1
|
Sönmez E, Yan S, Lin MS, Baumgartner M. MAP4 kinase-regulated reduced CLSTN1 expression in medulloblastoma is associated with increased invasiveness. Sci Rep 2025; 15:946. [PMID: 39762313 PMCID: PMC11704044 DOI: 10.1038/s41598-024-84753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling. We previously identified CLSTN1 as a putative target of the pro-invasive kinase MAP4K4, which we found to reduce CLSTN1 surface expression. Herein, we explored the expression and functional significance of CLSTN1 in MB. We found that CLSTN1 expression is decreased in primary MB tumors compared to tumor-free cerebellum or brain tissues. CLSTN1 is expressed in laboratory-established MB cell lines, where it localized to the plasma membrane, intracellular vesicular structures, and regions of cell-cell contact. The reduction of CLSTN1 expression significantly increased growth factor-driven invasiveness. Pharmacological inhibition of pro-migratory MAP4 kinases caused increased CLSTN1 expression and CLSTN1 accumulation in cell-cell contacts. Co-culture of tumor cells with astrocytes increased CLSTN1 localization in cell-cell contacts, which was further enhanced by MAP4K inhibition. Our study revealed a repressive function of CLSTN1 in growth-factor-driven invasiveness in MB, identified MAP4 kinases as repressors of CLSTN1 recruitment to cell-cell contacts, and points towards CLSTN1 implication in the kinase-controlled regulation of tumor-microenvironment interaction.
Collapse
Affiliation(s)
- Ece Sönmez
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Shen Yan
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Meng-Syuan Lin
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Juin A, Spence HJ, Machesky LM. Dichotomous role of the serine/threonine kinase MAP4K4 in pancreatic ductal adenocarcinoma onset and metastasis through control of AKT and ERK pathways. J Pathol 2024; 262:454-466. [PMID: 38229581 DOI: 10.1002/path.6248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Alberici Delsin LE, Plutoni C, Clouvel A, Keil S, Marpeaux L, Elouassouli L, Khavari A, Ehrlicher AJ, Emery G. MAP4K4 regulates forces at cell-cell and cell-matrix adhesions to promote collective cell migration. Life Sci Alliance 2023; 6:e202302196. [PMID: 37369604 PMCID: PMC10300198 DOI: 10.26508/lsa.202302196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Collective cell migration is not only important for development and tissue homeostasis but can also promote cancer metastasis. To migrate collectively, cells need to coordinate cellular extensions and retractions, adhesion sites dynamics, and forces generation and transmission. Nevertheless, the regulatory mechanisms coordinating these processes remain elusive. Using A431 carcinoma cells, we identify the kinase MAP4K4 as a central regulator of collective migration. We show that MAP4K4 inactivation blocks the migration of clusters, whereas its overexpression decreases cluster cohesion. MAP4K4 regulates protrusion and retraction dynamics, remodels the actomyosin cytoskeleton, and controls the stability of both cell-cell and cell-substrate adhesion. MAP4K4 promotes focal adhesion disassembly through the phosphorylation of the actin and plasma membrane crosslinker moesin but disassembles adherens junctions through a moesin-independent mechanism. By analyzing traction and intercellular forces, we found that MAP4K4 loss of function leads to a tensional disequilibrium throughout the cell cluster, increasing the traction forces and the tension loading at the cell-cell adhesions. Together, our results indicate that MAP4K4 activity is a key regulator of biomechanical forces at adhesion sites, promoting collective migration.
Collapse
Affiliation(s)
- Lara Elis Alberici Delsin
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada
| | - Cédric Plutoni
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Sarah Keil
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada
| | - Léa Marpeaux
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada
| | - Lina Elouassouli
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada
| | - Adele Khavari
- Department of Bioengineering, McGill University, Montreal, Canada
| | | | - Gregory Emery
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
4
|
Emery G. [I lead, follow me! How cells coordinate during collective migrations.]. Med Sci (Paris) 2023; 39:619-624. [PMID: 37695151 DOI: 10.1051/medsci/2023095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
During development and wound healing, cells frequently move in a so-called "collective cell migration" process. The same type of migration is used by some cancer cells during metastasis formation. A powerful model to study collective cell migration is the border cell cluster in Drosophila as it allows the observation and manipulation of a collective cell migration in its normal environment. This review describes the molecular machinery used by the border cells to migrate directionally, focusing on the mechanisms used to detect and reacts to chemoattractants, and to organise the group in leader and follower cells.
