1
|
Liu X, Gao S, Qin YM, Zhang WL, Li P, Xiang XY. Decreased PANK1 expression in kidney renal clear cell carcinoma: impact on cell apoptosis, invasion, migration, and epithelial-mesenchymal transition. Discov Oncol 2024; 15:380. [PMID: 39196459 PMCID: PMC11358577 DOI: 10.1007/s12672-024-01251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE To investigate pantothenate kinases 1 (PANK1) expression in kidney renal clear cell carcinoma (KIRC) tissues, analyze its correlation with clinicopathological features and prognosis, and explore its impact on invasion, migration, and apoptosis in KIRC cells. METHODS GEPIA (gene expression profiling interactive analysis), UALCAN and LinkedOmics, were employed to analyze PANK1 expression in KIRC tissues and its correlation with clinical characteristics. Comparative analyses were performed between KIRC (Caki-1 and 786-O) and noncancerous renal cells (HK-2 and RPTEC). Transfection with PANK1 activation particles was conducted, followed by Wound healing, Transwell assay, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and Western blotting. RESULTS PANK1 was down-regulated in KIRC tissues and cells compared to normal tissues and noncancerous cells. Correlation analyses linked PANK1 expression with clinicopathological features in KIRC, with high PANK1 expression associated with a favorable outcome. High PANK1 expression correlated positively with E-cadherin (CDH1), tight junction protein 1 (TJP1), Fas cell surface death receptor (FAS), caspase-8 (CASP8), and CASP9, while showing a negative correlation with vimentin (VIM), snail family transcriptional repressor 1 (SNAIL1), twist family BHLH transcription factor 1 (TWIST1), and TWIST2. PANK1 overexpression increased CDH1, TJP1, FAS, CASP8, and CASP9 while downregulating SNAIL1, VIM, TWIST1, and TWIST2, inhibiting invasion and migration, and promoting apoptosis in KIRC cells. CONCLUSION PANK1 down-regulation in KIRC tissues correlated with clinicopathological features and prognosis. Its overexpression modulated epithelial-mesenchymal transition (EMT)-related gene, inhibited invasion, promoted apoptosis in KIRC cells, highlighting its role in disease progression and therapeutic potential.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Song Gao
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Wei-Li Zhang
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Peng Li
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Xiao-Yun Xiang
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Iacobas DA, Iacobas S. Papillary Thyroid Cancer Remodels the Genetic Information Processing Pathways. Genes (Basel) 2024; 15:621. [PMID: 38790250 PMCID: PMC11120757 DOI: 10.3390/genes15050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity and the patient's unique set of favoring factors question the fit-for-all gene biomarkers. Publicly accessible gene expression profiles of the cancer nodule and the surrounding normal tissue from a surgically removed PTC tumor were re-analyzed to determine the cancer-induced alterations of the genomic fabrics responsible for major functional pathways. Tumor data were compared with those of standard papillary and anaplastic thyroid cancer cell lines. We found that PTC regulated numerous genes associated with DNA replication, repair, and transcription. Results further indicated that changes of the gene networking in functional pathways and the homeostatic control of transcript abundances also had major contributions to the PTC phenotype occurrence. The purpose to proliferate and invade the entire gland may explain the substantial transcriptomic differences we detected between the cells of the cancer nodule and those spread in homo-cellular cultures (where they need only to survive). In conclusion, the PTC etiology should include the complex molecular mechanisms involved in the remodeling of the genetic information processing pathways.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
3
|
Amjad E, Asnaashari S, Jahanban-Esfahlan A, Sokouti B. The role of MAPK, notch and Wnt signaling pathways in papillary thyroid cancer: Evidence from a systematic review and meta-analyzing microarray datasets employing bioinformatics knowledge and literature. Biochem Biophys Rep 2024; 37:101606. [PMID: 38371530 PMCID: PMC10873880 DOI: 10.1016/j.bbrep.2023.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024] Open
Abstract
Papillary thyroid cancer (PTC) is a prevalent kind of thyroid cancer (TC), with the risk of metastasis increasing faster than any other malignancy. So, understanding the role of PTC in pathogenesis requires studying the various gene expressions to find out which particular molecular biomarkers will be helpful. The authors conducted a comprehensive search on the PubMed microarray database and a meta-analysis approach on the remaining ones to determine the differentially expressed genes between PTC and normal tissues, along with the analyses of overall survival (OS) and recurrence-free survival (RFS) rates in patients with PTC. We considered the associated genes with MAPK, Wnt, and Notch signaling pathways. Two GEO datasets have been included in this research, considering inclusion and exclusion criteria. Nineteen genes were found to have higher differences through the meta-analysis procedure. Among them, ten genes were upregulated, and nine genes were downregulated. The expression of 19 genes was examined using the GEPIA2 database, and the Kaplan-Meier plot statistics were used to analyze RFS and the OS rates. We discovered seven significant genes with the validation: PRICKLE1, KIT, RPS6KA5, GADD45B, FGFR2, FGF7, and DTX4. To further explain these findings, it was discovered that the mRNA expression levels of these seven genes and the remaining 12 genes were shown to be substantially linked with the results of the experimental literature investigations on the PTC. Our research found nineteen panels of genes that could be involved in the PTC progression and metastasis and the immune system infiltration of these cancers.
