1
|
Nakatsuji M, Fujimori K. Adipocyte-conditioned medium induces tamoxifen resistance by activating PI3K/Akt/mTOR pathway in estrogen receptor-positive breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119821. [PMID: 39159684 DOI: 10.1016/j.bbamcr.2024.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Resistance to endocrine therapy is a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Obesity is associated with the clinical response to ER-positive breast cancers; however, the mechanism underlying obesity-induced resistance to endocrine therapy in ER-positive breast cancers remains unclear. In this study, we investigated the molecular mechanisms underlying obesity-induced resistance to tamoxifen (TAM), an anti-estrogen agent, in the ER-positive breast cancer cell line MCF-7 using differentiated adipocyte-conditioned medium (D-CM). Treatment of the cells with D-CM promoted TAM resistance by reducing TAM-induced apoptosis. The expression levels of the ERα target genes were higher in D-CM-treated cells than those in untreated ones. In contrast, when the cells were cultured in the presence of TAM, the expression levels were decreased, with or without D-CM. Moreover, the expression of the markers for cancer stem-like cells (CSCs) and mammosphere formation was enhanced by co-treating with D-CM and TAM, compared with TAM alone. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was activated in MCF-7 cells by D-CM treatment, even in the presence of TAM. Inhibition of the PI3K/Akt/mTOR pathway decreased the expression levels of the CSC markers, suppressed mammosphere formation, and resensitized to TAM via inducing apoptosis in D-CM-treated cells. These results indicate that the conditioned medium of differentiated adipocytes promoted TAM resistance by inducing the CSC phenotype through activation of the PI3K/Akt/mTOR pathway in ER-positive breast cancer cells. Thus, the PI3K/Akt/mTOR pathway may be a therapeutic target in obese patients with ER-positive breast cancers.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
2
|
Yaghjyan L, Heng YJ, Baker GM, Bret-Mounet V, Murthy D, Mahoney MB, Mu Y, Rosner B, Tamimi RM. Reliability of CD44, CD24, and ALDH1A1 immunohistochemical staining: Pathologist assessment compared to quantitative image analysis. Front Med (Lausanne) 2022; 9:1040061. [PMID: 36590957 PMCID: PMC9794585 DOI: 10.3389/fmed.2022.1040061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background The data on the expression of stem cell markers CD44, CD24, and ALDH1A1 in the breast tissue of cancer-free women is very limited and no previous studies have explored the agreement between pathologist and computational assessments of these markers. We compared the immunohistochemical (IHC) expression assessment for CD44, CD24, and ALDH1A1 by an expert pathologist with the automated image analysis results and assessed the homogeneity of the markers across multiple cores pertaining to each woman. Methods We included 81 cancer-free women (399 cores) with biopsy-confirmed benign breast disease in the Nurses' Health Study (NHS) and NHSII cohorts. IHC was conducted with commercial antibodies [CD44 (Dako, Santa Clara, CA, USA) 1:25 dilution; CD24 (Invitrogen, Waltham, MA, USA) 1:200 dilution and ALDH1A1 (Abcam, Cambridge, United Kingdom) 1:300 dilution]. For each core, the percent positivity was quantified by the pathologist and Definiens Tissue Studio. Correlations between pathologist and computational scores were evaluated with Spearman correlation (for categorical positivity: 0, >0-<1, 1-10, >10-50, and >50%) and sensitivity/specificity (for binary positivity defined with 1 and 10% cut-offs), using the pathologist scores as the gold standard. Expression homogeneity was examined with intra-class correlation (ICC). Analyses were stratified by core [normal terminal duct-lobular units (TDLUs), benign lesions] and tissue type (epithelium, stroma). Results Spearman correlation between pathologist and Definiens ranged between 0.40-0.64 for stroma and 0.66-0.68 for epithelium in normal TDLUs cores and between 0.24-0.60 for stroma and 0.61-0.64 for epithelium in benign lesions. For stroma, sensitivity and specificity ranged between 0.92-0.95 and 0.24-0.60, respectively, with 1% cut-off and between 0.43-0.88 and 0.73-0.85, respectively, with 10% cut-off. For epithelium, 10% cut-off resulted in better estimates for both sensitivity and specificity. ICC between the cores was strongest for CD44 for both stroma and epithelium in normal TDLUs cores and benign lesions (range 0.74-0.80). ICC for CD24 and ALDH1A ranged between 0.42-0.63 and 0.44-0.55, respectively. Conclusion Our findings show that computational assessments for CD44, CD24, and ALDH1A1 exhibit variable correlations with manual assessment. These findings support the use of computational platforms for IHC evaluation of stem cell markers in large-scale epidemiologic studies. Pilot studies maybe also needed to determine appropriate cut-offs for defining staining positivity.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Yujing J. Heng
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gabrielle M. Baker
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Vanessa Bret-Mounet
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Matt B. Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Yi Mu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Rulla M. Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
3
|