Collapse
Affiliation(s)
- Gregory Emery
- Unité de recherche en transport vésiculaire et signalisation cellulaire, Institut pour la recherche en immunologie et en cancérologie de l'université de Montréal (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada - Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
5
|
Wang J, Parajuli N, Wang Q, Khalasawi N, Peng H, Zhang J, Yin C, Mi QS, Zhou L. MiR-23a Regulates Skin Langerhans Cell Phagocytosis and Inflammation-Induced Langerhans Cell Repopulation. BIOLOGY 2023; 12:925. [PMID: 37508356 PMCID: PMC10376168 DOI: 10.3390/biology12070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
Langerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-β and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown. miR-23a is the first member of the miR-23a-27a-24-2 cluster, a direct downstream target of PU.1 and TGF-b, which regulate the determination of myeloid versus lymphoid fates. Therefore, we used a myeloid-specific miR-23a deletion mouse model to explore whether and how miR-23a affects LC ontogeny and function in the skin. We observed the indispensable role of miR-23a in LC antigen uptake and inflammation-induced LC epidermal repopulation; however, embryonic LC development and postnatal homeostasis were not affected by cells lacking miR23a. Our results suggest that miR-23a controls LC phagocytosis by targeting molecules that regulate efferocytosis and endocytosis, whereas miR-23a promotes homeostasis in bone marrow-derived LCs that repopulate the skin after inflammatory insult by targeting Fas and Bcl-2 family proapoptotic molecules. Collectively, the context-dependent regulatory role of miR-23a in LCs represents an extra-epigenetic layer that incorporates TGF-b- and PU.1-mediated regulation during steady-state and inflammation-induced repopulation.
Collapse
Affiliation(s)
- Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Nirmal Parajuli
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Qiyan Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Namir Khalasawi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Hongmei Peng
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Jun Zhang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
6
|
González-Montero J, Rojas CI, Burotto M. MAP4K4 and cancer: ready for the main stage? Front Oncol 2023; 13:1162835. [PMID: 37223681 PMCID: PMC10200945 DOI: 10.3389/fonc.2023.1162835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
MAP4K4 is a serine/threonine kinase that belongs to the MAP kinase family and plays a critical role in embryogenesis and cellular migration. It contains approximately 1,200 amino acids and has a molecular mass of 140 kDa. MAP4K4 is expressed in most tissues where it has been examined and its knockout is embryonic lethal due to impaired somite development. Alterations in MAP4K4 function have a central role in the development of many metabolic diseases such as atherosclerosis and type 2 diabetes, but have recently been implicated in the initiation and progression of cancer. For example, it has been shown that MAP4K4 can stimulate the proliferation and invasion of tumor cells by activating pro-proliferative pathways (such as the c-Jun N-terminal kinase [JNK] and mixed-lineage protein kinase 3 [MLK3] pathways), attenuate anti-tumor cytotoxic immune responses, and stimulate cell invasion and migration by altering cytoskeleton and actin function. Recent in vitro experiments using RNA interference-based knockdown (miR) techniques have shown that inhibition of MAP4K4 function reduces tumor proliferation, migration, and invasion, and may represent a promising therapeutic approach in many types of cancer such as pancreatic cancer, glioblastoma, and medulloblastoma, among others. Over the last few years, specific MAP4K4 inhibitors such as GNE-495 have been developed but have not yet been tested in cancer patients. However, these novel agents may be useful for cancer treatment in the future.
Collapse
|
7
|
Patterson V, Ullah F, Bryant L, Griffin JN, Sidhu A, Saliganan S, Blaile M, Saenz MS, Smith R, Ellingwood S, Grange DK, Hu X, Mireguli M, Luo Y, Shen Y, Mulhern M, Zackai E, Ritter A, Izumi K, Hoefele J, Wagner M, Riedhammer KM, Seitz B, Robin NH, Goodloe D, Mignot C, Keren B, Cox H, Jarvis J, Hempel M, Gibson CF, Tran Mau-Them F, Vitobello A, Bruel AL, Sorlin A, Mehta S, Raymond FL, Gilmore K, Powell BC, Weck K, Li C, Vulto-van Silfhout AT, Giacomini T, Mancardi MM, Accogli A, Salpietro V, Zara F, Vora NL, Davis EE, Burdine R, Bhoj E. Abrogation of MAP4K4 protein function causes congenital anomalies in humans and zebrafish. SCIENCE ADVANCES 2023; 9:eade0631. [PMID: 37126546 PMCID: PMC10132768 DOI: 10.1126/sciadv.ade0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.