Collapse
|
4
|
Iacobas DA, Obiomon EA, Iacobas S. Genomic Fabrics of the Excretory System's Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2023; 45:9471-9499. [PMID: 38132440 PMCID: PMC10742519 DOI: 10.3390/cimb45120594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent form of kidney cancer. Metastatic stages of ccRCC reduce the five-year survival rate to 15%. In this report, we analyze the ccRCC-induced remodeling of the five KEGG-constructed excretory functional pathways in a surgically removed right kidney and its metastasis in the chest wall from the perspective of the Genomic Fabric Paradigm (GFP). The GFP characterizes every single gene in each region by these independent variables: the average expression level (AVE), relative expression variability (REV), and expression correlation (COR) with each other gene. While the traditional approach is limited to only AVE analysis, the novel REV analysis identifies the genes whose correct expression level is critical for cell survival and proliferation. The COR analysis determines the real gene networks responsible for functional pathways. The analyses covered the pathways for aldosterone-regulated sodium reabsorption, collecting duct acid secretion, endocrine and other factor-regulated sodium reabsorption, proximal tubule bicarbonate reclamation, and vasopressin-regulated water reabsorption. The present study confirms the conclusion of our previously published articles on prostate and kidney cancers that even equally graded cancer nodules from the same tumor have different transcriptomic topologies. Therefore, the personalization of anti-cancer therapy should go beyond the individual, to his/her major cancer nodules.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Ehiguese Alade Obiomon
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
5
|
Theory and Applications of the (Cardio) Genomic Fabric Approach to Post-Ischemic and Hypoxia-Induced Heart Failure. J Pers Med 2022; 12:jpm12081246. [PMID: 36013195 PMCID: PMC9410512 DOI: 10.3390/jpm12081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genomic fabric paradigm (GFP) characterizes the transcriptome topology by the transcripts’ abundances, the variability of the expression profile, and the inter-coordination of gene expressions in each pathophysiological condition. The expression variability analysis provides an indirect estimate of the cell capability to limit the stochastic fluctuations of the expression levels of key genes, while the expression coordination analysis determines the gene networks in functional pathways. This report illustrates the theoretical bases and the mathematical framework of the GFP with applications to our microarray data from mouse models of post ischemic, and constant and intermittent hypoxia-induced heart failures. GFP analyses revealed the myocardium priorities in keeping the expression of key genes within narrow intervals, determined the statistically significant gene interlinkages, and identified the gene master regulators in the mouse heart left ventricle under normal and ischemic conditions. We quantified the expression regulation, alteration of the expression control, and remodeling of the gene networks caused by the oxygen deprivation and determined the efficacy of the bone marrow mono-nuclear stem cell injections to restore the normal transcriptome. Through the comprehensive assessment of the transcriptome, GFP would pave the way towards the development of personalized gene therapy of cardiac diseases.
Collapse
|
6
|
Albaradei S, Albaradei A, Alsaedi A, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front Mol Biosci 2022; 9:913602. [PMID: 35936793 PMCID: PMC9353773 DOI: 10.3389/fmolb.2022.913602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A. Thafar
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Personalized 3-Gene Panel for Prostate Cancer Target Therapy. Curr Issues Mol Biol 2022; 44:360-382. [PMID: 35723406 PMCID: PMC8929157 DOI: 10.3390/cimb44010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Many years and billions spent for research did not yet produce an effective answer to prostate cancer (PCa). Not only each human, but even each cancer nodule in the same tumor, has unique transcriptome topology. The differences go beyond the expression level to the expression control and networking of individual genes. The unrepeatable heterogeneous transcriptomic organization among men makes the quest for universal biomarkers and “fit-for-all” treatments unrealistic. We present a bioinformatics procedure to identify each patient’s unique triplet of PCa Gene Master Regulators (GMRs) and predict consequences of their experimental manipulation. The procedure is based on the Genomic Fabric Paradigm (GFP), which characterizes each individual gene by the independent expression level, expression variability and expression coordination with each other gene. GFP can identify the GMRs whose controlled alteration would selectively kill the cancer cells with little consequence on the normal tissue. The method was applied to microarray data on surgically removed prostates from two men with metastatic PCas (each with three distinct cancer nodules), and DU145 and LNCaP PCa cell lines. The applications verified that each PCa case is unique and predicted the consequences of the GMRs’ manipulation. The predictions are theoretical and need further experimental validation.
