1
|
Srivastava M, Kumari D, Majumder S, Singh N, Mathur R, Maiti TK, Kumar A, Asthana S. Rational Computational Workflow for Structure-Guided Discovery of a Novel USP7 Inhibitor. J Chem Inf Model 2025; 65:4468-4487. [PMID: 40263111 DOI: 10.1021/acs.jcim.4c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Rationally applied, structurally guided computational methods hold the promise of identifying potent and distinct chemotypes while enabling the precise targeting of structural determinants. Here, we implemented a computational workflow combining insights from cocrystal poses and monitoring the dynamical structural determinants from our previous studies for the identification of potential candidates against USP7. We identified and tested several diverse chemical scaffolds, which underwent in vitro validation across six cancer cell lines. Among these hits, compound M15, belonging to the benzothiazole chemical class, exhibited remarkable anticancer activities, demonstrating dose-dependent reduction in cancer cell viability across all cell lines and indicating that it is a promising candidate to explore as a potent anticancer drug. Biophysical binding confirms binding of M15 on USP7. M15 also exhibited certain USP7 inhibitory activity, as observed in the enzymatic assay. A comparative cocrystal mining of reported USP7 inhibitors unveiled a distinct binding mode of M15, which nicely cross-corroborated with MD and binding-pose metadynamics simulations. Notably, M15 occupies both the determinants, i.e., BL1 and the allosteric checkpoint, which has not yet been underscored as a druggable site. In essence, our study presents a robust and multifaceted computational method for the discovery and characterization of a novel inhibitor scaffold, exemplified by the identification and mechanistic elucidation of M15 against USP7. This integrated approach not only advances our understanding of USP7 inhibition and underscores mechanistic determinants but also offers promising avenues for the discovery of target-specific therapeutic intervention.
Collapse
Affiliation(s)
- Mitul Srivastava
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Deepika Kumari
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Sushanta Majumder
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Nitu Singh
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rajani Mathur
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi 110017, India
| | - Tushar Kanti Maiti
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ajay Kumar
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| |
Collapse
|
2
|
Charak S, Srivastava CM, Kumar D, Mittal L, Asthana S, Mehrotra R, Shandilya M. Beyond DNA interactions: Insights into idarubicin's binding dynamics with tRNA using spectroscopic and computational approaches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 266:113147. [PMID: 40101377 DOI: 10.1016/j.jphotobiol.2025.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Idarubicin (4-demethoxydaunomycin), a structural analogue of daunomycin derived from Streptomyces peucetius, exhibits enhanced anticancer efficacy due to the substitution of a methoxy group with a hydrogen atom. This study investigates the binding interactions of idarubicin with RNA using a multifaceted approach, including infrared (IR) spectroscopy, absorption spectroscopy, circular dichroism (CD), molecular docking, and molecular dynamics (MD) simulations. The IR results demonstrate significant binding to guanine and uracil, indicated by spectral shifts, while MD simulations reveal additional interactions with adenine, highlighting a flexible binding mechanism. The binding constant of the idarubicin-RNA complex was calculated to be K = 2.1 × 103 M-1, reflecting a strong affinity and stable interaction. Thermodynamic analysis shows that the negative Gibbs free energy (ΔG ∼ -4.57 kcal/mol) signifies spontaneous binding under physiological conditions. The binding free energy estimation was carried out to check the binding affinity, stability and interactions of the complex which was assessed through molecular dynamics simulations. The stability of the idarubicin-RNA complex is further supported by a hyperchromic effect observed in absorption spectroscopy, suggesting effective intercalation that enhances base exposure. The binding is driven by hydrogen bonding, π-π stacking interactions, and electrostatic forces, which collectively stabilize the complex. Notably, the conformational integrity of RNA is largely preserved, with key structural features remaining unchanged in both IR and CD analyses. Comparatively, idarubicin's interactions with RNA differ from those with DNA, where the latter shows more substantial conformational perturbations. These findings enhance our understanding of anthracycline functionality and provide valuable insights for developing novel analogues with improved efficacy and reduced side effects, informing future therapeutic strategies targeting RNA in cancer treatment.
Collapse
Affiliation(s)
- Sonika Charak
- CSIR-National Physical Laboratory, New Delhi 110012, India; National Brain Research Centre, Manesar, Gurugram, Haryana 122051, India
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Lovika Mittal
- Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shailendra Asthana
- Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | | | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India.
| |
Collapse
|
3
|
Nain VK, Barik V, Pandey M, Pareek M, Sharma T, Pal R, Tyagi S, Bajpai M, Dwivedi P, Panda BN, Kumar Y, Asthana S, Pandey AK. A pH-dependent direct sulfhydrylation pathway is required for the pathogenesis of Mycobacterium tuberculosis. Commun Biol 2025; 8:637. [PMID: 40253528 PMCID: PMC12009435 DOI: 10.1038/s42003-025-08051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
Methionine is essential for the growth and survival of Mycobacterium tuberculosis (M. tuberculosis), however, the canonical transsulfuration pathway involved in the biosynthesis of methionine is dispensable, suggesting redundancy. This study explores the presence of an ortholog of O-succinyl homoserine sulfhydrylase in M. tuberculosis, which catalyses direct sulfhydrylation for methionine biosynthesis. Bioinformatics analysis of putative O-succinyl homoserine sulfhydrylase encoded by metZ in M. tuberculosis showed similarities with its orthologues in other bacterial species. Here, we show that metZ deletion in M. tuberculosis resulted in impaired growth under acidic conditions, which was reversed by methionine supplementation. Molecular dynamics simulation studies revealed improved binding of substrate, O-succinyl homoserine, to the active site of MetZ at low pH mimicking the phagosomal microenvironment. Intriguingly, despite higher ATP levels, metZ deletion reduced the frequency of Bedaquiline-induced persister formation. Finally, we demonstrate that loss of metZ hinders M. tuberculosis growth inside the host.
Collapse
Affiliation(s)
- Vaibhav Kumar Nain
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vishawjeet Barik
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Manitosh Pandey
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Mohit Pareek
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Taruna Sharma
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rahul Pal
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shaifali Tyagi
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manish Bajpai
- Biomarker Discovery Laboratory, Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Prabhanjan Dwivedi
- Experimental Animal Facility, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhishma Narayan Panda
- Experimental Animal Facility, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Yashwant Kumar
- Biomarker Discovery Laboratory, Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India.