Collapse
Affiliation(s)
- Victoria Patterson
- Princeton University, Princeton, NJ 08544, USA
- Department of Biology, University of York, York, UK
| | - Farid Ullah
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Bryant
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John N. Griffin
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alpa Sidhu
- The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | - Mackenzie Blaile
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Margarita S. Saenz
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Rosemarie Smith
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Sara Ellingwood
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Dorothy K. Grange
- St. Louis Children’s Hospital, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Maimaiti Mireguli
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yanfei Luo
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yiping Shen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Maternal and Child Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, China
| | - Maureen Mulhern
- Columbia University Irving Medical Center, 630 W. 168th St, New York, NY 10032, USA
| | - Elaine Zackai
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alyssa Ritter
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kosaki Izumi
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Nathaniel H. Robin
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Dana Goodloe
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Cyril Mignot
- APHP-Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Maja Hempel
- University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | | | | | - Antonio Vitobello
- UMR1231 GAD, Inserm, Université Bourgogne-Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | | | | | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C. Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chumei Li
- McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | | | - Thea Giacomini
- Unit of Child Neuropsychiatry, University of Genova, EpiCARE Network, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Federico Zara
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Elizabeth Bhoj
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Guneri-Sozeri PY, Özden-Yılmaz G, Kisim A, Cakiroglu E, Eray A, Uzuner H, Karakülah G, Pesen-Okvur D, Senturk S, Erkek-Ozhan S. FLI1 and FRA1 transcription factors drive the transcriptional regulatory networks characterizing muscle invasive bladder cancer. Commun Biol 2023; 6:199. [PMID: 36805539 PMCID: PMC9941102 DOI: 10.1038/s42003-023-04561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.
Collapse
Affiliation(s)
- Perihan Yagmur Guneri-Sozeri
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gülden Özden-Yılmaz
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Asli Kisim
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Ece Cakiroglu
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Hamdiye Uzuner
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Devrim Pesen-Okvur
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Serif Senturk
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Serap Erkek-Ozhan
- Izmir Biomedicine and Genome Center, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|
9
|
Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease-gene association. Hum Genet 2023; 142:343-350. [PMID: 36469137 PMCID: PMC9950172 DOI: 10.1007/s00439-022-02497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
The application of next-generation sequencing (NGS) to clinical practice is still hampered by the ability to interpret the clinical relevance of novel variants and the difficulty of evaluating their effect in specific tissues. Here, we applied integrated genomic approaches for interrogating blood samples of two unrelated individuals with neurodevelopmental disorders and identified a novel neuro-pathogenic role for the Mitogen-Activated Protein Kinase 4 gene (MAP4K4). In particular, we identified two novel frameshift variants in coding exons expressed in the blood and neuronal isoforms. Both variants were predicted to generate non-sense-mediated decay. By transcriptome analysis, we simultaneously demonstrated the deleterious effect of the identified variants on the splicing activity and stability of MAP4K4 mRNA. Therefore, we propose MAP4K4 as a novel causative gene for non-syndromic and syndromic neurodevelopmental disorders. Altogether, we prove the efficacy of an integrated approach of exome and transcriptome sequencing in the resolution of undiagnosed cases by leveraging the analysis of variants in genes expressed in peripheral blood.
Collapse
|
10
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Tribollet V, Cerutti C, Géloën A, Berger E, De Mets R, Balland M, Courchet J, Vanacker JM, Forcet C. ERRα coordinates actin and focal adhesion dynamics. Cancer Gene Ther 2022; 29:1429-1438. [PMID: 35379907 DOI: 10.1038/s41417-022-00461-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/15/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.