Rossi V, Govoni M, Farabegoli F, Di Stefano G. Lactate is a potential promoter of tamoxifen resistance in MCF7 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130185. [PMID: 35661802 DOI: 10.1016/j.bbagen.2022.130185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tamoxifen is a widely used estrogen receptor inhibitor, whose clinical success is limited by the development of acquired resistance. This compound was also found to inhibit mitochondrial function, causing increased glycolysis and lactate production. Lactate has been widely recognized as a signaling molecule, showing the potential of modifying gene expression. These metabolic effects of tamoxifen can by hypothesized to contribute in driving drug resistance. METHODS To test this hypothesis, we used MCF7 cells together with a tamoxifen resistant cell line (MCF7-TAM). Experiments were aimed at verifying whether enhanced lactate exposure can affect the phenotype of MCF7 cells, conferring them features mirroring those observed in the tamoxifen resistant culture. RESULTS The obtained results suggested that enhanced lactate in MCF7 cells medium can increase the expression of tafazzin (TAZ) and telomerase complex (TERC, TERT) genes, reducing the cells' attitude to undergo senescence. In long term lactate-exposed cells, signs of EGFR activation, a pathway related to acquired tamoxifen resistance, was also observed. CONCLUSIONS The obtained results suggested lactate as a potential promoter of tamoxifen resistance. The off-target effects of this compound could play a role in hindering its therapeutic efficacy. GENERAL SIGNIFICANCE The features of acquired tamoxifen resistance have been widely characterized at the molecular level; in spite of their heterogeneity, poorly responsive cells were often found to display upregulated glycolysis. Our results suggest that this metabolic asset is not simply a result of neoplastic progression, but can play an active part in driving this process.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
4
|
Dal Berto M, Dos Santos GT, Dos Santos AV, Silva AO, Vargas JE, Alves RJV, Barbisan F, da Cruz IBM, Bica CG. Molecular markers associated with the outcome of tamoxifen treatment in estrogen receptor-positive breast cancer patients: scoping review and in silico analysis. Discov Oncol 2021; 12:37. [PMID: 35201456 PMCID: PMC8777552 DOI: 10.1007/s12672-021-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen (TMX) is used as adjuvant therapy for estrogen receptor-positive (ER+) breast cancer cases due to its affinity and inhibitory effects. However, about 30% of cases show drug resistance, resulting in recurrence and metastasis, the leading causes of death. A literature review can help to elucidate the main cellular processes involved in TMX resistance. A scoping review was performed to find clinical studies investigating the association of expression of molecular markers profiles with long-term outcomes in ER+ patients treated with TMX. In silico analysis was performed to assess the interrelationship among the selected markers, evaluating the joint involvement with the biological processes. Forty-five studies were selected according to the inclusion and exclusion criteria. After clustering and gene ontology analysis, 23 molecular markers were significantly associated, forming three clusters of strong correlation with cell cycle regulation, signal transduction of proliferative stimuli, and hormone response involved in morphogenesis and differentiation of mammary gland. Also, it was found that overexpression of markers in selected clusters is a significant indicator of poor overall survival. The proposed review offered a better understanding of independent data from the literature, revealing an integrative network of markers involved in cellular processes that could modulate the response of TMX. Analysis of these mechanisms and their molecular components could improve the effectiveness of TMX.
Collapse
Affiliation(s)
- Maiquidieli Dal Berto
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Giovana Tavares Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Aniúsca Vieira Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Andrew Oliveira Silva
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, University of Passo Fundo (UPF), 285, Brazil Avenue, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael José Vargas Alves
- Department of Clinical Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Fernanda Barbisan
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Claudia Giuliano Bica
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street., Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
5
|
Ni YH, Zhao X, Wang W. CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Curr Gene Ther 2021; 20:109-126. [PMID: 32576128 DOI: 10.2174/1566523220666200623170738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
CD24, is a mucin-like GPI-anchored molecules. By immunohistochemistry, it is widely detected in many solid tumors, such as breast cancers, genital system cancers, digestive system cancers, neural system cancers and so on. The functional roles of CD24 are either fulfilled by combination with ligands or participate in signal transduction, which mediate the initiation and progression of neoplasms. However, the character of CD24 remains to be intriguing because there are still opposite voices about the impact of CD24 on tumors. In preclinical studies, CD24 target therapies, including monoclonal antibodies, target silencing by RNA interference and immunotherapy, have shown us brighten futures on the anti-tumor application. Nevertheless, evidences based on clinical studies are urgently needed. Here, with expectancy to spark new ideas, we summarize the relevant studies about CD24 from a tumor perspective.