- Experimental Animal Facility, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
4
|
Haider M, Sharma S, Agrahari AK, Dikshit M, Pathak DP, Asthana S. Crystallographic mining driven computer-guided approach to identify the ASK1 inhibitor likely to perturb the catalytic region. J Biomol Struct Dyn 2025; 43:1290-1304. [PMID: 38069610 DOI: 10.1080/07391102.2023.2291545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2025]
Abstract
The pathological levels of reactive oxygen species (ROS) and oxidative stress has been recognized as a critical driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. ASK1 inhibitors are reported to have the potential to treat clinically important inflammatory pathologies including liver, pulmonary and renal disorders. In view of its biological and pathological significance, inhibition of ASK1 with small molecules has been pursued as an attractive strategy to combat human diseases such as non-alcoholic steatohepatitis (NASH). Despite several ASK1 inhibitors being developed, the failure in Phase 3 clinical trials of most advanced candidate selonsertib's, underscores to discover therapeutic agents with diverse chemical moiety. Here, by using structural pharmacophore and enumeration strategy on mining co-crystals of ASK1, different scaffolds were generated to enhance the chemical diversity keeping the critical molecular interaction in the catalytic site intact. A total of 15,772 compounds were generated from diverse chemical scaffolds and were evaluated using a virtual screening pipeline. Based on docking and MM-GBSA scores, a lead candidate, S3C-1-D424 was identified from top hits. A comparative molecular dynamics simulations (MD) of APO, Selonsertib and shortlisted potential candidates combined with pharmacokinetics profiling and thermodynamic analysis, demonstrating their suitability as potential ASK1 inhibitors to explore further for establishment towards hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamad Haider
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shilpa Sharma
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Ashish Kumar Agrahari
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Madhu Dikshit
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
5
|
Ilter M, Escorcia AM, Schulze-Niemand E, Naumann M, Stein M. Activation and Reactivity of the Deubiquitinylase OTU Cezanne-2 from MD Simulations and QM/MM Calculations. J Chem Inf Model 2025; 65:921-936. [PMID: 39782030 PMCID: PMC11776055 DOI: 10.1021/acs.jcim.4c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism. Extensive molecular dynamics (MD) simulations were performed for 12 μs to model free Cez2 and the diubiquitin (diUb) substrate-bound protein-protein complex in two different charge states of Cez2, each corresponding to a distinct reactive state in its catalytic cycle. The simulations were analyzed in terms of the relevant structural parameters for productive enzymatic catalysis. Reactive diUb-Cez2 complex configurations were identified, which lead to isopeptide bond cleavage and stabilization of the tetrahedral oxyanion intermediate. The reliability of these complexes was further assessed by quantum mechanics/molecular mechanics (QM/MM) optimizations. The results show that Cez2 follows a modified cysteine protease mechanism involving a catalytic Cys210/His367 dyad, with the oxyanion hole to be a part of the "C-loop," and polarization of His367 by the formation of a strictly conserved water bridge with Glu173. The third residue has a dual role in catalysis as it mediates substrate binding and polarization of the catalytic dyad. A similar mechanism was identified for Cezanne-1, the paralogue of Cez2. In general, our simulations provide valuable molecular information that may help in the rational design of selective inhibitors of Cez2 and closely related enzymes.
Collapse
Affiliation(s)
- Metehan Ilter
- Molecular
Simulations and Design Group, Max Planck
Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Andrés M. Escorcia
- Molecular
Simulations and Design Group, Max Planck
Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Eric Schulze-Niemand
- Molecular
Simulations and Design Group, Max Planck
Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Institute
for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute
for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Matthias Stein
- Molecular
Simulations and Design Group, Max Planck
Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
6
|
Sadhu S, Goswami S, Khatri R, Lohiya B, Singh V, Yadav R, Das V, Tripathy MR, Dwivedi P, Srivastava M, Mani S, Asthana S, Samal S, Awasthi A. Berbamine prevents SARS-CoV-2 entry and transmission. iScience 2024; 27:111347. [PMID: 39640591 PMCID: PMC11618033 DOI: 10.1016/j.isci.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Effective antiviral drugs are essential to combat COVID-19 and future pandemics. Although many compounds show antiviral in vitro activity, only a few retain effectiveness in vivo against SARS-CoV-2. Here, we show that berbamine (Berb) is effective against SARS-CoV, MER-CoV, SARS-CoV-2 and its variants, including the XBB.1.16 variant. In hACE2.Tg mice, Berb suppresses SARS-CoV-2 replication through two distinct mechanisms: inhibiting spike-mediated viral entry and enhancing antiviral gene expression during infection. The administration of Berb, in combination with remdesivir (RDV), clofazimine (Clof) and fangchinoline (Fcn), nearly eliminated viral load and promoted recovery from acute SARS-CoV-2 infection and its variants. Co-housed mice in direct contact with either pre-treated or untreated infected mice exhibited negligible viral loads, reduced lung pathology, and decreased viral shedding, suggesting that Berb may effectively hinder virus transmission. This broad-spectrum activity positions Berb as a promising preventive or therapeutic option against betacoronaviruses.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sandeep Goswami
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Bharat Lohiya
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Rahul Yadav
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Prabhanjan Dwivedi
- Small Animal Facility, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
7
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
8
|
Kumar A K, Rathore RS. Categorization of hotspots into three types - weak, moderate and strong to distinguish protein-protein versus protein-peptide interactions. J Biomol Struct Dyn 2024; 42:9348-9360. [PMID: 37649387 DOI: 10.1080/07391102.2023.2252077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Protein-protein and protein-peptide interactions (PPI and PPepI) belong to a similar category of interactions, yet seemingly subtle differences exist among them. To characterize differences between protein-protein (PP) and protein-peptide (PPep) interactions, we have focussed on two important classes of residues-hotspot and anchor residues. Using implicit solvation-based free energy calculations, a very large-scale alanine scanning has been performed on benchmark datasets, consisting of over 5700 interface residues. The differences in the two categories are more pronounced, if the data were divided into three distinct types, namely - weak hotspots (having binding free energy loss upon Ala mutation, ΔΔG, ∼2-10 kcal/mol), moderate hotspots (ΔΔG, ∼10-20 kcal/mol) and strong hotspots (ΔΔG ≥ ∼20 kcal/mol). The analysis suggests that for PPI, weak hotspots are predominantly populated by polar and hydrophobic residues. The distribution shifts towards charged and polar residues for moderate hotspot and charged residues (principally Arg) are overwhelmingly present in the strong hotspot. On the other hand, in the PPepI dataset, the distribution shifts from predominantly hydrophobic and polar (in the weak type) to almost similar preference for polar, hydrophobic and charged residues (in moderate type) and finally the charged residue (Arg) and Trp are mostly occupied in the strong type. The preferred anchor residues in both categories are Arg, Tyr and Leu, possessing bulky side chain and which also strike a delicate balance between side chain flexibility and rigidity. The present knowledge should aid in effective design of biologics, by augmentation or disruption of PPIs with peptides or peptidomimetics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Kumar A
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - R S Rathore
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
9
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
10
|
Gaur KK, Asuru TR, Srivastava M, Singh N, Purushotham N, Poojary B, Das B, Bhattacharyya S, Asthana S, Guchhait P. 7D, a small molecule inhibits dengue infection by increasing interferons and neutralizing-antibodies via CXCL4:CXCR3:p38:IRF3 and Sirt1:STAT3 axes respectively. EMBO Mol Med 2024; 16:2376-2401. [PMID: 39284947 PMCID: PMC11473809 DOI: 10.1038/s44321-024-00137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/16/2024] Open
Abstract
There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication. In a concurrent search, we identified CXCR3-antagonist from our compound library, namely 7D, which inhibited all serotypes of DENV in vitro. With a half-life of ~2.85 h in plasma and no significant toxicity, 7D supplementation (8 mg/kg-body-weight) to DENV2-infected IFNα/β/γR-/-AG129 or wild-type C57BL6 mice increased synthesis of IFN-α/β and IFN-λ, and rescued disease symptoms like thrombocytopenia, leukopenia and vascular-leakage, with improved survival. 7D, having the property to inhibit Sirt-1 deacetylase, promoted acetylation and phosphorylation of STAT3, which in-turn increased plasmablast proliferation, germinal-center maturation and synthesis of neutralizing-antibodies against DENV2 in mice. A STAT3-inhibitor successfully inhibited these effects of 7D. Together, these observations identify compound 7D as a stimulator of IFN-α/β/λ synthesis via CXCL4:CXCR3:p38:IRF3 signaling, and a booster for neutralizing-antibody generation by promoting STAT3-acetylation in plasmablasts, capable of protecting dengue infection.