Collapse
Affiliation(s)
- Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Alain Géloën
- Université de Lyon, UMR Ecologie Microbienne (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622, Villeurbanne, cedex, France
| | - Emmanuelle Berger
- Université de Lyon, UMR Ecologie Microbienne (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622, Villeurbanne, cedex, France
| | - Richard De Mets
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, 38402, Saint Martin d'Hères, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69007, Lyon, France.
| |
Collapse
|
12
|
Migliavacca J, Züllig B, Capdeville C, Grotzer MA, Baumgartner M. Cooperation of Striatin 3 and MAP4K4 promotes growth and tissue invasion. Commun Biol 2022; 5:795. [PMID: 35941177 PMCID: PMC9360036 DOI: 10.1038/s42003-022-03708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
MAP4K4 is associated with increased motility and reduced proliferation in tumor cells, but the regulation of this dichotomous functionality remained elusive. We find that MAP4K4 interacts with striatin 3 and 4 (STRN3/4) and that STRN3 and MAP4K4 exert opposing functions in Hippo signaling and clonal growth. However, depletion of either STRN3 or MAP4K4 in medulloblastoma cells reduces invasion, and loss of both proteins abrogates tumor cell growth in the cerebellar tissue. Mechanistically, STRN3 couples MAP4K4 to the protein phosphatase 2A, which inactivates growth repressing activities of MAP4K4. In parallel, STRN3 enables growth factor-induced PKCθ activation and direct phosphorylation of VASPS157 by MAP4K4, which both are necessary for efficient cell invasion. VASPS157 directed activity of MAP4K4 and STRN3 requires the CNH domain of MAP4K4, which mediates its interaction with striatins. Thus, STRN3 is a master regulator of MAP4K4 function, and disruption of its cooperation with MAP4K4 reactivates Hippo signaling and represses tissue invasion in medulloblastoma. Analysis of the MAP4K4-STRN3 cooperation in medulloblastoma reveals its opposing regulation of Hippo activation and tissue invasion in cancer.
Collapse
Affiliation(s)
- Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Buket Züllig
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Charles Capdeville
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Michael A Grotzer
- Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
Capdeville C, Russo L, Penton D, Migliavacca J, Zecevic M, Gries A, Neuhauss SC, Grotzer MA, Baumgartner M. Spatial proteomics finds CD155 and Endophilin-A1 as mediators of growth and invasion in medulloblastoma. Life Sci Alliance 2022; 5:5/6/e202201380. [PMID: 35296518 PMCID: PMC8926928 DOI: 10.26508/lsa.202201380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.
Collapse
Affiliation(s)
- Charles Capdeville
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Linda Russo
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - David Penton
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Milica Zecevic
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Alexandre Gries
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Li Q, Li B, Lu CL, Wang JY, Gao M, Gao W. LncRNA LINC01857 promotes cell growth and diminishes apoptosis via PI3K/mTOR pathway and EMT process by regulating miR-141-3p/MAP4K4 axis in diffuse large B-cell lymphoma. Cancer Gene Ther 2021; 28:1046-1057. [PMID: 33311569 DOI: 10.1038/s41417-020-00267-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023]
Abstract
LINC01857 has been proven to be involved in glioma and breast cancer. However, the biological function of LINC01857 in diffuse large B-cell lymphoma (DLBCL) is poorly investigated. By accessing to the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEX), LINC01857 expression was found upregulated in both DLBCL tissues and cells. Cell proliferation and flow cytometry assays showed that LINC01857 promoted proliferation and cell cycle, but suppressed apoptosis in DLBCL cells. Bioinformatics analysis and luciferase reporter assay confirmed that LINC01857 may serve as a sponge for miR-141-3p and miR-141-3p may target MAP4K4. Mechanically, the regulatory action of miR-141-3p/MAP4K4 on DLBCL cellular behaviors was regulated by LINC01857. In addition, LINC01857 could increase the activity of PI3K/mTOR pathway and facilitate the EMT process in a miR-141-3p-mediated manner in DLBCL. Our data illustrated that the LINC01857/miR-141-3p/MAP4K4 might function as a promising therapeutic avenue for DLBCL treatment.
