genes such as IDH1, TET1 and TET2 also decreased, but the difference did not achieve significance. Compared with IDH2 or U2AF1 wild-type MDS patients, U2AF1 expression and 5hmC level in patients with these two gene mutations were both significantly reduced.
Collapse
Affiliation(s)
- Huanchen Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Yu Liu
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Mei Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Wei Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Meng Sun
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Qinghua Tang
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Jun Ma
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Pu Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Tiejun Gong
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Le MA, Al-Moussally F, Carilli A. Response to Azacytidine in a Patient With Refractory Peripheral T-cell Lymphoma With TET2 Mutation. Cureus 2024; 16:e65416. [PMID: 39184618 PMCID: PMC11344967 DOI: 10.7759/cureus.65416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are an aggressive form of non-Hodgkin lymphomas. PTCLs have multiple subtypes, with PTCL not otherwise specified (PTCL-NOS) being the most common. This subtype usually has a high rate of relapse. Making an accurate diagnosis requires molecular genetic analyses, histopathological examination, and immunophenotyping. Treatment for PTCL traditionally starts with the CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone). We present a case of a patient with PTCL-NOS who progressed despite multiple treatment regimens, including both traditional and novel therapeutic agents, and finally achieved good results with azacytidine, selected based on a TET2 mutation. This case proposes future research into Azacytidine's efficacy in this patient population and further exploration of the broader utility of epigenetic therapies in PTCL.
Collapse
Affiliation(s)
- Minh-Anh Le
- Internal Medicine, University of Central Florida (UCF)HCA Florida Healthcare (Greater Orlando) Internal Medicine Residency Program, Orlando, USA
| | - Feras Al-Moussally
- Internal Medicine, University of Central Florida (UCF)HCA Florida Healthcare (Greater Orlando) Internal Medicine Residency Program, Orlando, USA
| | - Allison Carilli
- Oncology, University of Central Florida College of Medicine, Orlando, USA
| |
Collapse
|
3
|
Nannya Y, Tobiasson M, Sato S, Bernard E, Ohtake S, Takeda J, Creignou M, Zhao L, Kusakabe M, Shibata Y, Nakamura N, Watanabe M, Hiramoto N, Shiozawa Y, Shiraishi Y, Tanaka H, Yoshida K, Kakiuchi N, Makishima H, Nakagawa M, Usuki K, Watanabe M, Imada K, Handa H, Taguchi M, Kiguchi T, Ohyashiki K, Ishikawa T, Takaori-Kondo A, Tsurumi H, Kasahara S, Chiba S, Naoe T, Miyano S, Papaemanuil E, Miyazaki Y, Hellström-Lindberg E, Ogawa S. Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms. Blood Adv 2023; 7:3624-3636. [PMID: 36989067 PMCID: PMC10365941 DOI: 10.1182/bloodadvances.2022009564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Azacitidine is a mainstay of therapy for myelodysplastic syndrome (MDS)-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their posttreatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pretreatment (n = 449) and posttreatment (n = 289) bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their posttreatment clone size on treatment outcomes. In Cox proportional hazard modeling, multihit TP53 mutation (hazard ratio [HR], 2.03; 95% confidence interval [CI], 1.42-2.91; P < .001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P = .009), and DDX41 mutation (HR, 0.33; 95% CI, 0.17-0.62; P < .001), together with age, high-risk karyotypes, low platelets, and high blast counts, independently predicted OS. Posttreatment clone size accounting for all drivers significantly correlated with International Working Group (IWG) response (P < .001, using trend test), except for that of DDX41-mutated clones, which did not predict IWG response. Combined, IWG response and posttreatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, the molecular International Prognostic Scoring System (IPSS-M; c-index, 0.653 vs 0.688; P < .001, using likelihood ratio test). In conclusion, evaluation of posttreatment clone size, together with the pretreatment mutational profile as well as the IWG response play a role in better prognostication of azacitidine-treated patients with myelodysplasia.
Collapse
Affiliation(s)
- Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shinya Sato
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Japan Adult Leukemia Study Group, Japan
| | - Elsa Bernard
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maria Creignou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lanying Zhao
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Kusakabe
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Yuhei Shibata
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Nobuhiko Nakamura
- Department of Hematology & Infectious Disease, Gifu University Hospital, Gifu, Japan
| | - Mizuki Watanabe
- Department of Hematology and Oncology, Kyoto University, Kyoto, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- Department of Integrated Data Science, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Mitsumasa Watanabe
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Kazunori Imada
- Department of Hematology, Japan Red Cross Osaka Hospital, Osaka, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Masataka Taguchi
- Department of Hematology, Sasebo City General Hospital, Nagasaki, Japan
| | - Toru Kiguchi
- Department of Hematology, Chugoku Central Hospital, Hiroshima, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | | | - Hisashi Tsurumi
- Department of Hematology & Infectious Disease, Gifu University Hospital, Gifu, Japan
| | - Senji Kasahara
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Shigeru Chiba
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Tomoki Naoe
- Japan Adult Leukemia Study Group, Japan
- Nagoya Medical Center, Aichi, Japan
| | - Satoru Miyano
- Department of Integrated Data Science, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Elli Papaemanuil
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Japan Adult Leukemia Study Group, Japan
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Carreño-Tarragona G, Álvarez-Larrán A, Harrison C, Martínez-Ávila JC, Hernández-Boluda JC, Ferrer-Marín F, Radia DH, Mora E, Francis S, González-Martínez T, Goddard K, Pérez-Encinas M, Narayanan S, Raya JM, Singh V, Gutiérrez X, Toth P, Amat-Martínez P, Mcilwaine L, Alobaidi M, Mayani K, McGregor A, Stuckey R, Psaila B, Segura A, Alvares C, Davidson K, Osorio S, Cutting R, Sweeney CP, Rufián L, Moreno L, Cuenca I, Smith J, Morales ML, Gil-Manso R, Koutsavlis I, Wang L, Mead AJ, Rozman M, Martínez-López J, Ayala R, Cross NCP. CNL and aCML should be considered as a single entity based on molecular profiles and outcomes. Blood Adv 2023; 7:1672-1681. [PMID: 36375042 PMCID: PMC10182308 DOI: 10.1182/bloodadvances.2022008204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) are rare myeloid disorders that are challenging with regard to diagnosis and clinical management. To study the similarities and differences between these disorders, we undertook a multicenter international study of one of the largest case series (CNL, n = 24; aCML, n = 37 cases, respectively), focusing on the clinical and mutational profiles (n = 53 with molecular data) of these diseases. We found no differences in clinical presentations or outcomes of both entities. As previously described, both CNL and aCML share a complex mutational profile with mutations in genes involved in epigenetic regulation, splicing, and signaling pathways. Apart from CSF3R, only EZH2 and TET2 were differentially mutated between them. The molecular profiles support the notion of CNL and aCML being a continuum of the same disease that may fit best within the myelodysplastic/myeloproliferative neoplasms. We identified 4 high-risk mutated genes, specifically CEBPA (β = 2.26, hazard ratio [HR] = 9.54, P = .003), EZH2 (β = 1.12, HR = 3.062, P = .009), NRAS (β = 1.29, HR = 3.63, P = .048), and U2AF1 (β = 1.75, HR = 5.74, P = .013) using multivariate analysis. Our findings underscore the relevance of molecular-risk classification in CNL/aCML as well as the importance of CSF3R mutations in these diseases.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/genetics