Collapse
|
8
|
Chen L, Hou J, You B, Song F, Tu X, Cheng X. An Analysis Regarding the Prognostic Significance of MAVS and Its Underlying Biological Mechanism in Ovarian Cancer. Front Cell Dev Biol 2021; 9:728061. [PMID: 34722508 PMCID: PMC8551630 DOI: 10.3389/fcell.2021.728061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The present study evaluates the value of mitochondrial antiviral signaling (MAVS) expression as a potential diagnostic biomarker and therapeutic target for ovarian cancer (OC) and analyses the underlying biological mechanism in this pathology. First, the association between MAVS expression determined by immunohistochemical (IHC) and clinical characteristics was systematically investigated. Overexpression of MAVS was associated with advanced clinical factors and poor survival of OC patients. Second, bioinformatics analyses, namely, gene expression, mutation analysis, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA), were performed to evaluate the potential biological functions of MAVS in OC. The results showed that MAVS may play a critical role in immune cell infiltration. CIBERSORT was applied to assess the infiltration of immune cells in OC. CD8+ T cells, γδT cells, and eosinophils had significantly negative correlations with MAVS expression. Finally, sensitivity analysis found that patients with high MAVS expression were predicted to be significantly less responsive to cisplatin and paclitaxel. In conclusion, these findings suggested that MAVS influences biological behavior by regulating the immune response and that it can be used as a predictive marker for poor prognosis in OC.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bingbing You
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feifei Song
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model. Genes (Basel) 2021; 12:genes12081172. [PMID: 34440346 PMCID: PMC8392718 DOI: 10.3390/genes12081172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.
Collapse
|
10
|
Iacobas S, Iacobas DA. A Personalized Genomics Approach of the Prostate Cancer. Cells 2021; 10:cells10071644. [PMID: 34209090 PMCID: PMC8305988 DOI: 10.3390/cells10071644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Decades of research identified genomic similarities among prostate cancer patients and proposed general solutions for diagnostic and treatments. However, each human is a dynamic unique with never repeatable transcriptomic topology and no gene therapy is good for everybody. Therefore, we propose the Genomic Fabric Paradigm (GFP) as a personalized alternative to the biomarkers approach. Here, GFP is applied to three (one primary—“A”, and two secondary—“B” & “C”) cancer nodules and the surrounding normal tissue (“N”) from a surgically removed prostate tumor. GFP proved for the first time that, in addition to the expression levels, cancer alters also the cellular control of the gene expression fluctuations and remodels their networking. Substantial differences among the profiled regions were found in the pathways of P53-signaling, apoptosis, prostate cancer, block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance to chemotherapy, and sustained angiogenesis. ENTPD2, AP5M1 BAIAP2L1, and TOR1A were identified as the master regulators of the “A”, “B”, “C”, and “N” regions, and potential consequences of ENTPD2 manipulation were analyzed. The study shows that GFP can fully characterize the transcriptomic complexity of a heterogeneous prostate tumor and identify the most influential genes in each cancer nodule.
Collapse
Affiliation(s)
- Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Dumitru A. Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: ; Tel.: +1-936-261-9926
| |
Collapse
|
11
|
Iacobas D, Wen J, Iacobas S, Schwartz N, Putterman C. Remodeling of Neurotransmission, Chemokine, and PI3K-AKT Signaling Genomic Fabrics in Neuropsychiatric Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:251. [PMID: 33578738 PMCID: PMC7916450 DOI: 10.3390/genes12020251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction and mood changes are prevalent and especially taxing issues for patients with systemic lupus erythematosus (SLE). Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its cognate receptor Fn14 have been shown to play an important role in neurocognitive dysfunction in murine lupus. We profiled and compared gene expression in the cortices of MRL/+, MRL/lpr (that manifest lupus-like phenotype) and MRL/lpr-Fn14 knockout (Fn14ko) adult female mice to determine the transcriptomic impact of TWEAK/Fn14 on cortical gene expression in lupus. We found that the TWEAK/Fn14 pathway strongly affects the expression level, variability and coordination of the genomic fabrics responsible for neurotransmission and chemokine signaling. Dysregulation of the Phosphoinositide 3-kinase (PI3K)-AKT pathway in the MRL/lpr lupus strain compared with the MRL/+ control and Fn14ko mice was particularly prominent and, therefore, promising as a potential therapeutic target, although the complexity of the transcriptomic fabric highlights important considerations in in vivo experimental models.