Collapse
Affiliation(s)
- Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Mitul Srivastava
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nitu Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka, India
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka, India
| | - Bhabatosh Das
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
11
|
Majumder S, Srivastava M, Alam P, Saha S, Kumari R, Chand AK, Asthana S, Sen S, Maiti TK. Hotspot site microenvironment in the deubiquitinase OTUB1 drives its stability and aggregation. J Biol Chem 2024; 300:107315. [PMID: 38663827 PMCID: PMC11154711 DOI: 10.1016/j.jbc.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.
Collapse
Affiliation(s)
- Sushanta Majumder
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
12
|
Chaudhary B, Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. In silico analysis and characterization of potential inhibitors of MmaA3, a methoxy mycolic acid synthase from Mycobacterium tuberculosis. J Biomol Struct Dyn 2024:1-26. [PMID: 38726567 DOI: 10.1080/07391102.2024.2349545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/23/2024] [Indexed: 01/04/2025]
Abstract
The emergence of the multi-and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (M.tb), necessitates paradigm-shifting therapeutic approaches. The impermeable waxy lipid layer, primarily composed of mycolic acids, is a key factor in conferring resistance to conventional drugs. This study introduces a novel strategy to combat drug resistance by targeting Methoxy mycolic acid synthase 3 (MmaA3), a critical enzyme in the mycolic acid biosynthesis pathway. MmaA3 is responsible for the O-methylation of hydroxymycolate precursors and emerges as a promising therapeutic target. Through homology-based modeling, we generated a three-dimensional structure of MmaA3, providing crucial insights into its structural characteristics. High throughput virtual screening was performed against the MmaA3 model, using diverse sources: knowledge-based, FDA-approved Drugbank, and Asinex-Elite libraries. Through rigorous computational analyses, including binding affinity assessments, molecular interactions analysis, and binding free energy calculations, potential inhibitors of MmaA3 have been identified. Subsequent validation studies evaluated the stability of top protein-ligand complexes, and free energy calculations using molecular dynamics simulations. The stability of complexes within the catalytic site was confirmed through RMSD and RMSF profile analyses. Furthermore, binding free energy calculations using the MM-GBSA approach revealed significant binding affinity of identified ligands for MmaA3 target protein, comparable to its substrate/cofactors. These findings underscore the potential of the proposed molecules as candidates for further experimental exploration, offering promising avenues for the development of effective inhibitors against M.tb. Overall, our research contributes to significantly advancing the formulation of progressive therapeutic strategies in combating drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Bhawna Chaudhary
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
13
|
Xu J, Wang Y, Zhang J, Abdelmoneim AA, Liang Z, Wang L, Jin J, Dai Q, Ye F. Elastic network models and molecular dynamic simulations reveal the molecular basis of allosteric regulation in ubiquitin-specific protease 7 (USP7). Comput Biol Med 2023; 162:107068. [PMID: 37290391 DOI: 10.1016/j.compbiomed.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the most abundant deubiquitinases and plays an important role in various malignant tumors. However, the molecular mechanisms underlying USP7's structures, dynamics, and biological significance are yet to be investigated. In this study, we constructed the full-length models of USP7 in both the extended and compact state, and applied elastic network models (ENM), molecular dynamics (MD) simulations, perturbation response scanning (PRS) analysis, residue interaction networks as well as allosteric pocket prediction to investigate allosteric dynamics in USP7. Our analysis of intrinsic and conformational dynamics revealed that the structural transition between the two states is characterized by global clamp motions, during which the catalytic domain (CD) and UBL4-5 domain exhibit strong negative correlations. The PRS analysis, combined with the analysis of disease mutations and post-translational modifications (PTMs) further highlighted the allosteric potential of the two domains. The residue interaction network based on MD simulations captured an allosteric communication path which starts at CD domain and ends at UBL4-5 domain. Moreover, we identified a pocket at the TRAF-CD interface as a high-potential allosteric site for USP7. Overall, our studies not only provide molecular insights into the conformational changes of USP7, but also aid in the design of allosteric modulators that target USP7.
Collapse
Affiliation(s)
- Jing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiran Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jiali Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Amr Abbas Abdelmoneim
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Template Entrance Channel as Possible Allosteric Inhibition and Resistance Site for Quinolines Tricyclic Derivatives in RNA Dependent RNA Polymerase of Bovine Viral Diarrhea Virus. Pharmaceuticals (Basel) 2023; 16:ph16030376. [PMID: 36986476 PMCID: PMC10058290 DOI: 10.3390/ph16030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds’ most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.
