1
|
Ashraf R, Adel M, Serya RAT, Ibrahim E, Haffez H, Soror S, Abouzid KAM. Design and synthesis of novel Hydroxamate and non-Hydroxamate HDAC inhibitors based on Chromone and Quinazolone scaffolds. Bioorg Chem 2025; 161:108514. [PMID: 40319810 DOI: 10.1016/j.bioorg.2025.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The development of selective histone deacetylase (HDAC) inhibitors represents an encouraging approach for cancer therapy. In this study, we report design, synthesis, and biological evaluation of hydroxamate, amidoxime, and carboxylic acid-based derivatives as novel HDAC inhibitors. The synthesized compounds were assessed for their inhibitory activity against multiple HDAC isoforms, particularly HDAC6, 7, and 8. Compounds 13, 16, 20, and 26 exhibited potent and selective inhibition of HDAC6. Compound 26 exhibited the most potent inhibitory activity against HDAC6, with an IC50 value of 70 nM. Additionally, compounds 17 and 23 demonstrated significant broad-spectrum antiproliferative activity across various cancer cell lines compared to other tested derivatives. Furthermore, compounds 17 and 23 showed promising total pan-HDAC inhibitory activity. Subsequent biological studies revealed that compounds 13, 16, 17, 20, 23, and 26 induced a combination of early and late apoptosis along with necrosis. In silico studies, including molecular docking and ADME predictions, were also conducted. Collectively, these findings highlight the potential of these compounds as promising candidates for the development of a novel class of selective HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Rosaline Ashraf
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Lee HY, Hsu MJ, Chang HH, Chang WC, Huang WC, Cho EC. Enhancing anti-cancer capacity: Novel class I/II HDAC inhibitors modulate EMT, cell cycle, and apoptosis pathways. Bioorg Med Chem 2024; 109:117792. [PMID: 38897139 DOI: 10.1016/j.bmc.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.
Collapse
Affiliation(s)
- Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Min-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Hao-Hsien Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Chiao Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Wan-Chen Huang
- Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan.
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Seane EN, Nair S, Vandevoorde C, Joubert A. Mechanistic Sequence of Histone Deacetylase Inhibitors and Radiation Treatment: An Overview. Pharmaceuticals (Basel) 2024; 17:602. [PMID: 38794172 PMCID: PMC11124271 DOI: 10.3390/ph17050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases inhibitors (HDACis) have shown promising therapeutic outcomes in haematological malignancies such as leukaemia, multiple myeloma, and lymphoma, with disappointing results in solid tumours when used as monotherapy. As a result, combination therapies either with radiation or other deoxyribonucleic acid (DNA) damaging agents have been suggested as ideal strategy to improve their efficacy in solid tumours. Numerous in vitro and in vivo studies have demonstrated that HDACis can sensitise malignant cells to both electromagnetic and particle types of radiation by inhibiting DNA damage repair. Although the radiosensitising ability of HDACis has been reported as early as the 1990s, the mechanisms of radiosensitisation are yet to be fully understood. This review brings forth the various protocols used to sequence the administration of radiation and HDACi treatments in the different studies. The possible contribution of these various protocols to the ambiguity that surrounds the mechanisms of radiosensitisation is also highlighted.