Collapse
Affiliation(s)
- Dumitru Iacobas
- Center for Computational Systems Biology, Personalized Genomics Laboratory, Roy G. Perry College of Engineering, Prairie View A & M University, Prairie View, TX 77446, USA;
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jing Wen
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Noa Schwartz
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
| | - Chaim Putterman
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 52100, Israel
- Galilee Medical Center, Research Institute, Nahariya 22100, Israel
| |
Collapse
|
12
|
Iacobas DA, Mgbemena VE, Iacobas S, Menezes KM, Wang H, Saganti PB. Genomic Fabric Remodeling in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC): A New Paradigm and Proposal for a Personalized Gene Therapy Approach. Cancers (Basel) 2020; 12:cancers12123678. [PMID: 33302383 PMCID: PMC7762545 DOI: 10.3390/cancers12123678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary We applied the genomic fabric principles for personalized gene therapy to a case of clear cell renal cell carcinoma (ccRCC). Despite decades of research, the process of finding the molecular mechanisms responsible for the disease and, more importantly, the therapeutic solution is still a work in progress. We analyzed the transcriptomes of the chest wall metastasis, two distinct cancer nodules, and the cancer-free surrounding tissue in the surgically removed right kidney of a Fuhrman grade 3 metastatic ccRCC patient. The studies revealed that even histopathologically equally classified cancer nodules from the same kidney have different transcriptomic topologies, requiring tailored therapeutic solutions not only for each patient but even for each cancer nodule. We identified death-associated protein kinase 3 (DAPK3); transcription activation suppressor (TASOR); family with sequence similarity 27, member C, long non-coding RNA (FAM27C); and UDP-N-acetylglucosaminyltransferase subunit (ALG13) as the gene master regulators of the four profiled regions and proposed molecular mechanisms by which expression manipulation of TASOR and ALG13 may selectively destroy the cancer cells without affecting many of the normal cells. Abstract Published transcriptomic data from surgically removed metastatic clear cell renal cell carcinoma samples were analyzed from the genomic fabric paradigm (GFP) perspective to identify the best targets for gene therapy. GFP considers the transcriptome as a multi-dimensional mathematical object constrained by a dynamic set of expression controls and correlations among genes. Every gene in the chest wall metastasis, two distinct cancer nodules, and the surrounding normal tissue of the right kidney was characterized by three independent measures: average expression level, relative expression variation, and expression correlation with each other gene. The analyses determined the cancer-induced regulation, control, and remodeling of the chemokine and vascular endothelial growth factor (VEGF) signaling, apoptosis, basal transcription factors, cell cycle, oxidative phosphorylation, renal cell carcinoma, and RNA polymerase pathways. Interestingly, the three cancer regions exhibited different transcriptomic organization, suggesting that the gene therapy should not be personalized only for every patient but also for each major cancer nodule. The gene hierarchy was established on the basis of gene commanding height, and the gene master regulators DAPK3,TASOR, FAM27C and ALG13 were identified in each profiled region. We delineated the molecular mechanisms by which TASOR overexpression and ALG13 silencing would selectively affect the cancer cells with little consequences for the normal cells.
Collapse
Affiliation(s)
- Dumitru A. Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (D.A.I.); (P.B.S.); Tel.: +1-(936)-261-9626 (D.A.I.)
| | - Victoria E. Mgbemena
- Department of Biology, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Kareena M. Menezes
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
| | - Huichen Wang
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
| | - Premkumar B. Saganti
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
- Department of Physics, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (D.A.I.); (P.B.S.); Tel.: +1-(936)-261-9626 (D.A.I.)
| |
Collapse
|
13
|
Iacobas DA. Powerful quantifiers for cancer transcriptomics. World J Clin Oncol 2020; 11:679-704. [PMID: 33033692 PMCID: PMC7522543 DOI: 10.5306/wjco.v11.i9.679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Every day, investigators find a new link between a form of cancer and a particular alteration in the sequence or/and expression level of a key gene, awarding this gene the title of “biomarker”. The clinician may choose from numerous available panels to assess the type of cancer based on the mutation or expression regulation (“transcriptomic signature”) of “driver” genes. However, cancer is not a “one-gene show” and, together with the alleged biomarker, hundreds other genes are found as mutated or/and regulated in cancer samples. Regardless of the platform, a well-designed transcriptomic study produces three independent features for each gene: Average expression level, expression variability and coordination with expression of each other gene. While the average expression level is used in all studies to identify what genes were up-/down-regulated or turn on/off, the other two features are unfairly ignored. We use all three features to quantify the transcriptomic change during the progression of the disease and recovery in response to a treatment. Data from our published microarray experiments on cancer nodules and surrounding normal tissue from surgically removed tumors prove that the transcriptomic topologies are not only different in histopathologically distinct regions of a tumor but also dynamic and unique for each human being. We show also that the most influential genes in cancer nodules [the Gene Master Regulators (GMRs)] are significantly less influential in the normal tissue. As such, “smart” manipulation of the cancer GMRs expression may selectively kill cancer cells with little consequences on the normal ones. Therefore, we strongly recommend a really personalized approach of cancer medicine and present the experimental procedure and the mathematical algorithm to identify the most legitimate targets (GMRs) for gene therapy.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, United States
| |
Collapse
|
14
|