- Epigenesis, Genetic
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Mutation
Collapse
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | | | - Claire Harrison
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - José Carlos Martínez-Ávila
- Agricultural Economics, Statistics and Business Management Department, Escuela Técnica Superior de Ingeniería Agrónomica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Francisca Ferrer-Marín
- Hematology Department, Hospital Morales Meseguer, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Deepti H. Radia
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - Elvira Mora
- Hematology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Sebastian Francis
- Hematology Department, Sheffield Hospital, Sheffield, United Kingdom
| | | | - Kathryn Goddard
- Hematology Department, Rotherham Hospital, Rotherham, United Kingdom
| | - Manuel Pérez-Encinas
- Hematology Department, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Srinivasan Narayanan
- Hematology Department, University Hospital Southampton, Southampton, United Kingdom
| | - José María Raya
- Hematology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Vikram Singh
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Xabier Gutiérrez
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Peter Toth
- Hematology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Louisa Mcilwaine
- Hematology Department, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Magda Alobaidi
- Department of Haematology, Chelsea and Westminster NHS Trust West Middlesex Hospital, London, United Kingdom
| | - Karan Mayani
- Hematology Department, Hospital General de La Palma, Santa Cruz de Tenerife, Spain
| | - Andrew McGregor
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Bethan Psaila
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Adrián Segura
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Caroline Alvares
- Hematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Kerri Davidson
- Hematology Department, Kirkcaldy Hospital, Fife, Scotland
| | - Santiago Osorio
- Hematology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Robert Cutting
- Hematology Department, Doncaster Hospital, Doncaster, Yorkshire, England
| | - Caroline P. Sweeney
- Hematology Department, Vale of Leven Hospital, Alexandria, West Dunbartonshire, Scotland
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Laura Moreno
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Isabel Cuenca
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Jeffery Smith
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - María Luz Morales
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rodrigo Gil-Manso
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Ioannis Koutsavlis
- Hematology Department, Western General Hospital, Edinburgh, United Kingdom
| | - Lihui Wang
- Haemato-Oncology Diagnostic Service, Liverpool Clinical Laboratories, Liverpool University Hospital, Liverpool, United Kingdom
| | - Adam J. Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - María Rozman
- Hemopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Nicholas C. P. Cross
- Wessex Regional Genetics Laboratory, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Urabe A, Chi S, Minami Y. The Immuno-Oncology and Genomic Aspects of DNA-Hypomethylating Therapeutics in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043727. [PMID: 36835136 PMCID: PMC9961620 DOI: 10.3390/ijms24043727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypomethylating agents (HMAs) have been used for decades in the treatment of hematologic neoplasms, and now, have gathered attention again in terms of their combination with potent molecular-targeted agents such as a BCL-6 inhibitor venetoclax and an IDH1 inhibitor ivosidenib, as well as a novel immune-checkpoint inhibitor (anit-CD47 antibody) megrolimab. Several studies have shown that leukemic cells have a distinct immunological microenvironment, which is at least partially due to genetic alterations such as the TP53 mutation and epigenetic dysregulation. HMAs possibly improve intrinsic anti-leukemic immunity and sensitivity to immune therapies such as PD-1/PD-L1 inhibitors and anti-CD47 agents. This review describes the immuno-oncological backgrounds of the leukemic microenvironment and the therapeutic mechanisms of HMAs, as well as current clinical trials of HMAs and/or venetoclax-based combination therapies.
Collapse
Affiliation(s)
| | | | - Yosuke Minami
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| |
Collapse
|
6
|
Zhang X, Hsi ED, Crane GM, Cheng Y. Biallelic TET2 mutations and canonical ASXL1 mutations are frequent and cooccur in Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN): An institutional experience and review of literature. EJHAEM 2023; 4:236-240. [PMID: 36819168 PMCID: PMC9928664 DOI: 10.1002/jha2.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is recurrently mutated in epigenetic pathway genes. We studied the myeloid-related genetic mutations in a cohort of five patients with BPDCN and one paired relapse case at our institution and identified a high frequency of biallelic TET2 and canonical ASXL1 (c.1934dupG) mutations. The number of cases is small, but the variant allele fraction (VAF) sums of the TET2 mutations, as well as the persistence of TET2 mutations in a case of relapsed BPDCN, suggest an ancestral/founder nature of TET2 clones in the cases. Further literature review shows a high frequency of biallelic TET2 mutations in reported cases of BPDCN.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Eric D. Hsi
- Department of PathologyWake Forest University School of MedicineWinston‐SalemNorth Carolina
| | | | - Yu‐Wei Cheng
- Department of Laboratory MedicineCleveland ClinicClevelandOhio
| |
Collapse
|
7
|
Stölzel F, Fordham SE, Nandana D, Lin WY, Blair H, Elstob C, Bell HL, Mohr B, Ruhnke L, Kunadt D, Dill C, Allsop D, Piddock R, Soura EN, Park C, Fadly M, Rahman T, Alharbi A, Wobus M, Altmann H, Röllig C, Wagenführ L, Jones GL, Menne T, Jackson GH, Marr HJ, Fitzgibbon J, Onel K, Meggendorfer M, Robinson A, Bziuk Z, Bowes E, Heidenreich O, Haferlach T, Villar S, Ariceta B, Diaz RA, Altschuler SJ, Wu LF, Prosper F, Montesinos P, Martinez-Lopez J, Bornhäuser M, Allan JM. Biallelic TET2 mutations confer sensitivity to 5'-azacitidine in acute myeloid leukemia. JCI Insight 2023; 8:e150368. [PMID: 36480300 PMCID: PMC9977313 DOI: 10.1172/jci.insight.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.