Collapse
Affiliation(s)
- Elsie Neo Seane
- Department of Radiography, School of Health Care Sciences, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness, Cape Peninsula University of Technology, Cape Town 7530, South Africa
- Radiation Biophysics Division, Separate Sector Cyclotron (SSC) Laboratory, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiation Biophysics Division, Separate Sector Cyclotron (SSC) Laboratory, iThemba LABS, Cape Town 7131, South Africa;
| | - Charlot Vandevoorde
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, 64291 Darmstadt, Germany;
| | - Anna Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
4
|
Li K, You G, Jiang K, Wang R, Li W, Meng Y, Fang Y, Chen W, Zhu G, Song J, Wang W, Su H, Hu B, Sun F, Jia Z, Li C, Zhu J. Root extract of Hemsleya amabilis Diels suppresses renal cell carcinoma cell growth through inducing apoptosis and G 2/M phase arrest via PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117014. [PMID: 37557938 DOI: 10.1016/j.jep.2023.117014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemsleya amabilis Diels, belongs to cucurbitaceae, was traditional Chinese medicine (TCM). It is widely used to treat various diseases. However, these diseases may contribute to the development of RCC. AIM OF THE STUDY investigated the anticancer activities of root extract of Hemsleya amabilis Diels (HRE), and elucidated the underlying molecular mechanism in vivo and in vitro. MATERIALS AND METHODS Dried Hemsleya amabilis Diels roots were extracted by ethyl acetate and used to treat RCC4, OS-RC-2 and ACHN cells. UHPLC-MS was used to analyze the chemical composition of the extract. CCK-8 and colony formation assay were used to investigate proliferation. PI staining was used to detect cell cycle. Annexin-V-FITC, AO/EB and TEM were used to evaluate apoptosis. Transwell and wound healing assays were used to evaluate migration and invasion. RNA-seq, Network pharmacology, autodocking for virtual screening and molecular dynamics simulation were used to analyze potential molecular mechanisms and active components of HRE inhibiting proliferation of RCC. LY294002 and UC2288 were used to inhibit PI3K and P21 expression, respectively. IGF-1 was used to activate PI3K. Xenograft tumor model was established to evaluate its anti-tumor potential in vivo. Immunohistochemistry and Western blot were used to test protein expression levels. H&E staining was used to explore the side effects of HRE in vivo. Applying bioinformatics to analyze the effect of P21 on RCC. RESULTS HRE consists of 739 compounds. CCK-8 and colony formation assay showed that HRE significantly inhibited RCC cells proliferation. PI staining indicated that HRE caused G2/M phase arrest. Annexin-V-FITC, AO/EB and TEM experiments revealed that HRE significantly promoted apoptosis of RCC cells. Transwell and wound healing assays showed that HRE can inhibit the migration and invasion of RCC cells. RNA-seq showed that HRE induced 230 gene changes. Network pharmacology analysis found the relationship between HRE-component-target-RCC. Auto-docking found that Epitulipinolide diepoxide in HRE can stably bind to PIK3CA (-7.22 kJ/mol), and molecular dynamics simulation verified the combination between Epitulipinolide diepoxide of PIK3CA. In RCC4 cells, pretreatment with IGF-1, attenuated HRE-induced apoptosis and G2/M arrest. When pretreated with PIK3 inhibitor LY294002, the opposite result appears. Pretreatment with CDKN1A (P21) inhibitor UC2288 attenuated HRE-induced G2/M arrest. Xenograft tumor model showed that HRE inhibited tumor growth. Western blot analysis indicated that HRE can regulating Bax, Bcl-2, PARP, cleared-PARP, Caspase-9, Caspase-8, Caspase-3, Survivin, Cyclin-B1, CDK1, N-cadherin, snail, slug, E-cadherin, MMP-9. Immunohistochemical staining showed that in the treated group, expression of E-cadherin, Bax, P21 was up-regulated, while N-cadherin, PI3K, AKT and Bcl-2 were down-regulated. H&E staining showed that compared to control groups, the main organs in the HRE-treated groups showed no histological abnormalities. The overall survival rate of RCC patients in the high-expression group of P21 was higher than in the low-expression group of P21 on bioinformatics analysis. CONCLUSIONS HRE inhibited RCC migration and invasion through EMT, and inhibited proliferation in vivo and in vitro. In addition, HRE inhibited proliferation through promoting apoptosis and P21-induced G2/M phase arrest via PI3K/AKT signaling pathway. Overall, these results suggest that HRE may be a promising chemotherapy agent for RCC.
Collapse
Affiliation(s)
- Kai Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550025, China
| | - Ganhua You
- The Second People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550002, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Wuchao Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Yonglu Meng
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550025, China
| | - Yinyi Fang
- Medical College of Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Weiming Chen
- Medical College of Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Guohua Zhu
- Department of Pedictric, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550002, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Wang
- Department of Pedictric, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550002, China
| | - Hao Su
- Department of Urology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550002, China
| | - Bin Hu
- Department of Urology, Kweichow Moutai Hospital, Renhuai, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550002, China.
| | - Zhenyu Jia
- University of California of Riverside, Riverside, CA, 92521, USA.