Collapse
Affiliation(s)
- Yang-Hong Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
7
|
Kalyanaraman A, Gnanasampanthapandian D, Shanmughan P, Kishore P, Ramalingam S, Arunachalam R, Jayaraman S, Kaliappan I, Munuswamy-Ramanujam G, Ramachandran I, Sambandam Y, Anbalagan M, Chandrakesan P, Palaniyandi K. Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERα+ breast cancer cells. Stem Cell Investig 2020; 7:20. [PMID: 33294429 PMCID: PMC7715663 DOI: 10.21037/sci-2020-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND To understand the mechanism underlying tamoxifen-induced multidrug resistance (MDR) and stem-like phenotypes in breast cancer cells, we treated the MCF-7 cells with 4-hydroxy-tamoxifen (TAM) for 6 months continuously and established MCF-7 tamoxifen resistance (TR) phenotypes. METHODS In the present study, the following methods were used: cell viability assay, colony formation, cell cycle analysis, ALDEFLUOR assay, mammosphere formation assay, chromatin immunoprecipitation (ChIP) assay, PCR array, western blot analysis and quantitative reverse transcription polymerase chain reaction (QRT-PCR). RESULTS The expression of ERα was significantly higher in MCF7-TR cells when compared with parental MCF-7 cells. MCF7-TR cells exposed to TAM showed a significant increase in the proliferation and rate of colony formation. The number of cancer stem cells was higher in MCF7-TR cells as observed by the increase in the number of ALDH+ cells. Furthermore, the number of mammospheres formed from the FACS-sorted ALDH+ cells was higher in MCF7-TR cells. Using PCR array analysis, we were able to identify that the long-term exposure of TAM leads to alterations in the epigenetic and MDR stem cell marker genes. Furthermore, western blot analysis demonstrated elevated levels of Notch-1 expression in MCF-TR cells compared with MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay revealed that Notch-1 enhanced the cyclin D1 expression significantly in these cells. In addition, we observed that MCF7-TR cells were resistant to doxorubicin but not the MCF-7 cells. CONCLUSIONS In the present study, we conclude that the treatment with tamoxifen induces multiple epigenetic alterations that lead to the development of MDR and stem-like phenotypes in breast cancers. Therefore, our study provides better insights to develop novel treatment regime to control the progression of breast cancer.
Collapse
Affiliation(s)
- Aparna Kalyanaraman
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Prasad Shanmughan
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Puneet Kishore
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Rathnaswami Arunachalam
- Department of Surgical Gastroenterology, SRM Medical College Hospital and Research Center, Kattankulathur, Kancheepuram, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Velappanchavadi, Chennai, India
| | - Ilango Kaliappan
- Departmemt of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ganesh Munuswamy-Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | - Yuvaraj Sambandam
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | | | | | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| |
Collapse
|
8
|
Breast tumour cell subpopulations with expression of the MYC and OCT4 proteins. J Mol Histol 2020; 51:717-728. [PMID: 33037978 DOI: 10.1007/s10735-020-09917-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
The MYC and OCT4 genes are known factors associated with maintaining pluripotency and are linked with a more aggressive course, progression, and resistance to therapy in cancer. Determining the subpopulations of tumour cells expressing the Myc and Oct4 proteins will provide an opportunity to understand which tumour cell subpopulations expressing MYC and OCT4 are associated with metastasis and resistance and which subpopulations can be targeted by anti-MYC and anti-OCT4 therapy. The study included paraffin-embedded tissue from tumours from 27 patients with luminal B breast cancer obtained after neoadjuvant chemotherapy (NACT). Immunofluorescence staining was used to identify subpopulations of tumour cells expressing Myc, Oct4 and Snai2 (Opal™ 7-Color Kit (PerkinElmer, Hopkinton, MA). The following tumour cell subpopulations were identified with the Myc and Oct4 proteins and the Snai2 EMT marker: stem/progenitor tumour cells with/without Myc, Oct4 or Snai2 expression; differentiated tumour cells with/without Myc, Oct4 or Snai2 expression; and other nontumour cells (CK7-EpCAM-CD44+/-Myc+/-(Oct4, Snai2)+/-) within the inflammatory infiltrate in the tumour parenchyma and stroma. The circulating tumour cell subpopulations with Oct4 protein expression in the bloodstream were studied by flow cytometry. It was found that in patients with partial regression (PR) in response to NACT, the frequency of tumour stem cells was 3.6-fold increased (p = 0.038) in the non-EMT state (CK7+EpCam+CD44+Snai2-). In patients with metastases, there was a statistically significant 2.5-fold increase in the frequency of differentiated tumour cells with Myc expression (CK7+EpCam+CD44-Myc+) and a 2.7-fold increase in the frequency of cells with Oct4 expression (CK7+EpCam+CD44-OCT4+). In the next stage, the frequencies of subpopulations with expression of the Oct4 protein and signs of EMT among circulating tumour cells (CTCs) were determined. In patients with metastases, the frequency of tumour stem cells in the EMT state (CD326+CD44+CD24-CD325+) (p = 0.015) was more than fourfold increased, and the frequency of progenitor tumour cells with expression of the Oct4 stem protein (CD326+CD44+CD24+Oct4+) (p = 0.016) was almost sixfold higher than that in patients without metastases. Nonstem (differentiated) tumour cells with expression of the stemness proteins Myc and Oct4 were present in the breast tumour. Their content was significantly higher in residual tumours after NACT in patients who subsequently developed metastases compared with that in patients without metastases. Such cells are a new in situ marker of metastasis.