Iacobas DA. Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma. Genes (Basel) 2020; 11:E1030. [PMID: 32887258 PMCID: PMC7565446 DOI: 10.3390/genes11091030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
15
|
Iacobas DA, Iacobas S, Stout RF, Spray DC. Cellular Environment Remodels the Genomic Fabrics of Functional Pathways in Astrocytes. Genes (Basel) 2020; 11:genes11050520. [PMID: 32392822 PMCID: PMC7290327 DOI: 10.3390/genes11050520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
We profiled the transcriptomes of primary mouse cortical astrocytes cultured alone or co-cultured with immortalized precursor oligodendrocytes (Oli-neu cells). Filters between the cell types prevented formation of hetero-cellular gap junction channels but allowed for free exchange of the two culture media. We previously reported that major functional pathways in the Oli-neu cells are remodeled by the proximity of non-touching astrocytes and that astrocytes and oligodendrocytes form a panglial transcriptomic syncytium in the brain. Here, we present evidence that the astrocyte transcriptome likewise changes significantly in the proximity of non-touching Oli-neu cells. Our results indicate that the cellular environment strongly modulates the transcriptome of each cell type and that integration in a heterocellular tissue changes not only the expression profile but also the expression control and networking of the genes in each cell phenotype. The significant decrease of the overall transcription control suggests that in the co-culture astrocytes are closer to their normal conditions from the brain. The Oli-neu secretome regulates astrocyte genes known to modulate neuronal synaptic transmission and remodels calcium, chemokine, NOD-like receptor, PI3K-Akt, and thyroid hormone signaling, as well as actin-cytoskeleton, autophagy, cell cycle, and circadian rhythm pathways. Moreover, the co-culture significantly changes the gene hierarchy in the astrocytes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, RG Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Correspondence: ; Tel.: +1-936-261-9926
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Randy F Stout
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - David C Spray
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
16
|
Jiang Q, Feng W, Xiong C, Lv Y. Integrated bioinformatics analysis of the association between apolipoprotein E expression and patient prognosis in papillary thyroid carcinoma. Oncol Lett 2020; 19:2295-2305. [PMID: 32194729 PMCID: PMC7039105 DOI: 10.3892/ol.2020.11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023] Open
Abstract
The prognosis of most patients with papillary thyroid carcinoma (PTC) is excellent despite some cases of tumor progression or relapse. The present study was designed to reveal possible prognostic risk indicators for PTC. Differentially expressed genes (DEGs) extracted from 4 Gene Expression Omnibus (GEO) cohorts were subjected to functional enrichment analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. A dataset from The Cancer Genome Atlas (TCGA) was obtained to filter and validate significant genes using cytoHubba, followed by analysis of their association with clinicopathological characteristics and prognosis. In total, 240 DEGs were identified after data preprocessing. These DEGs were enriched in ‘intracellular redox equilibrium’, ‘release of exosome’, ‘cell adhesion’, ‘regulation of extracellular matrix’, ‘collagen binding’ and ‘energy metabolism’ based on GO analysis which including cellular component, molecular function and biological process. KEGG pathway analysis revealed that the DEGs were enriched in thyroid hormone synthesis, pathways in cancer, focal adhesion, metabolic pathways, apoptosis, PPAR signaling pathway and PI3K/AKT signaling pathway. Using cytoHubba, the following hub genes were identified: Apolipoprotein E (APOE); hemoglobin subunit α1 (HBA1); angiotensin II receptor 1 (AGTR1); collagen I α1 (COL1A1); galectin 3 (LGALS3) and TIMP metallopeptidase inhibitor 1 (TIMP1). The expression of these genes was found to be consistent in TCGA datasets. Kaplan-Meier analysis revealed that APOE was significantly associated with overall survival (P=0.00067) and disease free survival (P=0.00220). Additionally, low expression of APOE was significantly associated with older age (P<0.001) and higher TNM stage (P<0.001) compared with the high expression group. Therefore, APOE may function as a predictive risk indicator for progression as well as prognosis of PTC.
Collapse
Affiliation(s)
- Qunguang Jiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenqian Feng
- Department of Operating Room, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yunxia Lv
- Department of Thyroid Surgery, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Barros-Filho MC, de Mello JBH, Marchi FA, Pinto CAL, da Silva IC, Damasceno PKF, Soares MBP, Kowalski LP, Rogatto SR. GADD45B Transcript Is a Prognostic Marker in Papillary Thyroid Carcinoma Patients Treated With Total Thyroidectomy and Radioiodine Therapy. Front Endocrinol (Lausanne) 2020; 11:269. [PMID: 32425887 PMCID: PMC7203742 DOI: 10.3389/fendo.2020.00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Currently, there is a lack of efficient recurrence prediction methods for papillary thyroid carcinoma (PTC). In this study, we enrolled 202 PTC patients submitted to total thyroidectomy and radioiodine therapy with long-term follow-up (median = 10.7 years). The patients were classified as having favorable clinical outcome (PTC-FCO, no disease in the follow-up) or recurrence (PTC-RE). Alterations in BRAF, RAS, RET, and TERT were investigated (n = 202) and the transcriptome of 48 PTC (>10 years of follow-up) samples was profiled. Although no mutation was associated with the recurrence risk, 68 genes were found as differentially expressed in PTC-RE compared to PTC-FCO. Pathway analysis highlighted a potential role of cancer-related pathways, including signal transduction and FoxO signaling. Among the eight selected genes evaluated by RT-qPCR, SLC2A4 and GADD45B showed down-expression exclusively in the PTC-FCO group compared to non-neoplastic tissues (NT). Increased expression of GADD45B was an independent marker of shorter disease-free survival [hazard ratio (HR) 2.9; 95% confidence interval (CI95) 1.2-7.0] in our cohort and with overall survival in the TCGA dataset (HR = 4.38, CI95 1.2-15.5). In conclusion, GADD45B transcript was identified as a novel prognostic marker candidate in PTC patients treated with total thyroidectomy and radioiodine therapy.