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550025, China.
| | - Jianguo Zhu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550025, China; Department of Urology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550002, China.
| |
Collapse
|
5
|
Ye L, Li W, Tang X, Xu T, Wang G. Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management. Curr Neuropharmacol 2024; 22:2298-2313. [PMID: 38288835 PMCID: PMC11451322 DOI: 10.2174/1570159x22666240128002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 10/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Wenfeng Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Xiaoyan Tang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Ting Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| |
Collapse
|
6
|
Lin S, Li J, Zhou F, Tan BK, Zheng B, Hu J. K 6[P 2Mo 18O 62] as DNase-Mimetic Artificial Nucleases to Promote Extracellular Deoxyribonucleic Acid Degradation in Bacterial Biofilms. ACS OMEGA 2023; 8:33966-33974. [PMID: 37744825 PMCID: PMC10515355 DOI: 10.1021/acsomega.3c04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
In the current study, the DNase-like activity of the Dawson-type polyoxometalate K6[P2Mo18O62] was explored. The obtained findings demonstrated that K6[P2Mo18O62] could effectively cleave phosphoester bonds in the DNA model substrate (4-nitrophenyl phosphate) and result in the degradation of plasmid DNA. Moreover, the application potential of this Dawson-type polyoxometalate as a DNase-mimetic artificial enzyme to degrade extracellular DNA (eDNA) in Escherichia coli (E. coli) bacterial biofilm was explored. The results demonstrated that K6[P2Mo18O62] exhibited high cleavage ability toward eDNA secreted by E. coli and thus eradicated the bacterial biofilm. In conclusion, Dawson-type polyoxometalate K6[P2Mo18O62] possessed desirable DNase-like activity, which could serve as a bacterial biofilm eradication agent by cleaving and degrading eDNA molecules.
Collapse
Affiliation(s)
- Shaoling Lin
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Jing Li
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Feng Zhou
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Bee K. Tan
- College
of Life Sciences, University of Leicester, Leicester LE1 7RH, U.K.
| | - Baodong Zheng
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College
of Food Science, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
- College
of Life Sciences, University of Leicester, Leicester LE1 7RH, U.K.
| |
Collapse
|
7
|
Tsai FL, Huang HL, Lai MJ, Liou JP, Pan SL, Yang CR. Anticancer Study of a Novel Pan-HDAC Inhibitor MPT0G236 in Colorectal Cancer Cells. Int J Mol Sci 2023; 24:12588. [PMID: 37628767 PMCID: PMC10454243 DOI: 10.3390/ijms241612588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and a leading cause of cancer worldwide. Histone deacetylases (HDACs), which regulate cell proliferation and survival, are associated with the development and progression of cancer. Moreover, HDAC inhibitors are promising therapeutic targets, with five HDAC inhibitors approved for cancer treatment to date. However, their safety profile necessitates the exploration of well-tolerated HDAC inhibitors that can be used in cancer therapeutic strategies. In this study, the pan-HDAC inhibitor MPT0G236 reduced the viability and inhibited the proliferation of human colorectal cancer cells, and normal human umbilical vein endothelial cells (HUVECs) showed reduced sensitivity. These findings indicated that MPT0G236 specifically targeted malignant tumor cells. Notably, MPT0G236 significantly inhibited the activities of HDAC1, HDAC2, and HDAC3, Class I HDACs, as well as HDAC6, a Class IIb HDAC, at low nanomolar concentrations. Additionally, it promoted the accumulation of acetyl-α-tubulin and acetyl-histone H3 in HCT-116 and HT-29 cells in a concentration-dependent manner. Furthermore, MPT0G236 treatment induced G2/M cell cycle arrest in CRC cells by initially regulating the levels of cell-cycle-related proteins, such as p-MPM2; specifically reducing p-cdc2 (Y15), cyclin B1, and cdc25C levels; and subsequently inducing apoptosis through the caspase-dependent pathways and PARP activation. Our findings demonstrate that MPT0G236 exhibits significant anticancer activity in human colorectal cancer cells.
Collapse
Affiliation(s)
- Feng-Lung Tsai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Han-Li Huang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110, Taiwan; (H.-L.H.); (M.-J.L.); (J.-P.L.); (S.-L.P.)