Collapse
Affiliation(s)
- Friedrich Stölzel
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Sarah E. Fordham
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Devi Nandana
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hayden L. Bell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Brigitte Mohr
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Claudia Dill
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Daniel Allsop
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emmanouela-Niki Soura
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohd Fadly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manja Wobus
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Gail L. Jones
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Tobias Menne
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Graham H. Jackson
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Helen J. Marr
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kenan Onel
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Amber Robinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Bziuk
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Bowes
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Sara Villar
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Navarra, Spain
- IdiSNA, Navarra, Spain
| | - Rosa Ayala Diaz
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Felipe Prosper
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - James M. Allan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Hu L, Zhang X, Li H, Lin S, Zang S. Targeting TET2 as a Therapeutic Approach for Angioimmunoblastic T Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14225699. [PMID: 36428791 PMCID: PMC9688210 DOI: 10.3390/cancers14225699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), a type of malignant lymphoma with unique genomic aberrations, significant clinicopathological features, and poor prognosis, is characterized by immune system dysregulation. Recent sequencing studies have identified recurrent mutations and interactions in tet methylcytosine dioxygenase 2 (TET2), ras homology family member A (RHOA), DNA methyltransferase 3 alpha (DNMT3A), and mitochondrial isocitrate dehydrogenase II (IDH2). Notably, since B-cell lymphomas are frequently observed along with AITL, this review first summarizes its controversial mechanisms based on traditional and recent views. Epigenetic regulation represented by TET2 plays an increasingly important role in understanding the multi-step and multi-lineage tumorigenesis of AITL, providing new research directions and treatment strategies for patients with AITL. Here, we review the latest advances in our understanding of AITL and highlight relevant issues that have yet to be addressed in clinical practice.
Collapse
Affiliation(s)
- Lina Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huifeng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-13559131526
| |
Collapse
|
9
|
Herek TA, Bouska A, Lone W, Sharma S, Amador C, Heavican TB, Li Y, Wei Q, Jochum D, Greiner TC, Smith L, Pileri S, Feldman AL, Rosenwald A, Ott G, Lim ST, Ong CK, Song J, Jaffe ES, Wang GG, Staudt L, Rimsza LM, Vose J, d'Amore F, Weisenburger DD, Chan WC, Iqbal J. DNMT3A mutations define a unique biological and prognostic subgroup associated with cytotoxic T cells in PTCL-NOS. Blood 2022; 140:1278-1290. [PMID: 35639959 PMCID: PMC9479030 DOI: 10.1182/blood.2021015019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A (DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell lymphoma and novel molecular subtypes identified within PTCL-not otherwise specified (PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21 cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed toward the methyltransferase domain and dimerization motif (S881-R887). Transcriptional profiling demonstrated significant enrichment of activated CD8+ T-cell cytotoxic gene signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating interferon-γ (IFN-γ), T-cell receptor signaling, and EOMES (eomesodermin), a master transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882, -Q886, and -V716, vs WT) in CD8+ T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore, stable, ectopic expression of the DNMT3A mutants in primary CD3+ T-cell cultures resulted in the preferential outgrowth of CD8+ T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD3+ T cells revealed differential CD8+ T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this subset.
Collapse
Affiliation(s)
- Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Qi Wei
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Dylan Jochum
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - Stefano Pileri
- Division of Diagnostic Hematopathology, European Institute of Oncology-IEO IRCCS, Milan, Italy
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Elaine S Jaffe
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Louis Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | - Julie Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE; and
| | - Francesco d'Amore
- Department of Haematology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
10
|
Hu C, Wang X. Predictive and prognostic value of gene mutations in myelodysplastic syndrome treated with hypomethylating agents: a meta-analysis. Leuk Lymphoma 2022; 63:2336-2351. [PMID: 35543621 DOI: 10.1080/10428194.2022.2070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the effect of gene mutations on overall response rate (ORR) and overall survival (OS) in myelodysplastic syndrome (MDS) treated with hypomethylating agents (HMAs) has been explored, the effect is still controversial. We performed this meta-analysis to investigate the effect. The pooled odds ratio (OR) and 95% confidence interval (CI) for ORR and the pooled hazard ratio (HR) and 95%CI for OS were chosen to estimate the effect. The pooled OR of TET2 was 0.73 (95%CI: 0.59-0.91, p = 0.005) and the pooled OR of ASXL1 was 1.38 (95%CI: 1.12-1.71, p = 0.003). As for prognosis, the pooled HR of RUNX1 was 1.45 (95%CI: 1.15-1.85, p = 0.002). The pooled HR of TP53 was 2.30 (95%CI: 1.83-2.90, p < 0.001) and the pooled HR of U2AF1 was 1.41 (95%CI: 1.15-1.74, p = 0.001). There was no statistical difference shown in other genes. Therefore, TET2 mutation and ASXL1 wild-type were the predictor of better response to HMAs. Mutations of TP53, RUNX1, and U2AF1 were associated with poor prognosis in MDS.
Collapse
Affiliation(s)
- Chaolu Hu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Yang X, Ma L, Zhang X, Huang L, Wei J. Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute myeloid leukemia. Exp Hematol Oncol 2022; 11:11. [PMID: 35236415 PMCID: PMC8889667 DOI: 10.1186/s40164-022-00263-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases arising from the bone marrow (BM), and approximately 30% of MDS eventually progress to AML, associated with increasingly aggressive neoplastic hematopoietic clones and poor survival. Dysregulated immune microenvironment has been recognized as a key pathogenic driver of MDS and AML, causing high rate of intramedullary apoptosis in lower-risk MDS to immunosuppression in higher-risk MDS and AML. Immune checkpoint molecules, including programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), play important roles in oncogenesis by maintaining an immunosuppressive tumor microenvironment. Recently, both molecules have been examined in MDS and AML. Abnormal inflammatory signaling, genetic and/or epigenetic alterations, interactions between cells, and treatment of patients all have been involved in dysregulating PD-1/PD-L1 signaling in these two diseases. Furthermore, with the PD-1/PD-L1 pathway activated in immune microenvironment, the milieu of BM shift to immunosuppressive, contributing to a clonal evolution of blasts. Nevertheless, numerous preclinical studies have suggested a potential response of patients to PD-1/PD-L1 blocker. Current clinical trials employing these drugs in MDS and AML have reported mixed clinical responses. In this paper, we focus on the recent preclinical advances of the PD-1/PD-L1 signaling in MDS and AML, and available and ongoing outcomes of PD-1/PD-L1 inhibitor in patients. We also discuss the novel PD-1/PD-L1 blocker-based immunotherapeutic strategies and challenges, including identifying reliable biomarkers, determining settings, and exploring optimal combination therapies.