Collapse
|
15
|
Chi L, Wang H, Yu F, Gao C, Dai H, Si X, Liu L, Wang Z, Zheng J, Ke Y, Liu H, Zhang Q. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
16
|
Maddipati VC, Mittal L, Kaur J, Rawat Y, Koraboina CP, Bhattacharyya S, Asthana S, Gundla R. Discovery of non-nucleoside oxindole derivatives as potent inhibitors against dengue RNA-dependent RNA polymerase. Bioorg Chem 2023; 131:106277. [PMID: 36444792 DOI: 10.1016/j.bioorg.2022.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/20/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
A series of thiazole linked Oxindole-5-Sulfonamide (OSA) derivatives were designed as inhibitors of RNA-dependent RNA polymerase (RdRp) activity of Dengue virus. These were synthesized and then evaluated for their efficacy in ex-vivo virus replication assay using human cell lines. Among 20 primary compounds in the series, OSA-15 was identified as a hit. A series of analogues were synthesized by replacing the difluoro benzyl group of OSA-15 with different substituted benzyl groups. The efficacy of OSA-15derivatives was less than that of the parent compound, except OSA-15-17, which has shown improved efficacy than OSA-15. The further optimization was carried out by adding dimethyl (DM) groups to both the sulfonamide and oxindole NH's to produce OSA-15-DM and OSA-15-17-DM. These two compounds were showing no detectable cytotoxicity and the latter was more efficacious. Further, both these compounds were tested for inhibition in all the serotypes of the Dengue virus using an ex-vivo assay. The EC50 of OSA-15-17-DM was observed in a low micromolar range between 2.5 and 5.0 µg/ml. Computation docking and molecular dynamics simulation studies confirmed the binding of identified hits to DENV RdRp. OSA15-17-DM blocks the RNA entrance and elongation site for their biological activity with high binding affinity. Overall, the identified oxindole derivatives are novel compounds that can inhibit Dengue replication, working as non-nucleoside inhibitors (NNI) to explore as anti-viral RdRp activity.
Collapse
Affiliation(s)
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India
| | - Jaskaran Kaur
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India
| | - Yogita Rawat
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India
| | - Chandra Prakash Koraboina
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana 502 329, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India.
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3(rd)Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana, India.
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana 502 329, India.
| |
Collapse
|
17
|
Panwar S, Kumari A, Kumar H, Tiwari AK, Tripathi P, Asthana S. Structure-based virtual screening, molecular dynamics simulation and in vitro evaluation to identify inhibitors against NAMPT. J Biomol Struct Dyn 2022; 40:10332-10344. [PMID: 34229568 DOI: 10.1080/07391102.2021.1943526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a bottleneck enzyme that plays a key role in recycling nicotinamide to maintain the adequate NAD + level inside the cell. It involves maintaining the cellular bioenergetics and providing a necessary substrate for functions essential to rapidly proliferating the cancer cells. Therefore, inhibition of NAMPT appears as a therapeutic potential for cancer treatment. Here, the vast virtual screening followed by focused docking and in-vitro analysis was carried out to identify the promising hits of NAMPT. We have identified two potential hits from the filtered molecules, which are chemically diverse and have shown comparable quantitative values with reported co-crystal '1QS' as their binding pattern matched nicely. These two compounds are further explored through molecular dynamics simulations (MD) combined with pharmacokinetics profiling and thermodynamic analysis demonstrating their suitability as novel NAMPT inhibitors that can be used as starting points for a hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Panwar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Hitesh Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prabhanshu Tripathi
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
18
|
Srivastava M, Mittal L, Kumari A, Agrahari AK, Singh M, Mathur R, Asthana S. Characterizing (un)binding mechanism of USP7 inhibitors to unravel the cause of enhanced binding potencies at allosteric checkpoint. Protein Sci 2022; 31:e4398. [PMID: 36629250 PMCID: PMC9835771 DOI: 10.1002/pro.4398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.
Collapse
Affiliation(s)
- Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
- Delhi Pharmaceutical Sciences and Research University (DPSRU)New DelhiIndia
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | | | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Rajani Mathur
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR)New DelhiIndia
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| |
Collapse
|
19
|
Sharma S, Tyagi R, Srivastava M, Rani K, Kumar D, Asthana S, Raj VS. Identification and validation of potent inhibitor of Escherichia coli DHFR from MMV pathogen box. J Biomol Struct Dyn 2022:1-10. [PMID: 35652895 DOI: 10.1080/07391102.2022.2080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study is conducted to find the solution of rising antimicrobial resistance (AMR) in Escherichia coli which is a pathogen responsible for fatal systemic infections in human and animals. The enzyme dihydrofolate reductase (DHFR) is found in all organisms. In this study DHFR of E. coli (ec-DHFR) and human DHFR (h-DHFR) is targeted by novel chemical entities (NCE) from the Pathogen box of Medicines for Malaria Venture, Switzerland (MMV) using molecular modelling. The in-silico studies were further validated by in-vitro assays. The virtual screening of 400 MMV compounds was conducted using PyRx standard tool followed by manual docking of selected compounds by Autodock vina and Ligplot program. The in-silico studies showed good binding energy and strong hydrogen bond in docking of MMV675968 with ec-DHFR and no hydrogen bond with h-DHFR. This was further validated by the Molecular dynamic studies that revealed high binding free energy in ec-DHFR and in-vitro assays that produced good synergy in combination study of MMV675968 with last line (meropenem) and last resort (colistin) antibiotics. The extensive MD simulation and energetic analysis thus concludes that MMV675968 targets ec-DHFR. The combination studies were conducted with MMV675968 and FDA approved drugs against a panel of multidrug resistant Escherichia coli isolates. The synergistic results obtained in combination studies concluded that in-vitro data is consistent with in-silico data and that MMV675968 is a potential lead for future process of antimicrobial drug development against the multidrug resistance E. coli.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shingini Sharma
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat, Haryana, India.,CCS National Institute of Animal Health, Baghpat, Uttar Pradesh, India
| | - Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat, Haryana, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat, Haryana, India
| |
Collapse
|
20
|