Collapse
Affiliation(s)
- Qian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Bao Li
- Department of Urology, Weifang People's Hospital, Weifang, Shandong, 261000, PR China
| | - Chang-Liang Lu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Jing-Ye Wang
- Department of Pathology, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, 261011, PR China
| | - Min Gao
- Department of Otolaryngology, Weifang People's Hospital, Weifang, Shandong, 261000, PR China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
16
|
Galimberti C, Piepoli T, Letari O, Artusi R, Persiani S, Caselli G, Rovati LC. CR13626: a novel oral brain penetrant tyrosine kinase inhibitor that reduces tumor growth and prolongs survival in a mouse model of glioblastoma. Am J Cancer Res 2021; 11:3558-3574. [PMID: 34354860 PMCID: PMC8332859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain cancer. Despite aggressive treatments currently there is no cure for GBM. Many challenges should be considered for the development of new therapeutical agents for glioblastoma, including appropriate target selectivity and pharmacokinetics. Several mutations and alterations of key cellular pathways including tyrosine kinases (TKs) are involved in malignant transformation and tumor progression. Thus, the targeting of multiple pathways and the development of innovative combination drug regimens is expected to yield improved therapies. Moreover, the abilities to cross the blood-brain barrier (BBB) reaching effective concentrations in brain and to remain into this tissue avoiding the effects of efflux transporters are also critical issues in the development of new therapeutics for GBM. CR13626 is a novel brain penetrant small molecule able to potently inhibit in vitro the activity of EGFR, VEGFR2 (aka KDR), Fyn, Yes, Lck, HGK (aka MAP4K4) and RET kinases relevant for GBM development. CR13626 shows good oral bioavailability (72%) and relevant brain penetration (brain/plasma ratio of 1.4). In an orthotopic xenograft glioblastoma mouse model, oral treatment with CR13626 results in a time-dependent reduction of tumor growth, leading to a significant increase of animal survival. The unique properties of CR13626 warrant its further investigation as a potential new drug candidate in glioblastoma.
Collapse
Affiliation(s)
- Chiara Galimberti
- Rottapharm Biotech SrlMonza, Italy
- PhD Program in Neuroscience, University of Milano - BicoccaMonza, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Metastasis is the process of cancer cell dissemination from primary tumors to different organs being the bone the preferred site for metastatic homing of prostate cancer (PCa) cells. Prostate tumorigenesis is a multi-stage process that ultimately tends to advance to become metastatic PCa. Once PCa patients develop skeletal metastases, they eventually succumb to the disease. Therefore, it is imperative to identify essential molecular drivers of this process to develop new therapeutic alternatives for the treatment of this devastating disease. Here, we have identified MAP4K4 as a relevant gene for metastasis in PCa. Our work shows that genetic deletion of MAP4K4 or pharmacological inhibition of its encoded kinase, HGK, inhibits metastatic PCa cells migration and clonogenic properties. Hence, MAP4K4 might promote metastasis and tumor growth. Mechanistically, our results indicate that HGK depleted cells exhibit profound differences in F-actin organization, increasing cell spreading and focal adhesion stability. Additionally, HGK depleted cells fails to respond to TNF-α stimulation and chemoattractant action. Moreover, here we show that HGK upregulation in PCa samples from TCGA and other databases correlates with a poor prognosis of the disease. Hence, we suggest that it could be used as prognostic biomarker to predict the appearance of an aggressive phenotype of PCa tumors and ultimately, the appearance of metastasis. In summary, our results highlight an essential role for HGK in the dissemination of PCa cells and its potential use as prognostic biomarker.
Collapse
|
18
|
Khater AR, Abou-Antoun T. Mesenchymal Epithelial Transition Factor Signaling in Pediatric Nervous System Tumors: Implications for Malignancy and Cancer Stem Cell Enrichment. Front Cell Dev Biol 2021; 9:654103. [PMID: 34055785 PMCID: PMC8155369 DOI: 10.3389/fcell.2021.654103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant nervous system cancers in children are the most devastating and worrisome diseases, specifically due to their aggressive nature and, in some cases, inoperable location in critical regions of the brain and spinal cord, and the impermeable blood-brain barrier that hinders delivery of pharmaco-therapeutic compounds into the tumor site. Moreover, the delicate developmental processes of the nervous system throughout the childhood years adds another limitation to the therapeutic modalities and doses used to treat these malignant cancers. Therefore, pediatric oncologists are charged with the daunting responsibility of attempting to deliver effective cures to these children, yet with limited doses of the currently available therapeutic options in order to mitigate the imminent neurotoxicity of radio- and chemotherapy on the developing nervous system. Various studies reported that c-Met/HGF signaling is affiliated with increased malignancy and stem cell enrichment in various cancers such as high-grade gliomas, high-risk medulloblastomas, and MYCN-amplified, high-risk neuroblastomas. Therapeutic interventions that are utilized to target c-Met signaling in these malignant nervous system cancers have shown benefits in basic translational studies and preclinical trials, but failed to yield significant clinical benefits in patients. While numerous pre-clinical data reported promising results with the use of combinatorial therapy that targets c-Met with other tumorigenic pathways, therapeutic resistance remains a problem, and long-term cures are rare. The possible mechanisms, including the overexpression and activation of compensatory tumorigenic mechanisms within the tumors or ineffective drug delivery methods that may contribute to therapeutic resistance observed in clinical trials are elaborated in this review.