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110, Taiwan; (H.-L.H.); (M.-J.L.); (J.-P.L.); (S.-L.P.)
| | - Jing-Ping Liou
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110, Taiwan; (H.-L.H.); (M.-J.L.); (J.-P.L.); (S.-L.P.)
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Shiow-Lin Pan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110, Taiwan; (H.-L.H.); (M.-J.L.); (J.-P.L.); (S.-L.P.)
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
8
|
Ling R, Wang J, Fang Y, Yu Y, Su Y, Sun W, Li X, Tang X. HDAC-an important target for improving tumor radiotherapy resistance. Front Oncol 2023; 13:1193637. [PMID: 37503317 PMCID: PMC10368992 DOI: 10.3389/fonc.2023.1193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Radiotherapy is an important means of tumor treatment, but radiotherapy resistance has been a difficult problem in the comprehensive treatment of clinical tumors. The mechanisms of radiotherapy resistance include the repair of sublethal damage and potentially lethal damage of tumor cells, cell repopulation, cell cycle redistribution, and reoxygenation. These processes are closely related to the regulation of epigenetic modifications. Histone deacetylases (HDACs), as important regulators of the epigenetic structure of cancer, are widely involved in the formation of tumor radiotherapy resistance by participating in DNA damage repair, cell cycle regulation, cell apoptosis, and other mechanisms. Although the important role of HDACs and their related inhibitors in tumor therapy has been reviewed, the relationship between HDACs and radiotherapy has not been systematically studied. This article systematically expounds for the first time the specific mechanism by which HDACs promote tumor radiotherapy resistance in vivo and in vitro and the clinical application prospects of HDAC inhibitors, aiming to provide a reference for HDAC-related drug development and guide the future research direction of HDAC inhibitors that improve tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, Affiliated Yancheng First Hospital of Nanjing University Medical School, First People’s Hospital of Yancheng, Yancheng, China
| | - Yuan Fang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Yu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Carvalho F, Aureliano M. Polyoxometalates Impact as Anticancer Agents. Int J Mol Sci 2023; 24:5043. [PMID: 36902473 PMCID: PMC10003337 DOI: 10.3390/ijms24055043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords "polyoxometalates" and "cell cycle". The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.
Collapse
Affiliation(s)
- Fátima Carvalho
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Quantitative Acetylomics Uncover Acetylation-Mediated Pathway Changes Following Histone Deacetylase Inhibition in Anaplastic Large Cell Lymphoma. Cells 2022; 11:cells11152380. [PMID: 35954222 PMCID: PMC9368142 DOI: 10.3390/cells11152380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Histone deacetylases (HDACs) target acetylated lysine residues in histone and non-histone proteins. HDACs are implicated in the regulation of genomic stability, cell cycle, cell death and differentiation and thus critically involved in tumorigenesis. Further, HDACs regulate T-cell development and HDAC inhibitors (HDACis) have been approved for clinical use in some T-cell malignancies. Still, the exact targets and mechanisms of HDAC inhibition in cancer are understudied. We isolated tumor cell lines from a transgenic mouse model of anaplastic large cell lymphoma (ALCL), a rare T-cell lymphoma, and abrogated HDAC activity by treatment with the HDACis Vorinostat and Entinostat or Cre-mediated deletion of Hdac1. Changes in overall protein expression as well as histone and protein acetylation were measured following Hdac1 deletion or pharmacological inhibition using label-free liquid chromatography mass spectrometry (LC-MS/MS). We found changes in overall protein abundance and increased acetylation of histones and non-histone proteins, many of which were newly discovered and associated with major metabolic and DNA damage pathways. For non-histone acetylation, we mapped a total of 1204 acetylated peptides corresponding to 603 proteins, including chromatin modifying proteins and transcription factors. Hyperacetylated proteins were involved in processes such as transcription, RNA metabolism and DNA damage repair (DDR). The DDR pathway was majorly affected by hyperacetylation following HDAC inhibition. This included acetylation of H2AX, PARP1 and previously unrecognized acetylation sites in TP53BP1. Our data provide a comprehensive view of the targets of HDAC inhibition in malignant T cells with general applicability and could have translational impact for the treatment of ALCL with HDACis alone or in combination therapies.