Collapse
MESH Headings
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Iodine Radioisotopes/therapeutic use
- Male
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Prognosis
- Retrospective Studies
- Survival Rate
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/therapy
- Thyroidectomy/mortality
Collapse
Affiliation(s)
- Mateus C. Barros-Filho
- International Research Center–CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil
- *Correspondence: Mateus C. Barros-Filho
| | - Julia B. H. de Mello
- International Research Center–CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Fabio A. Marchi
- International Research Center–CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | - Milena B. P. Soares
- Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Health Technology Institute, SENAI CIMATEC, Salvador, Brazil
| | - Luiz P. Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Silvia R. Rogatto
- Department of Clinical Genetics, Vejle University Hospital, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Silvia R. Rogatto
| |
Collapse
|
18
|
Wei S, Yun X, Ruan X, Wei X, Zheng X, Gao M. Identification of potential pathogenic candidates or diagnostic biomarkers in papillary thyroid carcinoma using expression and methylation profiles. Oncol Lett 2019; 18:6670-6678. [PMID: 31814850 PMCID: PMC6888281 DOI: 10.3892/ol.2019.11059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023] Open
Abstract
The mechanisms underlying the pathogenesis of papillary thyroid carcinoma (PTC) have not yet been elucidated. The aim of the current study was to identify potential pathogenic biomarkers in PTC by comprehensively analyzing gene expression and methylation profiles, and to increase the understanding of PTC pathogenesis. The gene expression profiles of the GSE97001 and GSE83520 datasets, the miRNA expression profiles of the GSE73182 dataset, and the DNA methylation profiles of the GSE86961 and GSE97466 datasets were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) and the differentially expressed microRNAs (DEMs) were identified using the limma package in R, and the differentially methylated sites (DMSs) were identified using the β distribution and two-sample t-tests. The Database for Annotation, Visualization and Integrated Discovery, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome were subsequently used to perform functional and pathway enrichment analysis. The miRNA target genes were predicted using the online databases miRWalk. The protein-protein interactions (PPI) were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins. The regulatory network was constructed, and the gene expression and methylation levels of the key nodes were detected using reverse-transcription quantitative-polymerase chain reaction (PCR) and methylation-specific PCR. A total of 155 overlapping DEGs were identified between the GSE97001 and GSE83520 datasets, and 19 DEMs between PTC tissue and normal tissue samples were identified in the GSE73182 set. In the GSE86961 and GSE97466 datasets, 2,910 overlapping DMSs that were associated with 38 downregulated methylated genes were identified. The overlapping DEGs were enriched in 46 Gene Ontology terms and one KEGG pathway. A total of 60 PPI pairs were identified for the overlapping DEGs and 12 negative miRNA-gene pairs were identified for the DEMs. The expression levels of hsa-miR-199a-5p and decorin (DCN) were decreased in patients with PTC. C-X-C motif chemokine ligand 12 (CXCL12) was hypermethylated and had a decreased expression level in PTC tissues. LDL receptor related protein 4 (LRP4) and carbonic anhydrase 12 (CA12) were hypomethylated and had an increased expression level. The present study revealed that hsa-miR-199a-5p, DCN, CXCL12, LRP4 and CA12 may serve important roles in the pathogenesis of PTC.
Collapse
Affiliation(s)
- Songfeng Wei
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xinwei Yun
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xi Wei
- Department of Ultrasonic Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ming Gao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
19
|
Kobets T, Iatropoulos MJ, Duan JD, Brunnemann KD, Iacobas DA, Iacobas S, Vock E, Deschl U, Williams GM. Expression of Genes Encoding for Xenobiotic Metabolism After Exposure to Dialkylnitrosamines in the Chicken Egg Genotoxicity Alternative Model. Toxicol Sci 2019; 166:82-96. [PMID: 30102407 DOI: 10.1093/toxsci/kfy197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Chicken Egg Genotoxicity Assay (CEGA) demonstrated responsiveness to various DNA-reactive chemicals requiring metabolic activation, which implies broad bioactivation capability. To assess potential metabolic competence, expression profiles of metabolic genes in the embryo-chicken fetal liver were determined using microarray technology. Fertilized chicken eggs were injected under the CEGA protocol with vehicle (deionized water [DW]), the activation-dependent carcinogens, diethylnitrosamine (DEN), and N-nitrosodiethanolamine (NDELA) at doses producing no effect on survival. Previously in CEGA, DEN produced DNA damage, whereas NDELA did not. Expressions of 463 genes known to encode for phase I and II of endo- and xenobiotic metabolism were detected on the array. DW did not affect the expression of the selected genes, deregulating less than 1% of them. In contrast, DEN at 2 mg/egg and NDELA at 4 mg/egg produced