Tyagi R, Srivastava M, Jain P, Pandey RP, Asthana S, Kumar D, Raj VS. Development of potential proteasome inhibitors against Mycobacterium tuberculosis. J Biomol Struct Dyn 2022; 40:2189-2203. [PMID: 33074049 DOI: 10.1080/07391102.2020.1835722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) has been recently declared as a health emergency because of sporadic increase in Multidrug-resistant Tuberculosis (MDR-TB) problem throughout the world. TB causing bacteria, Mycobacterium tuberculosis has become resistant to the first line of treatment along with second line of treatment and drugs, which are accessible to us. Thus, there is an urgent need of identification of key targets and development of potential therapeutic approach(s), which can overcome the Mycobacterium tuberculosis complications. In the present study, Mycobacterium tuberculosis proteasome has been taken as a potential target as it is one of the key regulatory proteins in Mycobacterium tuberculosis propagation. Further, a library of 400 compounds (small molecule) from Medicines for Malaria Venture (MMV) were screened against the target (proteasome) using molecular docking and simulation approach, and selected lead compounds were validated in in vitro model. In this study, we have identified two potent small molecules from the MMV Pathogen Box library, MMV019838 and MMV687146 with -9.8 kcal/mol and -8.7 kcal/mol binding energy respectively, which actively interact with the catalytic domain/active domain of Mycobacterium tuberculosis proteasome and inhibit the Mycobacterium tuberculosis growth in in vitro culture. Furthermore, the molecular docking and simulation study of MMV019838 and MMV687146 with proteasome show strong and stable interaction with Mycobacterium tuberculosis compared to human proteasome and show no cytotoxicity effect. A better understanding of proteasome inhibition in Mycobacterium tuberculosis in in vitro and in vivo model would eventually allow us to understand the molecular mechanism(s) and discover a novel and potent therapeutic agent against Tuberculosis. Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. Efflux pump activity was tested for a specific compound MMV019838 which was showing good in silico results than MIC values.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Preeti Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| |
Collapse
|
21
|
Purushotham N, Singh M, Paramesha B, Kumar V, Wakode S, Banerjee SK, Poojary B, Asthana S. Design and synthesis of amino acid derivatives of substituted benzimidazoles and pyrazoles as Sirt1 inhibitors. RSC Adv 2022; 12:3809-3827. [PMID: 35425455 PMCID: PMC8981170 DOI: 10.1039/d1ra06149f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022] Open
Abstract
Owing to its presence in several biological processes, Sirt1 acts as a potential therapeutic target for many diseases. Here, we report the structure-based designing and synthesis of two distinct series of novel Sirt1 inhibitors, benzimidazole mono-peptides and amino-acid derived 5-pyrazolyl methylidene rhodanine carboxylic acid. The compounds were evaluated for in vitro enzyme-based and cell-based Sirt1 inhibition assay, and cytotoxic-activity in both liver and breast cancer cells. The tryptophan conjugates i.e.13h (IC50 = 0.66 μM, ΔG bind = -1.1 kcal mol-1) and 7d (IC50 = 0.77 μM, ΔG bind = -4.4 kcal mol-1) demonstrated the maximum efficacy to inhibit Sirt1. The MD simulation unveiled that electrostatic complementarity at the substrate-binding-site through a novel motif "SLxVxP(V/F)A" could be a cause of increased Sirt1 inhibition by 13h and 13l over Sirt2 in cell-based assay, as compared to the control Ex527 and 7d. Finally, this study highlights novel molecules 7d and 13h, along with a new key hot-spot in Sirt1, which could be used as a starting lead to design more potent and selective sirtuin inhibitors as a potential anticancer molecule.
Collapse
Affiliation(s)
- Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University Mangalagangotri Karnataka-574 199 India +91 9686940403
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
- Delhi Institute of Pharmaceutical Sciences and Research, DPSR University M.B Road, Pushp Vihar, Sector 3 New Delhi 110017 India
| | - Bugga Paramesha
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
| | - Vasantha Kumar
- Department of Studies in Chemistry, Mangalore University Mangalagangotri Karnataka-574 199 India +91 9686940403
| | - Sharad Wakode
- Delhi Institute of Pharmaceutical Sciences and Research, DPSR University M.B Road, Pushp Vihar, Sector 3 New Delhi 110017 India
| | - Sanjay K Banerjee
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University Mangalagangotri Karnataka-574 199 India +91 9686940403
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster Faridabad Haryana-121001 India +91 1292876475 +91 1292876489 +91 8447568689
| |
Collapse
|
22
|
Rizvi ZA, Dalal R, Sadhu S, Binayke A, Dandotiya J, Kumar Y, Shrivastava T, Gupta SK, Aggarwal S, Tripathy MR, Rathore DK, Yadav AK, Medigeshi GR, Pandey AK, Samal S, Asthana S, Awasthi A. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. eLife 2022; 11:73522. [PMID: 35014610 PMCID: PMC8794466 DOI: 10.7554/elife.73522] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in the Golden Syrian hamster causes lung pathology that resembles human coronavirus disease (COVID-19). However, extra-pulmonary pathologies associated with SARS-CoV-2 infection and post COVID sequelae remain to be understood. Here we show, using a hamster model, that the early phase of SARS-CoV-2 infection leads to an acute inflammatory response and lung pathologies, while the late phase of infection causes cardiovascular complications (CVC) characterized by ventricular wall thickening associated with increased ventricular mass/ body mass ratio and interstitial coronary fibrosis. Molecular profiling further substantiated our findings of CVC, as SARS-CoV-2-infected hamsters showed elevated levels of serum cardiac Troponin-I (cTnI), cholesterol, low-density lipoprotein and long-chain fatty acid triglycerides. Serum metabolomics profiling of SARS-CoV-2-infected hamsters identified N-acetylneuraminate, a functional metabolite found to be associated with CVC, as a metabolic marker was found to be common between SARS-CoV-2-infected hamsters and COVID-19 patients. Together, we propose hamsters as a suitable animal model to study post-COVID sequelae associated with CVC which could be extended to therapeutic interventions.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Rajdeep Dalal
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Tripti Shrivastava
- Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sonu Kumar Gupta
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Suruchi Aggarwal
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepak Kumar Rathore
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Kumar Yadav
- Non-communicable disease center, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Infection and Immunology Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Amit Kumar Pandey
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sweety Samal
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailendra Asthana
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
23
|
Mittal L, Tonk RK, Awasthi A, Asthana S. Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach. Arch Biochem Biophys 2021; 713:109059. [PMID: 34673001 DOI: 10.1016/j.abb.2021.109059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022]
Abstract
Approved mAbs that block the protein-protein interaction (PPI) interface of the PD-1/PD-L1 immune checkpoint axis have led to significant improvements in cancer treatment. Despite having drawbacks of mAbs only few a compounds are reported till date against this axis. Inhibiting PPIs using small molecules has emerged as a significant therapeutic opportunity, demanding for the identification of drug-like molecules at an accelerated pace under the hit-to-lead campaigns. Due to the PD-L1's cross-talk with PD-1/CD80 and its overexpression on cancer cells, as well as the availability of its crystal structures with small molecules, it is an enticing therapeutic target for structure-assisted small molecule design. Furthermore, the selection of chemical databases enriched with focused designing for PPI interfaces is crucial. Therefore, in this study we have utilized the Asinex signature library for structure-assisted virtual screening to find the potential PD-L1 inhibitors by targeting the cryptic PD-L1 interface, followed by induced fit docking for pose refinements in the pocket. The obtained hits were then subjected to interaction fingerprinting and ligand-based drug-likeness investigations in order to evaluate and analyze their drug-like qualities (ADME). Twelve compounds qualified for molecular dynamics simulations, followed by thermodynamic calculations for evaluation of their stability and energetics inside the pocket. Two novel compounds with different chemical moieties have been identified that are consistent throughout the simulation, mimicking the interactions and binding energies with BMS-1166. These compounds appear as potential therapeutic candidates to be explored experimentally, thereby paving the way for the development of novel leads as immunomodulators.