Collapse
|
11
|
Minisini M, Di Giorgio E, Kerschbamer E, Dalla E, Faggiani M, Franforte E, Meyer-Almes FJ, Ragno R, Antonini L, Mai A, Fiorentino F, Rotili D, Chinellato M, Perin S, Cendron L, Weichenberger CX, Angelini A, Brancolini C. Transcriptomic and genomic studies classify NKL54 as a histone deacetylase inhibitor with indirect influence on MEF2-dependent transcription. Nucleic Acids Res 2022; 50:2566-2586. [PMID: 35150567 PMCID: PMC8934631 DOI: 10.1093/nar/gkac081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
In leiomyosarcoma class IIa HDACs (histone deacetylases) bind MEF2 and convert these transcription factors into repressors to sustain proliferation. Disruption of this complex with small molecules should antagonize cancer growth. NKL54, a PAOA (pimeloylanilide o-aminoanilide) derivative, binds a hydrophobic groove of MEF2, which is used as a docking site by class IIa HDACs. However, NKL54 could also act as HDAC inhibitor (HDACI). Therefore, it is unclear which activity is predominant. Here, we show that NKL54 and similar derivatives are unable to release MEF2 from binding to class IIa HDACs. Comparative transcriptomic analysis classifies these molecules as HDACIs strongly related to SAHA/vorinostat. Low expressed genes are upregulated by HDACIs, while abundant genes are repressed. This transcriptional resetting correlates with a reorganization of H3K27 acetylation around the transcription start site (TSS). Among the upregulated genes there are several BH3-only family members, thus explaining the induction of apoptosis. Moreover, NKL54 triggers the upregulation of MEF2 and the downregulation of class IIa HDACs. NKL54 also increases the binding of MEF2D to promoters of genes that are upregulated after treatment. In summary, although NKL54 cannot outcompete MEF2 from binding to class IIa HDACs, it supports MEF2-dependent transcription through several actions, including potentiation of chromatin binding.
Collapse
Affiliation(s)
- Martina Minisini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck. Via Galvani 31, 39100 Bolzano, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Massimo Faggiani
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Elisa Franforte
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Francesco Fiorentino
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Monica Chinellato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121 Padova, Italy
| | - Stefano Perin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy.,European Centre for Living Technology (ECLT), Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121 Padova, Italy
| | - Christian X Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck. Via Galvani 31, 39100 Bolzano, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy.,European Centre for Living Technology (ECLT), Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| |
Collapse
|
12
|
Aru B, Günay A, Demirel GY, Gürek AG, Atilla D. Evaluation of histone deacetylase inhibitor substituted zinc and indium phthalocyanines for chemo- and photodynamic therapy. RSC Adv 2021; 11:34963-34978. [PMID: 35494743 PMCID: PMC9042886 DOI: 10.1039/d1ra05404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we synthesized and characterized 3-hydroxypyridin-2-thione (3-HPT) bearing zinc (ZnPc-1 and ZnPc-2) and indium (InPc-1 and InPc-2) phthalocyanine (Pc) derivatives, either non-peripherally or peripherally substituted as photosensitizer (PS) agents and evaluated their anti-cancer efficacy on two breast cancer cell lines, MDA-MB-231 and MCF-7 as well as a human endothelial cell line, HUVEC. Our results indicated different localization patterns between ZnPcs and InPcs in addition to enhanced effects on the mitochondrial network for InPcs. Moreover, peripheral or non-peripheral substitution of HDACi moieties altered cellular localization between ZnPc-1 and ZnPc-2, leading to increased IC50 values along with decreased anti-cancer activity for non-peripheral substitution. When considering the compounds' differential effects in vitro, our data indicates that further research is required to determine the ideal Pcs for anti-cancer PDT treatments since the core metals of the compounds have affected the cellular localization, and positioning of the chemotherapeutic residues may inhibit cellular penetrance.