Collapse
Affiliation(s)
- Amanda Rose Khater
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
19
|
Li M, Deng Y, Zhang W. Molecular Determinants of Medulloblastoma Metastasis and Leptomeningeal Dissemination. Mol Cancer Res 2021; 19:743-752. [PMID: 33608450 DOI: 10.1158/1541-7786.mcr-20-1026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain cancer in pediatrics consisting of four molecular subgroups, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. One of the biggest challenges in the clinical management of this disease is the leptomeningeal dissemination (LMD) of tumor cells with high morbidity and mortality. Many molecular regulators to date have been identified to participate in medulloblastoma metastasis. In the SHH subgroup, the co-upregulation of CXCR4 and PDGFR, as well as the activation of c-MET, show significant promigratory effects on medulloblastoma cells. Amplification or overexpression of genes on the long arm of chromosome 17, such as LASP1 and WIP1, facilitates tumor invasion in both Group 3 and Group 4 medulloblastomas. PRUNE1, NOTCH1, and MYC interactor JPO2 are more specific genetic drivers of metastatic Group 3 tumors. The RAS/MAPK and PI3K/AKT pathways are two crucial signal transduction pathways that may work as the convergent downstream mechanism of various metastatic drivers. Extracellular signals and cellular components in the tumor microenvironment also play a vital role in promoting the spread and colonization of medulloblastoma cells. For instance, the stromal granule cells and astrocytes support tumor growth and dissemination by secreting PlGF and CCL2, respectively. Importantly, the genetic divergence has been determined between the matched primary and metastatic medulloblastoma samples. However, the difficulty of obtaining metastatic medulloblastoma tissue hinders more profound studies of LMD. Therefore, identifying and analyzing the subclone with the metastatic propensity in the primary tumor is essential for future investigation.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Deng
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Roper SJ, Linke F, Scotting PJ, Coyle B. 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination. Sci Rep 2021; 11:4259. [PMID: 33608621 PMCID: PMC7895940 DOI: 10.1038/s41598-021-83809-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
Studying medulloblastoma, the most common malignant paediatric brain tumour, requires simple yet realistic in vitro models. In this study, we optimised a robust, reliable, three-dimensional (3D) culture method for medulloblastoma able to recapitulate the spatial conformation, cell-cell and cell-matrix interactions that exist in vivo and in patient tumours. We show that, when grown under the same stem cell enriching conditions, SHH subgroup medulloblastoma cell lines established tight, highly reproducible 3D spheroids that could be maintained for weeks in culture and formed pathophysiological oxygen gradients. 3D spheroid culture also increased resistance to standard-of-care chemotherapeutic drugs compared to 2D monolayer culture. We exemplify how this model can enhance in vitro therapeutic screening approaches through dual-inhibitor studies and continual monitoring of drug response. Next, we investigated the initial stages of metastatic dissemination using brain-specific hyaluronan hydrogel matrices. RNA sequencing revealed downregulation of cell cycle genes and upregulation of cell movement genes and key fibronectin interactions in migrating cells. Analyses of these upregulated genes in patients showed that their expression correlated with early relapse and overall poor prognosis. Our 3D spheroid model is a significant improvement over current in vitro techniques, providing the medulloblastoma research community with a well-characterised and functionally relevant culture method.