Collapse
Affiliation(s)
- Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
24
|
Khurana H, Srivastava M, Chaudhary D, Gosain TP, Kumari R, Bean AC, Chugh S, Maiti TK, Stephens CE, Asthana S, Singh R. Identification of diphenyl furan derivatives via high throughput and computational studies as ArgA inhibitors of Mycobacterium tuberculosis. Int J Biol Macromol 2021; 193:1845-1858. [PMID: 34762917 DOI: 10.1016/j.ijbiomac.2021.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Microbial amino acid biosynthetic pathways are underexploited for the development of anti-bacterial agents. N-acetyl glutamate synthase (ArgA) catalyses the first committed step in L-arginine biosynthesis and is essential for M. tuberculosis growth. Here, we have purified and optimized assay conditions for the acetylation of l-glutamine by ArgA. Using the optimized conditions, high throughput screening was performed to identify ArgA inhibitors. We identified 2,5-Bis (2-chloro-4-guanidinophenyl) furan, a dicationic diaryl furan derivatives, as ArgA inhibitor, with a MIC99 values of 1.56 μM against M. tuberculosis. The diaryl furan derivative displayed bactericidal killing against both M. bovis BCG and M. tuberculosis. Inhibition of ArgA by the lead compound resulted in transcriptional reprogramming and accumulation of reactive oxygen species. The lead compound and its derivatives showed micromolar binding with ArgA as observed in surface plasmon resonance and tryptophan quenching experiments. Computational and dynamic analysis revealed that these scaffolds share similar binding site residues with L-arginine, however, with slight variations in their interaction pattern. Partial restoration of growth upon supplementation of liquid cultures with either L-arginine or N-acetyl cysteine suggests a multi-target killing mechanism for the lead compound. Taken together, we have identified small molecule inhibitors against ArgA enzyme from M. tuberculosis.
Collapse
Affiliation(s)
- Harleen Khurana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Deepika Chaudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India; Manipal academy of higher education, Manipal, Karnataka 576104. India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Raniki Kumari
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Andrew C Bean
- Department of Chemistry and Physics, Augusta University, 2500 Walton Way, Augusta, GA 30904, USA
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tushar Kanti Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chad E Stephens
- Department of Chemistry and Physics, Augusta University, 2500 Walton Way, Augusta, GA 30904, USA.
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
25
|
Kumari A, Mittal L, Srivastava M, Pathak DP, Asthana S. Conformational Characterization of the Co-Activator Binding Site Revealed the Mechanism to Achieve the Bioactive State of FXR. Front Mol Biosci 2021; 8:658312. [PMID: 34532338 PMCID: PMC8439381 DOI: 10.3389/fmolb.2021.658312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
FXR bioactive states are responsible for the regulation of metabolic pathways, which are modulated by agonists and co-activators. The synergy between agonist binding and ‘co-activator’ recruitment is highly conformationally driven. The characterization of conformational dynamics is essential for mechanistic and therapeutic understanding. To shed light on the conformational ensembles, dynamics, and structural determinants that govern the activation process of FXR, molecular dynamic (MD) simulation is employed. Atomic insights into the ligand binding domain (LBD) of FXR revealed significant differences in inter/intra molecular bonding patterns, leading to structural anomalies in different systems of FXR. The sole presence of an agonist or ‘co-activator’ fails to achieve the essential bioactive conformation of FXR. However, the presence of both establishes the bioactive conformation of FXR as they modulate the internal wiring of key residues that coordinate allosteric structural transitions and their activity. We provide a precise description of critical residue positioning during conformational changes that elucidate the synergy between its binding partners to achieve an FXR activation state. Our study offers insights into the associated modulation occurring in FXR at bound and unbound forms. Thereafter, we also identified hot-spots that are critical to arrest the activation mechanism of FXR that would be helpful for the rational design of its agonists.
Collapse
Affiliation(s)
- Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, India.,Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India.,Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
26
|
Srivastava M, Mittal L, Kumari A, Asthana S. Molecular Dynamics Simulations Reveal the Interaction Fingerprint of Remdesivir Triphosphate Pivotal in Allosteric Regulation of SARS-CoV-2 RdRp. Front Mol Biosci 2021; 8:639614. [PMID: 34490343 PMCID: PMC8417884 DOI: 10.3389/fmolb.2021.639614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/24/2021] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic has now strengthened its hold on human health and coronavirus' lethal existence does not seem to be going away soon. In this regard, the optimization of reported information for understanding the mechanistic insights that facilitate the discovery towards new therapeutics is an unmet need. Remdesivir (RDV) is established to inhibit RNA-dependent RNA polymerase (RdRp) in distinct viral families including Ebola and SARS-CoV-2. Therefore, its derivatives have the potential to become a broad-spectrum antiviral agent effective against many other RNA viruses. In this study, we performed comparative analysis of RDV, RMP (RDV monophosphate), and RTP (RDV triphosphate) to undermine the inhibition mechanism caused by RTP as it is a metabolically active form of RDV. The MD results indicated that RTP rearranges itself from its initial RMP-pose at the catalytic site towards NTP entry site, however, RMP stays at the catalytic site. The thermodynamic profiling and free-energy analysis revealed that a stable pose of RTP at NTP entrance site seems critical to modulate the inhibition as its binding strength improved more than its initial RMP-pose obtained from docking at the catalytic site. We found that RTP not only occupies the residues K545, R553, and R555, essential to escorting NTP towards the catalytic site, but also interacts with other residues D618, P620, K621, R624, K798, and R836 that contribute significantly to its stability. From the interaction fingerprinting it is revealed that the RTP interact with basic and conserved residues that are detrimental for the RdRp activity, therefore it possibly perturbed the catalytic site and blocked the NTP entrance site considerably. Overall, we are highlighting the RTP binding pose and key residues that render the SARS-CoV-2 RdRp inactive, paving crucial insights towards the discovery of potent inhibitors.