Collapse
Affiliation(s)
- Başak Aru
- Faculty of Medicine, Immunology Department, Yeditepe University 34755 Ataşehir İstanbul Turkey
| | - Aysel Günay
- Department of Chemistry, Gebze Technical University 41400 Gebze Kocaeli Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University 41400 Gebze Kocaeli Turkey
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University 41400 Gebze Kocaeli Turkey
| |
Collapse
|
13
|
Yip HYK, Papa A. Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments. Cells 2021; 10:659. [PMID: 33809714 PMCID: PMC8002322 DOI: 10.3390/cells10030659] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular alterations in cancer genes and associated signaling pathways are used to inform new treatments for precision medicine in cancer. Small molecule inhibitors and monoclonal antibodies directed at relevant cancer-related proteins have been instrumental in delivering successful treatments of some blood malignancies (e.g., imatinib with chronic myelogenous leukemia (CML)) and solid tumors (e.g., tamoxifen with ER positive breast cancer and trastuzumab for HER2-positive breast cancer). However, inherent limitations such as drug toxicity, as well as acquisition of de novo or acquired mechanisms of resistance, still cause treatment failure. Here we provide an up-to-date review of the successes and limitations of current targeted therapies for cancer treatment and highlight how recent technological advances have provided a new level of understanding of the molecular complexity underpinning resistance to cancer therapies. We also raise three basic questions concerning cancer drug discovery based on molecular markers and alterations of selected signaling pathways, and further discuss how combination therapies may become the preferable approach over monotherapy for cancer treatments. Finally, we consider novel therapeutic developments that may complement drug delivery and significantly improve clinical response and outcomes of cancer patients.
Collapse
Affiliation(s)
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| |
Collapse
|
14
|
The HDAC Inhibitor Domatinostat Promotes Cell-Cycle Arrest, Induces Apoptosis, and Increases Immunogenicity of Merkel Cell Carcinoma Cells. J Invest Dermatol 2020; 141:903-912.e4. [PMID: 33002502 DOI: 10.1016/j.jid.2020.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive skin cancer for which immune modulation by immune checkpoint inhibitors shows remarkable response rates. However, primary or secondary resistance to immunotherapy prevents benefits in a significant proportion of patients. For MCC, one immune escape mechanism is insufficient for recognition by T cells owing to the downregulation of major histocompatibility complex I surface expression. Histone deacetylase inhibitors have been demonstrated to epigenetically reverse the low major histocompatibility complex I expression caused by the downregulation of the antigen-processing machinery. Domatinostat, an orally available small-molecule inhibitor targeting histone deacetylase class I, is currently in clinical evaluation to overcome resistance to immunotherapy. In this study, we present preclinical data on domatinostat's efficacy and mode of action in MCC. Single-cell RNA sequencing revealed a distinct gene expression signature of antigen processing and presentation, cell-cycle arrest, and execution phase of apoptosis on treatment. Accordingly, functional assays showed that domatinostat induced G2M arrest and apoptosis. In the surviving cells, antigen-processing machinery component gene transcription and translation were upregulated, consequently resulting in increased major histocompatibility complex I surface expression. Altogether, domatinostat not only exerts direct antitumoral effects but also restores HLA class I surface expression on MCC cells, therefore, restoring surviving MCC cells' susceptibility to recognition and elimination by cognate cytotoxic T cells.
Collapse
|
15
|
Valeric Acid Suppresses Liver Cancer Development by Acting as a Novel HDAC Inhibitor. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:8-18. [PMID: 33024815 PMCID: PMC7520432 DOI: 10.1016/j.omto.2020.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer is the fastest growing cause of cancer deaths in the United States due to its aggressiveness and lack of effective therapies. The current preclinical study examines valeric acid (pentanoic acid [C5H10O2]), one of the main compounds of valerian root extract, for its therapeutic use in liver cancer treatment. Anticancer efficacy of valeric acid was tested in a series of in vitro assays and orthotopic xenograft mouse models. The molecular target of valeric acid was also predicted, followed by functional confirmation. Valeric acid has a broad spectrum of anticancer activity with specifically high cytotoxicity for liver cancer in cell proliferation, colony formation, wound healing, cell invasion, and 3D spheroid formation assays. Mouse models further demonstrate that systematic administration of lipid-based nanoparticle-encapsulated valeric acid significantly reduces the tumor burden and improves survival rate. Histone deacetylase (HDAC)-inhibiting functions of valeric acid are also revealed by a structural target prediction tool and HDAC activity assay. Further transcriptional profiling and network analyses illustrate that valeric acid affects several cancer-related pathways that may induce apoptosis. In summary, we demonstrate for the first time that valeric acid suppresses liver cancer development by acting as a potential novel HDAC inhibitor, which warrants further investigation on its therapeutic implications.