Collapse
Affiliation(s)
- Sophie J Roper
- Children's Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Franziska Linke
- Children's Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Paul J Scotting
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
21
|
Schönholzer MT, Migliavacca J, Alvarez E, Santhana Kumar K, Neve A, Gries A, Ma M, Grotzer MA, Baumgartner M. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia 2020; 22:470-483. [PMID: 32818841 PMCID: PMC7452206 DOI: 10.1016/j.neo.2020.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Aberrantly activated kinase signaling pathways drive invasion and dissemination in medulloblastoma (MB). A majority of tumor-promoting kinase signaling pathways feed into the mitogen-activated protein kinase (MAPK) extracellular regulated kinase (ERK1/2) pathway. The activation status of ERK1/2 during invasion of MB cells is not known and its implication in invasion control unclear. We established a synthetic kinase activation relocation sensor (SKARS) for the MAPK ERK1/2 pathway in MB cells for real-time measuring of drug response. We used 3D invasion assays and organotypic cerebellum slice culture to test drug effects in a physiologically relevant tissue environment. We found that hepatocyte growth factor (HGF), epidermal growth factor (EGF), or basic fibroblast growth factor (bFGF) caused rapid nuclear ERK1/2 activation in MB cells, which persisted for several hours. Concomitant treatment with the BCR/ABL kinase inhibitor dasatinib completely repressed nuclear ERK1/2 activity induced by HGF and EGF but not by bFGF. Increased nuclear ERK1/2 activity correlated positively with speed of invasion. Dasatinib blocked ERK-associated invasion in the majority of cells, but we also observed fast-invading cells with low ERK1/2 activity. These ERK1/2-low, fast-moving cells displayed a rounded morphology, while ERK-high fast-moving cells displayed a mesenchymal morphology. Dasatinib effectively blocked EGF-induced proliferation while it only moderately repressed tissue invasion, indicating that a subset of cells may evade invasion repression by dasatinib through non-mesenchymal motility. Thus, growth factor-induced nuclear activation of ERK1/2 is associated with mesenchymal motility and proliferation in MB cells and can be blocked with the BCR/ABL kinase inhibitor dasatinib.
Collapse
Affiliation(s)
- Marc Thomas Schönholzer
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Jessica Migliavacca
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Elena Alvarez
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Karthiga Santhana Kumar
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Anuja Neve
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Alexandre Gries
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Min Ma
- Quantitative Signaling Group, Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael A Grotzer
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland; University Children's Hospital ZÏrich, Steinwiesstrasse 75, CH-8032 ZÏrich, Switzerland
| | - Martin Baumgartner
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland.
| |
Collapse
|
22
|
Botros L, Pronk MCA, Juschten J, Liddle J, Morsing SKH, van Buul JD, Bates RH, Tuinman PR, van Bezu JSM, Huveneers S, Bogaard HJ, van Hinsbergh VWM, Hordijk PL, Aman J. Bosutinib prevents vascular leakage by reducing focal adhesion turnover and reinforcing junctional integrity. J Cell Sci 2020; 133:jcs240077. [PMID: 32198280 DOI: 10.1242/jcs.240077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Endothelial barrier dysfunction leads to edema and vascular leak, causing high morbidity and mortality. Previously, Abl kinase inhibition has been shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes. We found that the inhibitor bosutinib most potently protected against inflammation-induced endothelial barrier disruption. In vivo, bosutinib prevented lipopolysaccharide (LPS)-induced alveolar protein extravasation in an acute lung injury mice model. Mechanistically, mitogen-activated protein 4 kinase 4 (MAP4K4) was identified as important novel mediator of endothelial permeability, which signaled via ezrin, radixin and moesin proteins to increase turnover of integrin-based focal adhesions. The combined inhibition of MAP4K4 and Abl-related gene (Arg, also known as ABL2) by bosutinib preserved adherens junction integrity and reduced turnover of focal adhesions, which synergistically act to stabilize the endothelial barrier during inflammation. We conclude that MAP4K4 is an important regulator of endothelial barrier integrity, increasing focal adhesion turnover and disruption of cell-cell junctions during inflammation. Because it inhibits both Arg and MAP4K4, use of the clinically available drug bosutinib might form a viable strategy against vascular leakage syndromes.