Collapse
Affiliation(s)
- Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Varghese LN, Carreño-Tarragona G, Levy G, Gutiérrez-López de Ocáriz X, Rapado I, Martínez-López J, Ayala R, Constantinescu SN. MPL S505C enhances driver mutations at W515 in essential thrombocythemia. Blood Cancer J 2021; 11:188. [PMID: 34845187 PMCID: PMC8630145 DOI: 10.1038/s41408-021-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Leila N Varghese
- Université Catholique de Louvain and de Duve Institute, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Gonzalo Carreño-Tarragona
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Gabriel Levy
- Université Catholique de Louvain and de Duve Institute, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Xabier Gutiérrez-López de Ocáriz
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Inmaculada Rapado
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Joaquín Martínez-López
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Rosa Ayala
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain.
| | - Stefan N Constantinescu
- Université Catholique de Louvain and de Duve Institute, Brussels, Belgium. .,Ludwig Institute for Cancer Research, Brussels, Belgium. .,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium. .,Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Fleischmann M, Schnetzke U, Hochhaus A, Scholl S. Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:5722. [PMID: 34830877 PMCID: PMC8616498 DOI: 10.3390/cancers13225722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) has improved in recent years and several new therapeutic options have been approved. Most of them include mutation-specific approaches (e.g., gilteritinib for AML patients with activating FLT3 mutations), or are restricted to such defined AML subgroups, such as AML-MRC (AML with myeloid-related changes) or therapy-related AML (CPX-351). With this review, we aim to present a comprehensive overview of current AML therapy according to the evolved spectrum of recently approved treatment strategies. We address several aspects of combined epigenetic therapy with the BCL-2 inhibitor venetoclax and provide insight into mechanisms of resistance towards venetoclax-based regimens, and how primary or secondary resistance might be circumvented. Furthermore, a detailed overview on the current status of AML immunotherapy, describing promising concepts, is provided. This review focuses on clinically important aspects of current and future concepts of AML treatment, but will also present the molecular background of distinct targeted therapies, to understand the development and challenges of clinical trials ongoing in AML patients.
Collapse
Affiliation(s)
| | | | | | - Sebastian Scholl
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07740 Jena, Germany; (M.F.); (U.S.); (A.H.)
| |
Collapse
|
14
|
Onecha E, Rapado I, Luz Morales M, Carreño-Tarragona G, Martinez-Sanchez P, Gutierrez X, Sáchez Pina JM, Linares M, Gallardo M, Martinez-López J, Ayala R. Monitoring of clonal evolution of acute myeloid leukemia identifies the leukemia subtype, clinical outcome and potential new drug targets for post-remission strategies or relapse. Haematologica 2021; 106:2325-2333. [PMID: 32732356 PMCID: PMC8409047 DOI: 10.3324/haematol.2020.254623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
In cases of treatment failure in acute myeloid leukemia (AML), the utility of mutational profiling in primary refractoriness and relapse is not established. We undertook a perspective study using next-generation sequencing (NGS) of clinical follow-up samples (n=91) from 23 patients with AML with therapeutic failure to cytarabine plus idarubicin or fludarabine. Cases of primary refractoriness to treatment were associated with a lower number of DNA variants at diagnosis than cases of relapse (median 1.67 and 3.21, respectively, P=0.029). The most frequently affected pathways in patients with primary refractoriness were signaling, transcription and tumor suppression, whereas methylation and splicing pathways were mainly implicated in relapsed patients. New therapeutic targets, either by an approved drug or within clinical trials, were not identified in any of the cases of refractoriness (zero of ten); however, eight potential new targets were found in five relapsed patients (five of 13, P=0.027): one IDH2, three SF3B1, two KRAS, one KIT and one JAK2. Sixty-five percent of all variants detected at diagnosis were not detected at complete response. Specifically, 100% of variants in EZH2, RUNX1, VHL, FLT3, ETV6, U2AF1, PHF6 and SF3B1 disappeared at complete response, indicating their potential use as markers to evaluate minimal residual disease for follow-up of AML. Molecular follow-up using a custom NGS myeloid panel of 32 genes in the post-treatment evaluation of AML can help in the stratification of prognostic risk, the selection of minimal residual disease markers to monitor the response to treatment and guide post-remission strategies targeting AML, and the selection of new drugs for leukemia relapse.
Collapse
Affiliation(s)
- Esther Onecha
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | | | | | | | - Xabier Gutierrez
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | - María Linares
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | - Miguel Gallardo
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| |
Collapse
|
15
|
Wang W, Auer P, Zhang T, Spellman S, Carlson KS, Nazha A, Bolon YT, Saber W. Impact of Epigenomic Hypermethylation at TP53 on Allogeneic Hematopoietic Cell Transplantation Outcomes for Myelodysplastic Syndromes. Transplant Cell Ther 2021; 27:659.e1-659.e6. [PMID: 33992829 PMCID: PMC8421055 DOI: 10.1016/j.jtct.2021.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 01/25/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders for which allogeneic hematopoietic cell transplantation (HCT) is currently the sole curative treatment. Epigenetic lesions are considered a major pathogenetic determinant in many cancers, and in MDS, epigenetic-based interventions have emerged as life-prolonging therapies. However, the impact of epigenomic aberrations on HCT outcomes among patients with MDS are not well understood. We hypothesized that epigenomic signatures in MDS patients before undergoing HCT serve as a novel prognostic indicator of the risk of post-HCT MDS relapse. To evaluate these epigenomic signatures in MDS patients, we analyzed reduced representation bisulfite sequencing profiles in a matched case-control population of 94 patients. Among these HCT recipients, 47 patients with MDS who relapsed post-HCT (cases) were matched 1:1 to patients with MDS who did not relapse (controls). Only patients with wild-type TP53, RAS pathway, and JAK2 mutations were included in this study to promote the discovery of novel factors. Cases were matched with controls based on conditioning regimen intensity, age, sex, Revised International Prognostic Scoring System, Karnofsky Performance Status, graft type, and donor type. Pre-HCT whole-blood samples from cases and matched controls were obtained from the Center for International Blood and Marrow Transplant Research repository. We comprehensively identified differentially methylated regions (DMRs) by comparing the methylation patterns among matched cases and controls. Our findings show that cases displayed more hyper-DMRs pretransplantation compared with controls, even after adjusting for pre-HCT use of hypomethylating agents. Hyper-DMRs specific to cases were mapped to the transcription start site of 218 unique genes enriched in 5 different signaling pathways that may serve as regions of interest and factors to consider as prognostic determinants of post-HCT relapse in MDS patients. Interestingly, although patients selected for this cohort were wild-type for the TP53 gene, cases showed significantly greater levels of methylation at TP53 compared with controls. These findings indicate that previously identified prognostic genes for MDS, such as TP53, may affect disease relapse not only through genetic mutation, but also through epigenetic methylation mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Paul Auer
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Tao Zhang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | | | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Avon Lake, Ohio
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
16
|
Carreño-Tarragona G, Varghese LN, Sebastián E, Gálvez E, Marín-Sánchez A, López-Muñoz N, Nam-Cha S, Martínez-López J, Constantinescu SN, Sevilla J, Ayala R. A typical acute lymphoblastic leukemia JAK2 variant, R683G, causes an aggressive form of familial thrombocytosis when germline. Leukemia 2021; 35:3295-3298. [PMID: 33846542 DOI: 10.1038/s41375-021-01239-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Leila N Varghese
- Université Catholique de Louvain and de Duve Institute, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Elena Sebastián
- Hematology and Hemotherapy Department, Hospital Infantil Universitario Niño Jesús, Fundación para la investigación Biomédica HIUNJ, CIBERER, Madrid, Spain
| | - Eva Gálvez
- Hematology and Hemotherapy Department, Hospital Infantil Universitario Niño Jesús, Fundación para la investigación Biomédica HIUNJ, CIBERER, Madrid, Spain
| | - Alberto Marín-Sánchez
- Haematology and Haemotherapy Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Nieves López-Muñoz
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Syonghyun Nam-Cha
- Pathology Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Joaquín Martínez-López
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Stefan N Constantinescu
- Université Catholique de Louvain and de Duve Institute, Brussels, Belgium. .,Ludwig Institute for Cancer Research, Brussels, Belgium. .,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium.