Collapse
|
16
|
Sugimoto Y, Katsumi Y, Iehara T, Kaneda D, Tomoyasu C, Ouchi K, Yoshida H, Miyachi M, Yagyu S, Kikuchi K, Tsuchiya K, Kuwahara Y, Sakai T, Hosoi H. The Novel Histone Deacetylase Inhibitor, OBP-801, Induces Apoptosis in Rhabdoid Tumors by Releasing the Silencing of NOXA. Mol Cancer Ther 2020; 19:1992-2000. [PMID: 32847975 DOI: 10.1158/1535-7163.mct-20-0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/03/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
Rhabdoid tumor is an aggressive, early childhood tumor. Biallelic inactivation of the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1)/integrase interactor 1 (INI1) gene is the only common genetic feature in rhabdoid tumors. Loss of SMARCB1 function results in downregulation of several tumor suppressor genes including p16, p21, and NOXA The novel histone deacetylase inhibitor, OBP-801, induces p21 and has shown efficacy against various cancers. In our study, OBP-801 strongly inhibited the cell growth of all rhabdoid tumor cell lines in WST-8 assay. However, Western blotting and cell-cycle analysis revealed that OBP-801 did not activate the P21-RB pathway in some cell lines. p21 knockout indicated that p21 did not dominate the OBP-801 antitumor effect in rhabdoid tumor cell lines. We discovered that OBP-801 induced NOXA expression and caspase-dependent apoptosis in rhabdoid tumor cell lines independent of TP53. Chromatin immunoprecipitation assay showed that OBP-801 acetylated histone proteins and recruited RNA polymerase II to the transcription start site (TSS) of the NOXA promotor. Moreover, OBP-801 recruited BRG1 and BAF155, which are members of the SWI/SNF complex, to the TSS of the NOXA promotor. These results suggest that OBP-801 epigenetically releases the silencing of NOXA and induces apoptosis in rhabdoid tumors. OBP-801 strongly inhibited tumor growth in human rhabdoid tumor xenograft mouse models in vivo Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and cleaved caspase-3 were stained in tumors treated with OBP-801. In conclusion, OBP-801 induces apoptosis in rhabdoid tumor cells by epigenetically releasing the silencing of NOXA, which is a key mediator of rhabdoid tumor apoptosis. The epigenetic approach for NOXA silencing with OBP-801 is promising for rhabdoid tumor treatment.
Collapse
Affiliation(s)
- Yohei Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yoshiki Katsumi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.
| | - Daisuke Kaneda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.,Department of Pediatrics, Japan Community Health care Organization (JCHO), Kobe Central Hospital, Kobe, Hyogo, Japan
| | - Chihiro Tomoyasu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.,Department of Pediatrics, Kyoto City Hospital, Nakagyo Ward, Kyoto, Japan
| | - Kazutaka Ouchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine Kamigyo-ku, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
17
|
Tilekar K, Upadhyay N, Jänsch N, Schweipert M, Mrowka P, Meyer-Almes F, Ramaa C. Discovery of 5-naphthylidene-2,4-thiazolidinedione derivatives as selective HDAC8 inhibitors and evaluation of their cytotoxic effects in leukemic cell lines. Bioorg Chem 2020; 95:103522. [DOI: 10.1016/j.bioorg.2019.103522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023]
|
18
|
Aalaei S, Mohammadzadeh M, Pazhang Y. Synergistic induction of apoptosis in a cell model of human leukemia K562 by nitroglycerine and valproic acid. EXCLI JOURNAL 2019; 18:619-630. [PMID: 31611745 PMCID: PMC6785758 DOI: 10.17179/excli2019-1581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (NG), a nitric oxide donor, and valproic acid (VPA), an inhibitor of histone deacetylases, have impressive effects on numerous cancer cell lines. This study intended to evaluate synergistic effects of NG and VPA on cell viability and apoptosis in K562 cells. K562 cells were cultured in RPMI-1640 supplemented with 10 % heat-inactivated FBS. They were treated with different doses of NG, VPA and cisplatin for 24, 48, and 72 h, and MTT assay was performed to analyze cell viability. Also, Peripheral blood mononuclear cells (PBMC) were cultured in RPMI-1640 media and incubated with NG (200 μM), VAP (100 μM), NG+VPA (150 μM) and cisplatin (8 μM) to evaluate cytotoxicity. IC50 of the drugs, when they were