significant transcriptomic alterations, up-regulating up to 41% and down-regulating over 31% of studied genes. Both nitrosamines modulated the majority of the genes in a similar manner, sharing 64 up-regulated and 93 down-regulated genes with respect to control group, indicating similarity in the regulation of their metabolism by avian liver. Differences in gene expression between DEN and NDELA were documented for several phase I CYP 450 genes that are responsible for nitrosamine biotransformation, as well as for phase II genes that regulate detoxication reactions. These findings could underlie the difference in genotoxicity of DEN and NDELA in CEGA. In conclusion, the analysis of gene expression profiles in embryo-chicken fetal liver dosed with dialkylnitrosamines demonstrated that avian species possess a complex array of inducible genes coding for biotransformation.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pthology, New York Medical College, Valhalla, New York 10595
| | | | - Jiandong D Duan
- Department of Pthology, New York Medical College, Valhalla, New York 10595
| | - Klaus D Brunnemann
- Department of Pthology, New York Medical College, Valhalla, New York 10595
| | - Dumitru A Iacobas
- Center for Computational Systems Biology, Prairie View A&M University, Prairie View, Texas 77446
| | - Sanda Iacobas
- Department of Pthology, New York Medical College, Valhalla, New York 10595
| | - Esther Vock
- Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach an der Riss, Germany 88397
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach an der Riss, Germany 88397
| | - Gary M Williams
- Department of Pthology, New York Medical College, Valhalla, New York 10595
| |
Collapse
|
20
|
Iacobas DA, Iacobas S, Lee PR, Cohen JE, Fields RD. Coordinated Activity of Transcriptional Networks Responding to the Pattern of Action Potential Firing in Neurons. Genes (Basel) 2019; 10:genes10100754. [PMID: 31561430 PMCID: PMC6826514 DOI: 10.3390/genes10100754] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Transcriptional responses to the appropriate temporal pattern of action potential firing are essential for long-term adaption of neuronal properties to the functional activity of neural circuits and environmental experience. However, standard transcriptome analysis methods can be too limited in identifying critical aspects that coordinate temporal coding of action potential firing with transcriptome response. A Pearson correlation analysis was applied to determine how pairs of genes in the mouse dorsal root ganglion (DRG) neurons are coordinately expressed in response to stimulation producing the same number of action potentials by two different temporal patterns. Analysis of 4728 distinct gene-pairs related to calcium signaling, 435,711 pairs of transcription factors, 820 pairs of voltage-gated ion channels, and 86,862 pairs of calcium signaling genes with transcription factors indicated that genes become coordinately activated by distinct action potential firing patterns and this depends on the duration of stimulation. Moreover, a measure of expression variance revealed that the control of transcripts abundances is sensitive to the pattern of stimulation. Thus, action potentials impact intracellular signaling and the transcriptome in dynamic manner that not only alter gene expression levels significantly (as previously reported) but also affects the control of their expression fluctuations and profoundly remodel the transcriptional networks.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX 77446, USA.
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | - Philip R Lee
- Section on Nervous System Development and Plasticity, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA.
| | - Jonathan E Cohen
- Division of Medical Imaging Products, U.S. Food and Drug Administration, Silver Spring, 20993 MD, USA.
| | - R Douglas Fields
- Section on Nervous System Development and Plasticity, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Iacobas S, Ede N, Iacobas DA. The Gene Master Regulators (GMR) Approach Provides Legitimate Targets for Personalized, Time-Sensitive Cancer Gene Therapy. Genes (Basel) 2019; 10:genes10080560. [PMID: 31349573 PMCID: PMC6723146 DOI: 10.3390/genes10080560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The dynamic and never exactly repeatable tumor transcriptomic profile of people affected by the same form of cancer requires a personalized and time-sensitive approach of the gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled expression by the homeostatic mechanisms commands the cell phenotype by modulating major functional pathways through expression correlation with their genes. The Gene Commanding Height (GCH), a measure that combines the expression control and expression correlation with all other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the experimental protocol, the mathematical algorithm and the computer software to identify the GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer patients. The GMR approach is illustrated with applications to our microarray data on human kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and surrounding normal tissue are governed by different GMRs, and that manipulating the expression has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that silencing the GMR may selectively kill the cancer cells from a tissue.