| | - Julián Sevilla
- Hematology and Hemotherapy Department, Hospital Infantil Universitario Niño Jesús, Fundación para la investigación Biomédica HIUNJ, CIBERER, Madrid, Spain
| | - Rosa Ayala
- Haematology and Haemotherapy Department, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain.
| |
Collapse
|
17
|
Saliba AN, John AJ, Kaufmann SH. Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:125-142. [PMID: 33796823 PMCID: PMC8011583 DOI: 10.20517/cdr.2020.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents' mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.
Collapse
Affiliation(s)
- Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - August J John
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Watad A, Kacar M, Bragazzi NL, Zhou Q, Jassam M, Taylor J, Roman E, Smith A, Jones RA, Amital H, Cargo C, McGonagle D, Savic S. Somatic Mutations and the Risk of Undifferentiated Autoinflammatory Disease in MDS: An Under-Recognized but Prognostically Important Complication. Front Immunol 2021; 12:610019. [PMID: 33679746 PMCID: PMC7933213 DOI: 10.3389/fimmu.2021.610019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
Objectives: We theorized that myelodysplastic syndrome (MDS) with somatic mutations and karyotype abnormalities are associated with autoinflammation, and that the presence of autoinflammatory disease affected prognosis in MDS. Methods: One hundred thirty-four MDS patients were assessed for the prevalence of autoinflammatory complications and its link with karyotypes and somatic mutation status. Autoinflammatory complications were described either as well-defined autoinflammatory diseases (AD) or undifferentiated "autoinflammatory disease" (UAD) (defined as CRP over 10.0 mg/L on five consecutive occasions, taken at separate times and not explained by infection). Several patient characteristics including demographic, clinical, laboratory, cytogenetics charts, and outcomes, were compared between different groups. Results: Sixty-two (46.3%) patients had an autoinflammatory complication manifesting as arthralgia (43.5% vs. 23.6%, p = 0.0146), arthritis (30.6% vs. 15.3%, p = 0.0340), skin rash (27.4% vs. 12.5%, p = 0.0301), pleuritis (14.5% vs. 4.2%, p = 0.0371) and unexplained fever (27.4% vs. 0%, p < 0.0001). AD were found in 7.4% of MDS patients (with polymyalgia rheumatic being the most frequently one). Classical autoimmune diseases were found only in 4 MDS patients (3.0%). Transcription factor pathway mutations (RUNX1, BCOR, WTI, TP53) (OR 2.20 [95%CI 1.02-4.75], p = 0.0451) and abnormal karyotypes (OR 2.76 [95%CI 1.22-6.26], p = 0.0153) were associated with autoinflammatory complications. Acute leukaemic transformation was more frequent in MDS patients with autoinflammatory features than those without (27.4% vs. 9.7%, p = 0.0080). Conclusions: Autoinflammatory complications are common in MDS. Somatic mutations of transcription factor pathways and abnormal karyotypes are associated with greater risk of autoinflammatory complications, which are themselves linked to malignant transformation and a worse prognosis.
Collapse
Affiliation(s)
- Abdulla Watad
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mark Kacar
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Qiao Zhou
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Rheumatology & Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Miriam Jassam
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Jan Taylor
- Department of Haematology, St James's University Hospital, Leeds, United Kingdom
| | - Eve Roman
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Alexandra Smith
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Richard A. Jones
- HMDS Department, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Howard Amital
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Catherine Cargo
- HMDS Department, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Dennis McGonagle
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
| | - Sinisa Savic
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
19
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
20
|
Yang Y, Li J, Geng Y, Liu L, Li D. Azacitidine regulates DNA methylation of GADD45γ in myelodysplastic syndromes. J Clin Lab Anal 2020; 35:e23597. [PMID: 33080073 PMCID: PMC7891504 DOI: 10.1002/jcla.23597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a heterogeneous clonal disease originated from hematopoietic stem cells. Epigenetic studies had demonstrated that DNA methylation and histone acetylation were abnormal in MDS. Azacitidine is an effective drug in the treatment of demethylation. Methods RT‐PCR was performed to determine GADD45γ in 15 MDS clinical samples. Myelodysplastic syndrome cell lines SKM‐1 and HS‐5 were transfected with GADD45γ eukaryotic expression vector and/or GADD45γ shRNA interference plasmid, and treated with azacitidine. Proliferation and apoptosis were examined by CCK‐8 and Western blot analysis to confirm the function role of GADD45γ and azacitidine. The methylation level of GADD45γ gene was detected by bisulfite conversion and PCR. Results This study found that GADD45γ gene was down‐expressed in MDS patients' bone marrow and MDS cell lines, and the down‐regulation of GADD45γ in MDS could inhibit MDS cell apoptosis and promote proliferation. Azacitidine, a demethylation drug, could restore the expression of GADD45γ in MDS cells and inhibit the proliferation of MDS cells by inducing apoptosis, which was related to prognosis and transformation. Conclusion This study indicated that GADD45γ was expected to become a new target of MDS‐targeted therapy. The findings of this study provided a new direction for the research and development of new MDS clinical drugs, and gave a new idea for the development of MDS demethylation drug to realize precise treatment.