Collapse
Affiliation(s)
| | | | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
27
|
Mittal L, Kumari A, Srivastava M, Singh M, Asthana S. Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. J Biomol Struct Dyn 2021; 39:3662-3680. [PMID: 32396769 PMCID: PMC7256355 DOI: 10.1080/07391102.2020.1768151] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022]
Abstract
The pandemic caused by novel coronavirus disease 2019 (COVID-19) infecting millions of populations worldwide and counting, has demanded quick and potential therapeutic strategies. Current approved drugs or molecules under clinical trials can be a good pool for repurposing through in-silico techniques to quickly identify promising drug candidates. The structural information of recently released crystal structures of main protease (Mpro) in APO and complex with inhibitors, N3, and 13b molecules was utilized to explore the binding site architecture through Molecular dynamics (MD) simulations. The stable state of Mpro was used to conduct extensive virtual screening of the aforementioned drug pool. Considering the recent success of HIV protease molecules, we also used anti-protease molecules for drug repurposing purposes. The identified top hits were further evaluated through MD simulations followed by the binding free energy calculations using MM-GBSA. Interestingly, in our screening, several promising drugs stand out as potential inhibitors of Mpro. However, based on control (N3 and 13b), we have identified six potential molecules, Leupeptin Hemisulphate, Pepstatin A, Nelfinavir, Birinapant, Lypression and Octreotide which have shown the reasonably significant MM-GBSA score. Further insight shows that the molecules form stable interactions with hot-spot residues, that are mainly conserved and can be targeted for structure- and pharmacophore-based designing. The pharmacokinetic annotations and therapeutic importance have suggested that these molecules possess drug-like properties and pave their way for in-vitro studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad, Haryana, India
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad, Haryana, India
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad, Haryana, India
| |
Collapse
|
28
|
Kumari A, Mittal L, Srivastava M, Asthana S. Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. J Biomol Struct Dyn 2021; 40:9287-9305. [PMID: 34029506 DOI: 10.1080/07391102.2021.1927844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The main protease, Mpro/3CLpro, plays an essential role in processing polyproteins translated from viral RNA to produce functional viral proteins and therefore serve as an attractive target for discovering COVID-19 therapeutics. The availability of both monomer and dimer crystal bound with a common ligand, '13b' (α-ketoamide inhibitor), opened up opportunities to understand the Mpro mechanism of action. A comparative analysis of both forms of Mpro was carried out to elucidate the binding site architectural differences in the presence and absence of '13b'. Molecular dynamics simulations suggest that the presence of '13b' enhances the stability of Mpro than the unbound APO form. The N- and C- terminals of both the protomers stabilize each other, and making it's interface essential for the active form of Mpro. In comparison to monomer, the relatively high affinity of '13b' is gained in dimer pocket due to the high stability of the pocket by the interaction of S1 residue of chain B with residues F140, E166 and H172 of chain A, which is absent in monomer. The comprehensive essential dynamics, protein structure network analysis and thermodynamic profiling highlight the hot-spots, pivotal in molecular recognition process at protein-ligand and protein-protein interaction levels, cross-validated through computational alanine scanning study. A comparative description of '13b' binding mechanism in both forms illustrates valuable insights into the inhibition mechanism and the selection of critical residues suitable for the structure-based approaches for the identification of more potent Mpro inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
29
|
Tyagi R, Srivastava M, Singh B, Sharma S, Pandey RP, Asthana S, Kumar D, Raj VS. Identification and validation of potent Mycobacterial proteasome inhibitor from Enamine library. J Biomol Struct Dyn 2021; 40:8644-8654. [PMID: 33955331 DOI: 10.1080/07391102.2021.1914173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
As a consequence of present status of tuberculosis (TB) it is the obligation to develop novel targets and potential drugs so that rate of drug resistant TB can be declined. Mycobacterium proteasome is considered to be significant target for the purpose of drug designing as it is responsible for resisting the effect of NO (nitric oxide) immune system defence mechanism against the bacterial cells. Small compounds library from Enamine database has already been tested using virtual screening and molecular docking studies. Further a reanalysis with two picked out significant compounds Z1020863610, Z106766984 was carried out using molecular dynamic simulation studies and in vitro validations (in vitro susceptibility assay, enzyme inhibition assay and MTT assay). In silico outcome that two inhibiters were interacting at the active site pocket of receptor with high stability, was found to be very consistent with in vitro results. So it was conferred that compounds (Z1020863610, Z106766984) are potential lead for future process of drug development (in vivo testing and clinical trials).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Baldeep Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shingini Sharma
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
- CCS National Institute of Animal Health, Baghpat, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
| |
Collapse
|
30
|
Singh M, Srivastava M, Wakode SR, Asthana S. Elucidation of Structural Determinants Delineates the Residues Playing Key Roles in Differential Dynamics and Selective Inhibition of Sirt1-3. J Chem Inf Model 2021; 61:1105-1124. [PMID: 33606530 DOI: 10.1021/acs.jcim.0c01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sirt1-3 are the most studied sirtuins, playing a key role in caloric-dependent epigenetic modifications. Since they are localized in distinct cellular compartments and act differently under various pathological conditions, selective inhibition would be a promising strategy to understand their biological function and to discover effective therapeutics. Here, sirtuin's inhibitor Ex527* is used as a probe to speculate the possible root cause of selective inhibition and differential structural dynamics of Sirt1-3. Comparative energetics and mutational studies revealed the criticality of residues I279 and I316 for the Sirt1 selectivity toward Ex527*. Furthermore, essential dynamics and residue network analysis revealed that the side-chain reorientation in residue F190 due to nonconserved residue Y191 played a major role in the formation of an extended selectivity pocket in Sirt2. These changes at the dynamical and residual level, which impact the internal wiring significantly, might help in rationally designing selective inhibitors against Sirt1-3.
Collapse
Affiliation(s)
- Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India.,Delhi Institute of Pharmaceutical Sciences and Research, DPSRU, M.B. Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - Sharad R Wakode
- Delhi Institute of Pharmaceutical Sciences and Research, DPSRU, M.B. Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
31
|
Borkar RM, Gajji S, Mohammed SA, Srivastava M, Reddy VG, Jala A, Asthana S, Kamal A, Banerjee SK, Ragampeta S. Identification and characterization of in vitro and in vivo fidarestat metabolites: Toxicity and efficacy evaluation of metabolites. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4694. [PMID: 33410180 DOI: 10.1002/jms.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague-Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F-1), and it shows an IC50 value of 0.44 μM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.