Collapse
Affiliation(s)
- Sanda Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Nneka Ede
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
22
|
Liu Y, Cheng Z, Li Q, Pang Y, Cui L, Qian T, Quan L, Dai Y, Jiao Y, Zhang Z, Ye X, Shi J, Fu L. Prognostic significance of the PANK family expression in acute myeloid leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:261. [PMID: 31355228 DOI: 10.21037/atm.2019.05.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Acute myeloid leukemia (AML) is a highly heterogenous hematological malignancy and its prognostication depends on the genetic mutation and expression profile of each patient. Pantothenate kinase (PANK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. It has four isoforms encoded by PANK1-4, respectively. Whether the expression of the PANK family has prognostic significance in AML remains unclear. Methods We screened The Cancer Genome Atlas database for AML patients with complete PANK1-4 expression data. Eighty-four AML patients met the criteria and were included in this study. Clinical characteristics at diagnosis, including peripheral blood (PB) white blood cell counts (WBC), blast percentages in PB and bone marrow (BM), French-American-British (FAB) subtypes and the frequencies of common genetic mutations were described. Survival was estimated using the Kaplan-Meier method and the log-rank test. Multivariate Cox proportional hazard models were constructed for event-free survival (EFS) and overall survival (OS), using a limited backward elimination procedure. Results Patients with high PANK2 expression had significantly longer event-free survival (EFS) and overall survival (OS) than patients with low PANK2 expression (P=0.007, P=0.016, respectively), whereas patients with high PANK4 expression had shorter EFS and OS than patients with low PANK4 expression (P=0.022, P=0.015, respectively). Multivariate analysis confirmed that high PANK4 expression was an independent risk factor for EFS and OS (both P<0.05). Conclusions Our study suggested that high PANK2 expression might have favorable effects on AML, while high PANK4 expression was indicative of poor prognosis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng 475000, China.,Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Qihui Li
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yifeng Dai
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jinlong Shi
- Department of Medical Big Data, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
23
|
NEMP1 Promotes Tamoxifen Resistance in Breast Cancer Cells. Biochem Genet 2019; 57:813-826. [PMID: 31079234 DOI: 10.1007/s10528-019-09926-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is a worldwide malignant and a leading death cancer in women. Studies have shown that adjuvant tamoxifen reduces the recurrence rate and metastasis in BC. Even though tamoxifen has been used for the therapy of BC for decades, the resistance of it on BC cells could not be ignored. In this study, we first established a tamoxifen-resistant BC cell line and then demonstrated the overexpression of nuclear envelope integral membrane protein 1 (NEMP1) in the tamoxifen-resistant BC cells. Moreover, through a cell viability assay combined with depletion or overexpression technology, we addressed the important role of NEMP1 for the tamoxifen resistance in BC cells. Importantly, we further revealed that NEMP1 modulated tamoxifen resistance by regulating nuclear receptor coactivator 1 (NCOA1). In general, NEMP1 shows responsibility for the resistance of tamoxifen through regulating NCOA1 in BC cells. These results broaden the understanding of the tamoxifen resistance during the chemotherapy in BC and may provide new therapy method for BC.
Collapse
|
24
|
Iacobaş DA, Chachua T, Iacobaş S, Benson MJ, Borges K, Velíšková J, Velíšek L. ACTH and PMX53 recover synaptic transcriptome alterations in a rat model of infantile spasms. Sci Rep 2018; 8:5722. [PMID: 29636502 PMCID: PMC5893534 DOI: 10.1038/s41598-018-24013-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
We profiled the gene expression in the hypothalamic arcuate nuclei (ARC) of 20 male and 20 female rats to determine the infantile spasms (IS) related transcriptomic alteration of neurotransmission and recovery following two treatments. Rats were prenatally exposed to betamethasone or saline followed by repeated postnatal subjection to NMDA-triggered IS. Rats with spasms were treated with ACTH, PMX53 or saline. Since ACTH, the first line treatment for IS, has inconsistent efficacy and potential harsh side effects, PMX53, a potent complement C5ar1 antagonist, was suggested as a therapeutic alternative given its effects in other epilepsy models. Novel measures that consider all genes and are not affected by arbitrary cut-offs were used, in addition to standard statistical tests, to quantify regulation and recovery of glutamatergic, GABAergic, cholinergic, dopaminergic and serotonergic pathways. Although IS alters expression of ~30% of the ARC genes in both sexes the transcriptomic effects are 3× more severe in males than their female counterparts, as indicated by the Weighted Pathway Regulation measure. Both treatments significantly restored the ARC neurotransmission transcriptome to the non-IS condition with PMX53 performing slightly better, as measured by the Pathway Restoration Efficiency, suggesting these treatments may reduce autistic traits often associated with IS.
Collapse
Affiliation(s)
- Dumitru A Iacobaş
- Center for Computational Systems Biology, Prairie View AM University, Prairie View, TX, 77446, USA. .,D.P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| | - Tamar Chachua
- New York Medical College School of Medicine, Department of Cell Biology and Anatomy, Valhalla, NY, 10595, USA
| | - Sanda Iacobaş
- New York Medical College School of Medicine, Department of Pathology, Valhalla, NY, 10595, USA
| | - Melissa J Benson
- New York Medical College School of Medicine, Department of Cell Biology and Anatomy, Valhalla, NY, 10595, USA.,University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Karin Borges
- University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Jana Velíšková
- New York Medical College School of Medicine, Department of Cell Biology and Anatomy, Valhalla, NY, 10595, USA.,New York Medical College School of Medicine, Department of Neurology, Valhalla, NY, 10595, USA.,New York Medical College School of Medicine, Department of Obstetrics and Gynecology, Valhalla, NY, 10595, USA
| | - Libor Velíšek
- New York Medical College School of Medicine, Department of Cell Biology and Anatomy, Valhalla, NY, 10595, USA.,New York Medical College School of Medicine, Department of Neurology, Valhalla, NY, 10595, USA.,New York Medical College School of Medicine, Department of Pediatrics, Valhalla, NY, 10595, USA
| |
Collapse
|