Collapse
|
9
|
Takashima K, Fujii S, Komatsuzaki R, Komatsu M, Takahashi M, Kojima T, Daiko H, Minashi K, Chiwaki F, Muto M, Sasaki H, Yano T. CD24 and CK4 are upregulated by SIM2, and are predictive biomarkers for chemoradiotherapy and surgery in esophageal cancer. Int J Oncol 2020; 56:835-847. [PMID: 32124945 DOI: 10.3892/ijo.2020.4963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/19/2019] [Indexed: 11/05/2022] Open
Abstract
Definitive chemoradiotherapy (CRT) is a less invasive therapy compared with surgery for some types of cancer; however, the 5‑year survival rate of patients with stages II‑III esophageal squamous cell carcinoma (ESCC) is only 37%. Therefore, prediction of CRT responders is necessary. Unfortunately, no definitive biomarker exists that is useful to predict survival outcome following CRT. From our previous microarray study, CD24 and keratin 4 (KRT4), which encodes cytokeratin 4 (CK4), were overexpressed in the favorable prognostic epithelial subtype with SIM bHLH transcription factor 2 (SIM2) expression. This study investigated the association between their mRNA and protein expression levels, and clinicopathological characteristics, and also investigated the functions of CD24 in SIM2‑mediated tumor differentiation and CRT sensitivity. High CD24 and KRT4 mRNA expression was associated with a favorable prognosis following CRT. Multivariate analyses revealed that high CD24 and CK4 protein expression, as determined by immunohistochemistry, and differentiated type were independent factors for predicting a favorable prognosis in response to CRT. Notably, in cases with low CD24 or CK4, surgery was suggested to be a good therapeutic modality compared with CRT. CD24 and KRT4 were expressed preferentially in differentiated layers of the normal esophageal mucosa, and their mRNA expression in 3D cultured ESCC cells was induced by SIM2 transfection, thus suggesting that CD24 and KRT4 were downstream differentiation markers of SIM2. Furthermore, CD24 small interfering RNA increased the mRNA expression levels of superoxide dismutase 2 and enhanced H2O2 resistance, thus indicating the involvement of CD24 in the radiosensitivity of patients with ESCC; however, it had no effect on cisplatin sensitivity. In conclusion, the two markers CD24 and CK4 may be considered predictive biomarkers for definitive CRT.
Collapse
Affiliation(s)
- Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Chiba 277‑8577, Japan
| | - Satoshi Fujii
- Department of Pathology, Exploratory Oncology Research and Clinical Trial Center, Kashiwa, Chiba 277‑8577, Japan
| | - Rie Komatsuzaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Masayuki Komatsu
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Mari Takahashi
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Chiba 277‑8577, Japan
| | - Takashi Kojima
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277‑8577, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital East, Kashiwa, Chiba 277‑8577, Japan
| | - Keiko Minashi
- Department of Clinical Trial Promotion, Chiba Cancer Center, Chiba 260‑8717, Japan
| | - Fumiko Chiwaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto 606‑8507, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Chiba 277‑8577, Japan
| |
Collapse
|
10
|
Hu Z, Li Y, Xie B, Ning W, Xiao Y, Huang Y, Zhao C, Huang J, Dong C, Zhou HB. Novel class of 7-Oxabicyclo[2.2.1]heptene sulfonamides with long alkyl chains displaying improved estrogen receptor α degradation activity. Eur J Med Chem 2019; 182:111605. [DOI: 10.1016/j.ejmech.2019.111605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022]
|