Collapse
Affiliation(s)
- Roshan M Borkar
- Analytical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Shankar Gajji
- Analytical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Soheb A Mohammed
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India
| | - Mithul Srivastava
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India
| | - Velma Ganga Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Shailendra Asthana
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India
| | - Ahmed Kamal
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sanjay K Banerjee
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Srinivas Ragampeta
- Analytical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
32
|
Sarkar R, Sharma KB, Kumari A, Asthana S, Kalia M. Japanese encephalitis virus capsid protein interacts with non-lipidated MAP1LC3 on replication membranes and lipid droplets. J Gen Virol 2021; 102. [DOI: 10.1099/jgv.0.001508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microtubule-associated protein 1 light chain 3 (MAP1LC3) is a protein with a well-defined function in autophagy, but still incompletely understood roles in several other autophagy-independent processess. Studies have shown MAP1LC3 is a host-dependency factor for the replication of several viruses. Japanese encephalitis virus (JEV), a neurotropic flavivirus, replicates on ER-derived membranes that are marked by autophagosome-negative non-lipidated MAP1LC3 (LC3-I). Depletion of LC3 exerts a profound inhibition on virus replication and egress. Here, we further characterize the role of LC3 in JEV replication, and through immunofluorescence and immunoprecipitation show that LC3-I interacts with the virus capsid protein in infected cells. This association was observed on capsid localized to both the replication complex and lipid droplets (LDs). JEV infection decreased the number of LDs per cell indicating a link between lipid metabolism and virus replication. This capsid-LC3 interaction was independent of the autophagy adaptor protein p62/Sequestosome 1 (SQSTM1). Further, no association of capsid was seen with the Gamma-aminobutyric acid receptor-associated protein family, suggesting that this interaction was specific for LC3. High-resolution protein-protein docking studies identified a putative LC3-interacting region in capsid, 56FTAL59,
and other key residues that could mediate a direct interaction between the two proteins.
Collapse
Affiliation(s)
- Riya Sarkar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Anita Kumari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
33
|
Meena CL, Singh P, Shaliwal RP, Kumar V, Kumar A, Tiwari AK, Asthana S, Singh R, Mahajan D. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem 2020; 208:112772. [PMID: 32920342 DOI: 10.1016/j.ejmech.2020.112772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Herein, we report the synthesis and anti-tubercular studies of novel molecules based on thiophene scaffold. We identified two novel small molecules 4a and 4b, which demonstrated 2-fold higher in vitro activity (MIC99: 0.195 μM) compared to first line TB drug, isoniazid (0.39 μM). The identified leads demonstrated additive effect with front line TB drugs (isoniazid, rifampicin and levofloxacin) and synergistic effect with a recently FDA-approved drug, bedaquiline. Mechanistic studies (i) negated the role of Pks13 and (ii) suggested the involvement of KatG in the anti-tubercular activity of these identified leads.
Collapse
Affiliation(s)
- Chhuttan L Meena
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Padam Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ravi P Shaliwal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Varun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Arun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| | - Dinesh Mahajan
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
34
|
Sivakumar D, Kumar V, Naumann M, Stein M. Activation and selectivity of OTUB-1 and OTUB-2 deubiquitinylases. J Biol Chem 2020; 295:6972-6982. [PMID: 32265297 DOI: 10.1074/jbc.ra120.013073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
The ovarian tumor domain (OTU) deubiquitinylating cysteine proteases OTUB1 and OTUB2 (OTU ubiquitin aldehyde binding 1 and 2) are representative members of the OTU subfamily of deubiquitinylases. Deubiquitinylation critically regulates a multitude of important cellular processes, such as apoptosis, cell signaling, and growth. Moreover, elevated OTUB expression has been observed in various cancers, including glioma, endometrial cancer, ovarian cancer, and breast cancer. Here, using molecular dynamics simulation approaches, we found that both OTUB1 and OTUB2 display a catalytic triad characteristic of proteases but differ in their configuration and protonation states. The OTUB1 protein had a prearranged catalytic site, with strong electrostatic interactions between the active-site residues His265 and Asp267 In OTUB2, however, the arrangement of the catalytic triad was different. In the absence of ubiquitin, the neutral states of the catalytic-site residues in OTUB2 were more stable, resulting in larger distances between these residues. Only upon ubiquitin binding did the catalytic triad in OTUB2 rearrange and bring the active site into a catalytically feasible state. An analysis of water access channels revealed only a few diffusion trajectories for the catalytically active form of OTUB1, whereas in OTUB2 the catalytic site was solvent-accessible, and a larger number of water molecules reached and left the binding pocket. Interestingly, in OTUB2, the catalytic residues His224 and Asn226 formed a stable hydrogen bond. We propose that the observed differences in activation kinetics, protonation states, water channels, and active-site accessibility between OTUB1 and OTUB2 may be relevant for the selective design of OTU inhibitors.
Collapse
Affiliation(s)
- Dakshinamurthy Sivakumar
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany
| | - Vikash Kumar
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany.,Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany
| |
Collapse
|
35
|
Mittal L, Srivastava M, Asthana S. Conformational Characterization of Linker Revealed the Mechanism of Cavity Formation by 227G in BVDV RDRP. J Phys Chem B 2019; 123:6150-6160. [DOI: 10.1021/acs.jpcb.9b01859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lovika Mittal
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
36
|
Mittal L, Kumari A, Suri C, Bhattacharya S, Asthana S. Insights into structural dynamics of allosteric binding sites in HCV RNA-dependent RNA polymerase. J Biomol Struct Dyn 2019; 38:1612-1625. [PMID: 31057089 DOI: 10.1080/07391102.2019.1614480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inhibition of the viral RNA-dependent RNA polymerase (RdRp) to resolve chronic infection is a useful therapeutic strategy against Hepatitis C virus (HCV). Non-nucleoside inhibitors (NNIs) of RdRp are small molecules that bind tightly with allosteric sites on the enzyme, thereby inhibiting polymerase activity. A large number of crystal structures (176) were studied to establish the structure-activity relationship along with the mechanism of inhibition and resistance between HCV RdRp and NNIs at different allosteric sites. The structure and the associated dynamics are the blueprint to understand the function of the protein. We have implemented the ligand-based pharmacophore and molecular dynamic simulations to extract the possible local and global characteristics of RdRp upon NNI binding and the structural-dynamical features possessed by the known actives. Our results suggest that the NNI binding induces significant fluctuations at the atomic level which are critical for enzymatic activity, with minimal global structural alterations. Residue-wise mapping of interactions of NNIs at different sites exhibited some conserved interaction patterns of key amino acids and water molecules. Here, the structural insights are explored to understand the correlation between the dynamics of protein's subdomains and function at the molecular level, useful for genotype-specific rational designing of NNIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lovika Mittal
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Anita Kumari
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Charu Suri
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Sankar Bhattacharya
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|