Collapse
Affiliation(s)
- Yanli Yang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Jun Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Yinghua Geng
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Dianming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
21
|
Huang X, Wang X. Effect of enhancer of zeste homolog 2 mutations on the prognosis of patients with myelodysplastic syndrome: A meta-analysis. Medicine (Baltimore) 2020; 99:e21900. [PMID: 32846854 PMCID: PMC7447370 DOI: 10.1097/md.0000000000021900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Gene mutations with important prognostic roles have been identified in patients with myelodysplastic syndrome (MDS). Overall, it is not yet fully clear whether enhancer of zeste homolog 2 (EZH2) is affected and contributes to the disease in MDS patients. Thus, we performed a meta-analysis to investigate the effects of EZH2 mutations on the prognosis of patients with MDS. METHODS We searched English-language databases (PubMed, Embase, and Cochrane Library) for studies published on the effects of EZH2 mutations in MDS patients. The study had to include at least 1 of the following indices as therapeutic evaluation data: overall survival (OS), transformation time to leukemia, and International Prognostic Scoring System risk. Revman, version 5.2 software was used for all statistical processing. We calculated the risk ratio and the 95% confidence interval (CI) of continuous variables, and determined the hazard ratio and 95% CI of time-to-event data. RESULTS We included 5 studies with a total enrolment of 994 patients. There was a significant adverse effect on OS in the EZH2-mutation group compared to the unmutated group (hazard ratio = 2.47, 95% CI: 1.37-4.47, P < .00001), while the heterogeneity was relatively high (I = 68%). There was no significant correlation between EZH2 mutations and IPSS risk (low/int-1 vs int-2/high) (odds ratio: 0.69, 95% CI: 0.14-3.39, P = .65), with significant heterogeneity (I = 78%). The analysis did not show significant publication bias in the studies. CONCLUSION This meta-analysis indicated an adverse effect of EZH2 mutations with regard to OS in patients with MDS. However, larger cohort trials are still needed to better understand the prognostic impacts of EZH2 mutations on MDS patients.
Collapse
|
22
|
Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. Leukemia 2020; 34:2592-2606. [PMID: 32704161 PMCID: PMC7376827 DOI: 10.1038/s41375-020-0990-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
It has been nearly half a century since angioimmunoblastic T-cell lymphoma (AITL) was characterized in the early 1970’s. Our understanding of the disease has dramatically changed due to multiple discoveries and insights. One of the key features of AITL is aberrant immune activity. Although AITL is now understood to be a neoplastic disease, pathologists appreciated that it was an inflammatory condition. The more we understand AITL at cellular and genetic levels, the more we view it as both a neoplastic and an inflammatory disease. Here, we review recent progress in our understanding of AITL, focusing on as yet unsolved questions.
Collapse
Affiliation(s)
- Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
23
|
Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS? Blood Adv 2020; 3:3454-3460. [PMID: 31714959 DOI: 10.1182/bloodadvances.2019000680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
This article has a companion Point by Thol and Platzbecker.
Collapse
|
24
|
Onecha E, Ruiz-Heredia Y, Martínez-Cuadrón D, Barragán E, Martinez-Sanchez P, Linares M, Rapado I, Perez-Oteyza J, Magro E, Herrera P, Rojas JL, Gorrochategui J, Villoria J, Boluda B, Sargas C, Ballesteros J, Montesinos P, Martínez-López J, Ayala R. Improving the prediction of acute myeloid leukaemia outcomes by complementing mutational profiling with ex vivo chemosensitivity. Br J Haematol 2020; 189:672-683. [PMID: 32068246 DOI: 10.1111/bjh.16432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Refractoriness to induction therapy and relapse after complete remission are the leading causes of death in patients with acute myeloid leukaemia (AML). This study focussed on the prediction of response to standard induction therapy and outcome of patients with AML using a combined strategy of mutational profiling by next-generation sequencing (NGS, n = 190) and ex vivo PharmaFlow testing (n = 74) for the 10 most widely used drugs for AML induction therapy, in a cohort of adult patients uniformly treated according to Spanish PETHEMA guidelines. We identified an adverse mutational profile (EZH2, KMT2A, U2AF1 and/or TP53 mutations) that carries a greater risk of death [hazard ratio (HR): 3·29, P < 0·0001]. A high correlation was found between the ex vivo PharmaFlow results and clinical induction response (69%). Clinical correlation analysis showed that the pattern of multiresistance revealed by ex vivo PharmaFlow identified patients with a high risk of death (HR: 2·58). Patients with mutation status also ran a high risk (HR 4·19), and the risk was increased further in patients with both adverse profiles (HR 4·82). We have developed a new score based on NGS and ex vivo drug testing for AML patients that improves upon current prognostic risk stratification and allows clinicians to tailor treatments to minimise drug resistance.
Collapse
Affiliation(s)
- Esther Onecha
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
| | - Yanira Ruiz-Heredia
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Vivia Biotech, Tres Cantos, Madrid, Spain
| | - David Martínez-Cuadrón
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Madrid, Spain
| | - Eva Barragán
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Madrid, Spain
| | - Pilar Martinez-Sanchez
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Complutense University, Madrid, Spain
| | - María Linares
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Complutense University, Madrid, Spain
| | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Jaime Perez-Oteyza
- Hematology Department, Hospital Universitario Sanchinarro, Madrid, Spain
| | - Elena Magro
- Hematology Department, Hospital Universitario Principe de Asturias, Madrid, Spain
| | - Pilar Herrera
- Hematology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | | | - Blanca Boluda
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Madrid, Spain
| | - Claudia Sargas
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Madrid, Spain
| | | | - Pau Montesinos
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Complutense University, Madrid, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Complutense University, Madrid, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Kazachenka A, Young GR, Attig J, Kordella C, Lamprianidou E, Zoulia E, Vrachiolias G, Papoutselis M, Bernard E, Papaemmanuil E, Kotsianidis I, Kassiotis G. Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression. Genome Med 2019; 11:86. [PMID: 31870430 PMCID: PMC6929315 DOI: 10.1186/s13073-019-0707-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.
Collapse
Affiliation(s)
- Anastasiya Kazachenka
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Chrysoula Kordella
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanuela Zoulia
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
26
|
Daher-Reyes GS, Merchan BM, Yee KWL. Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin Investig Drugs 2019; 28:835-849. [PMID: 31510809 DOI: 10.1080/13543784.2019.1667331] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: The incidence of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) is increasing with the aging population. Prognosis and overall survival (OS) remain poor in elderly patients and in those not eligible for intensive treatment. Hypomethylating agents (HMAs) have played an important role in this group of patients but their efficacy is limited. Areas covered: This article reviews the mechanism of action, pharmacology, safety profile and clinical efficacy of subcutaneous guadecitabine, a second-generation DNA methylation inhibitor in development for the treatment of AML and MDS. Expert opinion: Although guadecitabine did not yield improved complete remission (CR) rates and OS compared to the control arm in patients with treatment-naïve AML who were ineligible for intensive chemotherapy, subgroup analysis in patients who received ≥4 cycles of therapy demonstrated superior outcomes in favor of guadecitabine. Given its stability, ease of administration, safety profile and prolonged exposure time, guadecitabine would be the more appropriate HMA, replacing azacitidine and decitabine, to be used combination treatment regimens in patients with myeloid malignancies.
