1
|
Liu Y, Liu Z. Emerging roles of the renin-angiotensin system in select oral diseases. Oral Dis 2025; 31:39-49. [PMID: 39250720 DOI: 10.1111/odi.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES The renin-angiotensin system (RAS) plays essential roles in cardiovascular and renal function regulation. Recent studies have shown that the RAS components are widely expressed in oral tissues, but their roles in oral diseases remain underexplored. This review aims to summarize the effects of the RAS in select oral diseases including oral squamous cells carcinoma (OSCC), periodontitis, oral submucous fibrosis (OSF), and ageusia/dysgeusia. SUBJECTS AND METHODS Data searches were performed using PubMed, Web of Science and Scopus through July 2024. A narrative overview of current literature was undertaken to synthesize the contexts with elaboration and summary. RESULTS In OSCC, ACE/Ang II/AT1R promotes OSCC by inducing angiogenesis, cell proliferation and invasiveness. Conversely, ACE/Ang II/AT2R and ACE2/Ang (1-7)/MasR inhibit OSCC progressions. In periodontitis, ACE/Ang II/AT1R upregulates inflammatory cytokines and promotes osteoclast differentiation factor RANKL, whereas ACE2/Ang (1-7)/MasR exerts opposite effects by preventing inflammation and alveolar bone loss. In OSF, Ang (1-7) counters the profibrotic and proinflammatory action of Ang II. In dysgeusia, Ang II suppresses salt taste responses and enhances sweet taste sensitivities, while Ang (1-7) exhibits opposite effects. CONCLUSIONS The RAS cascade plays crucial roles in OSCC, periodontitis, OSF and ageusia/dysgeusia. The imbalanced RAS may aggravate the progression of these diseases.
Collapse
Affiliation(s)
- Yixing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Zhe Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
2
|
Katase N, Nishimatsu SI, Yamauchi A, Okano S, Fujita S. DKK3 expression is correlated with poorer prognosis in head and neck squamous cell carcinoma: A bioinformatics study based on the TCGA database. J Oral Biosci 2023; 65:334-346. [PMID: 37716425 DOI: 10.1016/j.job.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE We previously reported that dickkopf WNT signaling pathway inhibitor 3 (DKK3) expression is correlated with poorer prognosis in head and neck squamous cell carcinoma (HNSCC). Here we investigated DKK3 expression by using The Cancer Genome Atlas (TCGA) public database and bioinformatic analyses. METHODS We used the RNA sequence data and divided the tumor samples into "DKK3-high" and "DKK3-low" groups according to median DKK3 expression. The correlations between DKK3 expression and the clinical data were investigated. Differentially expressed genes (DEGs) were detected using DESEq2 and analyzed by ShinyGO 0.77. A gene set enrichment analysis (GSEA) was also performed using GSEA software. The DEGs were also analyzed with TargetMine to establish the protein-protein interaction (PPI) network. RESULTS DKK3 expression was significantly increased in cancer samples, and a high DKK3 expression was significantly associated with shorter overall survival. We identified 854 DEGs, including 284 up-regulated and 570 down-regulated. Functional enrichment analyses revealed several Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with extracellular matrix remodeling. The PPI network identified COL8A1, AGTR1, FN1, P4HA3, PDGFRB, and CEP126 as the key genes. CONCLUSIONS These results suggested the cancer-promoting ability of DKK3, the expression of which is a promising prognostic marker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Shin-Ichiro Nishimatsu
- Department of Natural Sciences, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama, 701-0192, Japan.
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama, 701-0192, Japan.
| | - Shinji Okano
- Department of Pathology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan; Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan.
| | - Shuichi Fujita
- Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, Nagasaki, 852-8588, Japan.