applied separately and in combination, were calculated using the COMPUSYN software. DNA electrophoresis, TUNEL assay, and Hoechst staining were performed to investigate apoptosis induction. RT-PCR was used for the evaluation of apoptotic genes expression. The results of the MTT assay showed that cell viability decreased at all applied doses of NG and VPA. It was noticed that the cytotoxic effects of these drugs were dose- and time-dependent. Based on the COMPUSYN output, the combination of the drugs (VPA and NG) in a certain ratio concentration synergistically decreased cell viability. Cisplatin significantly decreased cell viability of PBMCs and K562 cells. Also, the combination drug had cytotoxic effect and significantly reduced viability of K562 cells compared with PBMCs and control cells. In the target cells treated with this combination, Bax and caspase-3 expression increased but Bcl-2 expression decreased. These results suggest that NG, VPA, and their combination decreased cell viability and induced apoptosis via the intrinsic apoptotic pathway. This study suggests that this combination therapy can be considered for further evaluation as an effective chemotherapeutic strategy for patients with chronic myeloid leukemia.
Collapse
Affiliation(s)
- Shahin Aalaei
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
19
|
Shamloo B, Usluer S. p21 in Cancer Research. Cancers (Basel) 2019; 11:cancers11081178. [PMID: 31416295 PMCID: PMC6721478 DOI: 10.3390/cancers11081178] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
p21 functions as a cell cycle inhibitor and anti-proliferative effector in normal cells, and is dysregulated in some cancers. Earlier observations on p21 knockout models emphasized the role of this protein in cell cycle arrest under the p53 transcription factor activity. Although tumor-suppressor function of p21 is the most studied aspect of this protein in cancer, the role of p21 in phenotypic plasticity and its oncogenic/anti-apoptotic function, depending on p21 subcellular localization and p53 status, have been under scrutiny recently. Basic science and translational studies use precision gene editing to manipulate p21 itself, and proteins that interact with it; these studies have led to regulatory/functional/drug sensitivity discoveries as well as therapeutic approaches in cancer field. In this review, we will focus on targeting p21 in cancer research and its potential in providing novel therapies.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Sinem Usluer
- Department of Molecular Biology & Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
The Therapeutic Strategy of HDAC6 Inhibitors in Lymphoproliferative Disease. Int J Mol Sci 2018; 19:ijms19082337. [PMID: 30096875 PMCID: PMC6121661 DOI: 10.3390/ijms19082337] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylases (HDACs) are master regulators of chromatin remodeling, acting as epigenetic regulators of gene expression. In the last decade, inhibition of HDACs has become a target for specific epigenetic modifications related to cancer development. Overexpression of HDAC has been observed in several hematologic malignancies. Therefore, the observation that HDACs might play a role in various hematologic malignancies has brought to the development of HDAC inhibitors as potential antitumor agents. Recently, the class IIb, HDAC6, has emerged as one potential selective HDACi. This isoenzyme represents an important pharmacological target for selective inhibition. Its selectivity may reduce the toxicity related to the off-target effects of pan-HDAC inhibitors. HDAC6 has also been studied in cancer especially for its ability to coordinate a variety of cellular processes that are important for cancer pathogenesis. HDAC6 has been reported to be overexpressed in lymphoid cells and its inhibition has demonstrated activity in preclinical and clinical study of lymphoproliferative disease. Various studies of HDAC6 inhibitors alone and in combination with other agents provide strong scientific rationale for the evaluation of these new agents in the clinical setting of hematological malignancies. In this review, we describe the HDACs, their inhibitors, and the recent advances of HDAC6 inhibitors, their mechanisms of action and role in lymphoproliferative disorders.
Collapse
|