Collapse
Affiliation(s)
- Georgina S Daher-Reyes
- Division of Medical Oncology and Hematology, University Health Network - Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Brayan M Merchan
- Division of Medical Oncology and Hematology, University Health Network - Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Karen W L Yee
- Division of Medical Oncology and Hematology, University Health Network - Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| |
Collapse
|
27
|
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol 2019; 110:161-169. [PMID: 31020568 DOI: 10.1007/s12185-019-02651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Hypomethylating agents (HMAs), azacitidine and decitabine, are standards of care in higher-risk myelodysplastic syndromes and in acute myeloid leukemia patients ineligible for intensive therapy. Over the last 10 years, research efforts have sought to better understand their mechanism of action, both at the molecular and cellular level. These efforts have yet to robustly identify biomarkers for these agents. The clinical activity of HMAs in myeloid neoplasms has been firmly established now but still remains of limited magnitude. Besides optimized use at different stages of the disease, most of the expected clinical progress with HMAs will come from the development of second-generation compounds orally available and/or with improved pharmacokinetics, and from the search, so far mostly empirical, of HMA-based synergistic drug combinations.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Clinical Trials as Topic
- DNA Methylation/drug effects
- Decitabine/chemistry
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Drug Administration Schedule
- Drug Combinations
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Uridine/administration & dosage
- Uridine/analogs & derivatives
- Uridine/pharmacology
- Uridine/therapeutic use
Collapse
Affiliation(s)
- Matthieu Duchmann
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France.
- Clinical Hematology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
28
|
Tobiasson M, Kittang AO. Treatment of myelodysplastic syndrome in the era of next-generation sequencing. J Intern Med 2019; 286:41-62. [PMID: 30869816 DOI: 10.1111/joim.12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) is rapidly changing the clinical care of patients with myelodysplastic syndrome (MDS). NGS can be used for various applications: (i) in the diagnostic process to discriminate between MDS and other diseases such as aplastic anaemia, myeloproliferative disorders and idiopathic cytopenias; (ii) for classification, for example, where the presence of SF3B1 mutation is one criterion for the ring sideroblast anaemia subgroups in the World Health Organization 2016 classification; (iii) for identification of patients suitable for targeted therapy (e.g. IDH1/2 inhibitors); (iv) for prognostication, for example, where specific mutations (e.g. TP53 and RUNX1) are associated with inferior prognosis, whereas others (e.g. SF3B1) are associated with superior prognosis; and (v) to monitor patients for progression or treatment failure. Most commonly, targeted sequencing for genes (normally 50-100 genes) reported to be recurrently mutated in myeloid disease is used. At present, NGS is rarely incorporated into clinical guidelines although an increasing number of studies have demonstrated the benefit of using NGS in the clinical management of MDS patients.
Collapse
Affiliation(s)
- M Tobiasson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Institution of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - A O Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Asano M, Ohyashiki JH, Kobayashi-Kawana C, Umezu T, Imanishi S, Azuma K, Akahane D, Fujimoto H, Ito Y, Ohyashiki K. A novel non-invasive monitoring assay of 5-azacitidine efficacy using global DNA methylation of peripheral blood in myelodysplastic syndrome. Drug Des Devel Ther 2019; 13:1821-1833. [PMID: 31239639 PMCID: PMC6553951 DOI: 10.2147/dddt.s195071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Monitoring response and resistance to 5-azacitidine (AZA) is essential when treating patients with myelodysplastic syndrome (MDS). To quantify methylated DNA not only in the promoter region but also in the gene body, we established a single-molecule methylation assay (SMMA). Patients and methods: We first investigated the methylation extent (expressed as methylation index [MI]) by SMMA among 28 MDS and 6 post-MDS acute myeloid leukemia patients. We then analyzed the MI in 13 AZA-treated patients. Results: Whole-blood DNA from all 34 patients had low MI values compared with healthy volunteers (P<0.0001). DNA hypomethylation in MDS patients was more evident in neutrophils (P=0.0008) than in peripheral mononuclear cells (P=0.0713). No consistent pattern of genome-wide DNA hypomethylation was found among MDS subtypes or revised International Prognostic Scoring System (IPSS-R) categories; however, we found that the MI was significantly increased for patients at very high risk who were separated by the new cytogenetic scoring system for IPSS-R (P=0.0398). There was no significant difference in MI before AZA, regardless of the response to AZA (P=0.8689); however, sequential measurement of MI in peripheral blood demonstrated that AZA non-responders did not have normalized MI at the time of next course of AZA (P=0.0352). Conclusion: Our results suggest that sequential SMMA of peripheral blood after AZA may represent a non-invasive monitoring marker for AZA efficacy in MDS patients.
Collapse
Affiliation(s)
- Michiyo Asano
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo, Japan
| | | | - Tomohiro Umezu
- Department of Hematology, Tokyo Medical University, Tokyo, Japan.,Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Imanishi
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kenko Azuma
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Hiroaki Fujimoto
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Yoshikazu Ito
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
30
|
Abstract
BACKGROUND Gene mutations with important prognostic role have been identified in patients with myelodysplastic syndrome (MDS). We performed a meta-analysis to investigate the effects of RNA splicing machinery gene mutations on prognosis of MDS patients. METHODS We searched English database including PubMed, Embase, Cochrane Library for literatures published within recent 10 years on the effect of RNA splicing machinery genes in MDS. Revman version 5.2 software was used for all the statistical processing. We calculated risk ratio and 95% confidence interval (CI) of continuous variables, and find hazard ratio (HR) and 95% CI of time-to-event data. RESULTS We included 19 studies enrolling 4320 patients. There is a significant superior overall survival (OS) in splicing factor 3b, subunit 1 (SF3B1)-mutation group compared to unmutated group (HR = 0.58, 95% CI: 0.5-0.67, P < .00001); OS decreased significantly in serine/arginine-rich splicing factor 2/ U2 auxiliary factor protein 1 (SRSF2/U2AF1) mutation group compared to unmutated group, (HR = 1.62, 95% CI: 1.34-1.97, P < .00001 and HR = 1.61, 95% CI: 1.35-1.9, P < .00001, respectively). In terms of leukemia-free survival (LFS), the group with SF3B1 mutation had better outcome than unmutated group, HR = 0.63 (95% CI: 0.53-0.75, P < .00001). Other RNA splicing gene mutation group showed significant poor LFS than unmutated groups, (HR = 1.89, 95% CI: 1.6-2.23, P < .00001; HR = 2.77, 95% CI: 2.24-3.44, P < .00001; HR = 1.48, 95% CI: 1.08-2.03, P < .00001; for SRSF2, U2AF1, and zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2 [ZRSR2], respectively). As for subgroup of low- or intermediate-1-IPSS risk MDS, SRSF2, and U2AF1 mutations were related to poor OS. (HR = 1.83, 95% CI: 1.43-2.35, P < .00001; HR = 2.11, 95% CI: 1.59-2.79, P < .00001 for SRSF2 and U2AF1, respectively). SRSF2 and U2AF1 mutations were strongly associated with male patients. SF3B1 mutation was strongly associated with disease staging. CONCLUSION This meta-analysis indicates a positive effect of SF3B1 and an adverse prognostic effect of SRSF2, U2AF1, and ZRSR2 mutations in patients with MDS. Mutations of RNA splicing genes have important effects on the prognosis of MDS.