Collapse
Affiliation(s)
- Liza Botros
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Manon C A Pronk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Jenny Juschten
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, 1105 AZ Amsterdam, The Netherlands
| | - John Liddle
- GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Sofia K H Morsing
- Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | - Pieter R Tuinman
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, 1105 AZ Amsterdam, The Netherlands
| | - Jan S M van Bezu
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Peter L Hordijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Jurjan Aman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
23
|
Dent P, Booth L, Poklepovic A, Martinez J, Hoff DV, Hancock JF. Neratinib degrades MST4 via autophagy that reduces membrane stiffness and is essential for the inactivation of PI3K, ERK1/2, and YAP/TAZ signaling. J Cell Physiol 2020; 235:7889-7899. [PMID: 31912905 DOI: 10.1002/jcp.29443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
The irreversible ERBB1/2/4 inhibitor neratinib causes plasma membrane-associated K-RAS to mislocalize into intracellular vesicles liminal to the plasma membrane; this effect is enhanced by HDAC inhibitors and is now a Phase I trial (NCT03919292). The combination of neratinib and HDAC inhibitors killed pancreatic cancer and lymphoma T cells. Neratinib plus HDAC inhibitor exposure was as efficacious as (paclitaxel+gemcitabine) at killing pancreatic cancer cells. Neratinib reduced the phosphorylation of PAK1, Merlin, LATS1/2, AKT, mTOR, p70 S6K, and ERK1/2 which required expression of Rubicon, Beclin1, and Merlin. Neratinib altered pancreatic tumor cell morphology which was associated with MST4 degradation reduced Ezrin phosphorylation and enhanced phosphorylation of MAP4K4 and LATS1/2. Knockdown of the MAP4K4 activator and sensor of membrane rigidity RAP2A reduced basal LATS1/2 and YAP phosphorylation but did not prevent neratinib from stimulating LATS1/2 or YAP phosphorylation. Beclin1 knockdown prevented MST4 degradation, Ezrin dephosphorylation and neratinib-induced alterations in tumor cell morphology. Our findings demonstrate that neratinib enhances LATS1/2 phosphorylation independently of RAP2A/MAP4K4 and that MST4 degradation and Ezrin dephosphorylation may represent a universal trigger for the biological actions of neratinib.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, North Carolina
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
24
|
Neve A, Migliavacca J, Capdeville C, Schönholzer MT, Gries A, Ma M, Santhana Kumar K, Grotzer M, Baumgartner M. Crosstalk between SHH and FGFR Signaling Pathways Controls Tissue Invasion in Medulloblastoma. Cancers (Basel) 2019; 11:cancers11121985. [PMID: 31835472 PMCID: PMC6966681 DOI: 10.3390/cancers11121985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
In the Sonic Hedgehog (SHH) subgroup of medulloblastoma (MB), tumor initiation and progression are in part driven by smoothened (SMO) and fibroblast growth factor (FGF)-receptor (FGFR) signaling, respectively. We investigated the impact of the SMO-FGFR crosstalk on tumor growth and invasiveness in MB. We found that FGFR signaling represses GLI1 expression downstream of activated SMO in the SHH MB line DAOY and induces MKI67, HES1, and BMI1 in DAOY and in the group 3 MB line HD-MBO3. FGFR repression of GLI1 does not affect proliferation or viability, whereas inhibition of FGFR is necessary to release SMO-driven invasiveness. Conversely, SMO activation represses FGFR-driven sustained activation of nuclear ERK. Parallel activation of FGFR and SMO in ex vivo tumor cell-cerebellum slice co-cultures reduced invasion of tumor cells without affecting proliferation. In contrast, treatment of the cells with the SMO antagonist Sonidegib (LDE225) blocked invasion and proliferation in cerebellar slices. Thus, sustained, low-level SMO activation is necessary for proliferation and tissue invasion, whereas acute, pronounced activation of SMO can repress FGFR-driven invasiveness. This suggests that the tumor cell response is dependent on the relative local abundance of the two factors and indicates a paradigm of microenvironmental control of invasion in SHH MB through mutual control of SHH and FGFR signaling.
Collapse
Affiliation(s)
- Anuja Neve
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Jessica Migliavacca
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Charles Capdeville
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Marc Thomas Schönholzer
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Alexandre Gries
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Min Ma
- Faculty of Biology and Medicine, University of Lausanne, Biochemistry, CH-1066 Epalinges, Switzerland;
| | - Karthiga Santhana Kumar
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Michael Grotzer
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
| | - Martin Baumgartner
- Department of Oncology, University Children’s Hospital Zürich, CH-8032 Zürich, Switzerland; (A.N.); (J.M.); (C.C.); (M.T.S.); (A.G.); (K.S.K.); (M.G.)
- Correspondence: ; Tel.: +41-44-266-3730
| |
Collapse
|
25
|
Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci Rep 2019; 9:14020. [PMID: 31570734 PMCID: PMC6768851 DOI: 10.1038/s41598-019-50160-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023] Open
Abstract
Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.
Collapse
|
26
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
27
|
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks. Int J Mol Sci 2018; 19:ijms19082326. [PMID: 30096798 PMCID: PMC6121264 DOI: 10.3390/ijms19082326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.
Collapse
|