Collapse
|
31
|
Du M, Zhou F, Jin R, Hu Y, Mei H. Mutations in the DNA methylation pathway predict clinical efficacy to hypomethylating agents in myelodysplastic syndromes: a meta-analysis. Leuk Res 2019; 80:11-18. [DOI: 10.1016/j.leukres.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 11/27/2022]
|
32
|
Graft-versus-MDS effect after unrelated cord blood transplantation: a retrospective analysis of 752 patients registered at the Japanese Data Center for Hematopoietic Cell Transplantation. Blood Cancer J 2019; 9:31. [PMID: 30842405 PMCID: PMC6403210 DOI: 10.1038/s41408-019-0192-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 11/08/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is the sole curative therapy for myelodysplastic syndrome (MDS). However, there is concern regarding graft failure and relapse in patients who undergo cord blood transplantation (CBT). We conducted a retrospective study of the CBT outcomes in MDS patients using the Japanese Data Center for Hematopoietic Cell Transplantation database. Seven hundred fifty-two de novo MDS patients of ≥18 years of age (median, 58 years) undergoing their first CBT between 2001 and 2015 were examined. Two-thirds of the patients were male, and were RAEB. The cumulative incidences of neutrophil and platelet engraftment at day 100 were 77 and 59%, respectively. The 3-year overall survival (OS) was 41% and the median survival of the patients was 1.25 years. A multivariate analysis of pre-transplant variables showed that the age, gender, cytogenetic subgroups, number of RBC transfusions, HCT-CI and year of CBT significantly influenced the outcome. The cumulative incidence of acute graft-versus-host disease (aGVHD) and chronic GVHD (cGVHD) was 32 and 21%, respectively. A survival benefit was observed in patients who developed cGVHD, but not aGVHD. Our results suggest that CBT is an acceptable alternative graft and that a graft-versus-MDS effect can be expected, especially in patients who develop cGVHD.
Collapse
|
33
|
Rapid and Durable Complete Remission of Refractory AITL with Azacitidine Treatment in Absence of TET2 Mutation or Concurrent MDS. Hemasphere 2019; 3:e187. [PMID: 31723826 PMCID: PMC6746031 DOI: 10.1097/hs9.0000000000000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 02/10/2019] [Indexed: 01/18/2023] Open
|
34
|
Orsini P, Impera L, Parciante E, Cumbo C, Minervini CF, Minervini A, Zagaria A, Anelli L, Coccaro N, Casieri P, Tota G, Brunetti C, Ricco A, Carluccio P, Specchia G, Albano F. Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies. Diagn Pathol 2018; 13:98. [PMID: 30579366 PMCID: PMC6303857 DOI: 10.1186/s13000-018-0777-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Electronic supplementary material The online version of this article (10.1186/s13000-018-0777-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Elisa Parciante
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Crescenzio F Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy.
| |
Collapse
|
35
|
Onecha E, Linares M, Rapado I, Ruiz-Heredia Y, Martinez-Sanchez P, Cedena T, Pratcorona M, Oteyza JP, Herrera P, Barragan E, Montesinos P, Vela JAG, Magro E, Anguita E, Figuera A, Riaza R, Martinez-Barranco P, Sanchez-Vega B, Nomdedeu J, Gallardo M, Martinez-Lopez J, Ayala R. A novel deep targeted sequencing method for minimal residual disease monitoring in acute myeloid leukemia. Haematologica 2018; 104:288-296. [PMID: 30093399 PMCID: PMC6355493 DOI: 10.3324/haematol.2018.194712] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
A high proportion of patients with acute myeloid leukemia who achieve minimal residual disease negative status ultimately relapse because a fraction of pathological clones remains undetected by standard methods. We designed and validated a high-throughput sequencing method for minimal residual disease assessment of cell clonotypes with mutations of NPM1, IDH1/2 and/or FLT3-single nucleotide variants. For clinical validation, 106 follow-up samples from 63 patients in complete remission were studied by sequencing, evaluating the level of mutations detected at diagnosis. The predictive value of minimal residual disease status by sequencing, multiparameter flow cytometry, or quantitative polymerase chain reaction analysis was determined by survival analysis. The sequencing method achieved a sensitivity of 10−4 for single nucleotide variants and 10−5 for insertions/deletions and could be used in acute myeloid leukemia patients who carry any mutation (86% in our diagnostic data set). Sequencing–determined minimal residual disease positive status was associated with lower disease-free survival (hazard ratio 3.4, P=0.005) and lower overall survival (hazard ratio 4.2, P<0.001). Multivariate analysis showed that minimal residual disease positive status determined by sequencing was an independent factor associated with risk of death (hazard ratio 4.54, P=0.005) and the only independent factor conferring risk of relapse (hazard ratio 3.76, P=0.012). This sequencing-based method simplifies and standardizes minimal residual disease evaluation, with high applicability in acute myeloid leukemia. It is also an improvement upon flow cytometry- and quantitative polymerase chain reaction-based prediction of outcomes of patients with acute myeloid leukemia and could be incorporated in clinical settings and clinical trials.
Collapse
Affiliation(s)
- Esther Onecha
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Maria Linares
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid
| | - Yanira Ruiz-Heredia
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | | | - Teresa Cedena
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid.,Complutense University, Madrid
| | - Marta Pratcorona
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona
| | | | - Pilar Herrera
- Hematology Department, Hospital Universitario Ramon y Cajal, Madrid
| | - Eva Barragan
- Complutense University, Madrid.,Hematology Department, Hospital Universitario La Fe, Valencia
| | - Pau Montesinos
- Complutense University, Madrid.,Hematology Department, Hospital Universitario La Fe, Valencia
| | | | - Elena Magro
- Hematology Department, Hospital Universitario Principe de Asturias, Madrid
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, IdISSC, UCM, Madrid
| | - Angela Figuera
- Hematology Department, Hospital Universitario de la Princesa, Madrid
| | - Rosalia Riaza
- Hematology Department, Hospital Universitario Severo Ochoa, Madrid
| | | | - Beatriz Sanchez-Vega
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Josep Nomdedeu
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona
| | - Miguel Gallardo
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid.,Complutense University, Madrid
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid .,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid.,Complutense University, Madrid
| |
Collapse
|
36
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|