| |
Collapse
|
3
|
Rosa Teixeira-Alves L, Guimarães-Nobre CC, Mendonça-Reis E, Miranda-Alves L, Berto-Junior C. Bosentan attenuates sickle cell disease erythrocyte HbS polymerization and impaired deformability induced by endothelin-1. Can J Physiol Pharmacol 2023; 101:642-651. [PMID: 36821840 DOI: 10.1139/cjpp-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The effects of endothelin-1 (ET-1) on erythrocytes from sickle cell disease (SCD) patients have been described, but mechanisms of ET-1 regarding primary erythrocyte functions remain unknown. ET-1 is a vasoconstrictor peptide produced by endothelial cells, and the expression of ET-1 is increased in SCD. The present study used ex vivo experiments with sickle cell erythrocytes, ET-1, and bosentan, a dual antagonist of ETA and ETB receptors. We performed a hemoglobin S (HbS) polymerization assay with three concentrations of ET-1 (1, 20, and 50 pg/mL) and bosentan (100 nmol/L). ET-1 increased HbS polymerization at all concentrations, and this effect was suppressed by bosentan. For the deformability assay, red blood cells (RBCs) were incubated on a Sephacryl column with the same concentrations of ET-1 and bosentan. ET-1 decreased deformability, and this effect was reversed by bosentan. To observe erythrocyte adhesion, ET-1 and bosentan were incubated with RBCs in thrombospondin-coated 96-well plate, which demonstrated that ET-1 decreased adhesion but that bosentan enhanced adhesion. We also assessed erythrocyte apoptosis and observed decreased eryptosis induced by ET-1, and these effects were inhibited bosentan. Thus, these findings demonstrated that ET-1 modulates HbS polymerization, erythrocyte deformability, adhesion to thrombospondin, and eryptosis, and these effects were suppressed or enhanced by bosentan.
Collapse
Affiliation(s)
- Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
| |
Collapse
|
4
|
Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines 2022; 11:biomedicines11010017. [PMID: 36672525 PMCID: PMC9856001 DOI: 10.3390/biomedicines11010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion injury is a process associated with cardiologic interventions, such as percutaneous coronary angioplasty after an acute myocardial infarction. Blood flow restoration causes a quick burst of reactive oxygen species (ROS), which generates multiple organelle damage, leading to the activation of cell death pathways. Therefore, the intervention contributes to a greater necrotic zone, thus increasing the risk of cardiovascular complications. A major cardiovascular ROS source in this setting is the activation of multiple NADPH oxidases, which could result via the occupancy of type 1 angiotensin II receptors (AT1R); hence, the renin angiotensin system (RAS) is associated with the generation of ROS during reperfusion. In addition, ROS can promote the expression of NF-κΒ, a proinflammatory transcription factor. Recent studies have described an intracellular RAS pathway that is associated with increased intramitochondrial ROS through the action of isoform NOX4 of NADPH oxidase, thereby contributing to mitochondrial dysfunction. On the other hand, the angiotensin II/ angiotensin type 2 receptor (Ang II/AT2R) axis exerts its effects by counter-modulating the action of AT1R, by activating endothelial nitric oxide synthase (eNOS) and stimulating cardioprotective pathways such as akt. The aim of this review is to discuss the possible use of AT1R blockers to hamper both the Ang II/AT1R axis and the associated ROS burst. Moreover; we suggest that AT1R antagonist drugs should act synergistically with other cardioprotective agents, such as ascorbic acid, N-acetylcysteine and deferoxamine, leading to an enhanced reduction in the reperfusion injury. This therapy is currently being tested in our laboratory and has shown promising outcomes in experimental studies.
Collapse
|
5
|
Sunitinib and Pterostilbene Combination Treatment Exerts Antitumor Effects in Gastric Cancer via Suppression of PDZD8. Int J Mol Sci 2022; 23:ijms23074002. [PMID: 35409367 PMCID: PMC8999764 DOI: 10.3390/ijms23074002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
The use of molecular-targeted drugs in the treatment of gastric cancer is increasing. However, the variety of molecular-targeted drugs in gastric cancer is still limited, and the development of new molecular-targeted therapies is required. The effect of combining sunitinib (SUN) with pterostilbene (PTE) on the human gastric cancer cell lines TMK1 and MKN74 was examined in in vitro and in vivo. Compared with SUN or PTE treatment alone, cotreatment induced pronounced suppression of cell proliferation, with a marked increase in oxidative stress. SUN was associated with a significant retention of mitochondrial Fe2+. SUN-treated cells decreased expression of PDZ domain-containing protein 8 (PDZD8). Knockdown of PDZD8 in both cells induced Fe2+ retention, and siPDZD8+PTE markedly suppressed cell proliferation with suppressed oxidative phosphorylation, as did the combination of SUN+PTE. In a nude mouse tumor model, a pronounced antitumor effect was observed with SUN+PTE treatment compared to SUN alone. PDZD8 may be a newly discovered off-target for SUN, and that the combined use of PTE with SUN significantly promotes antitumor activity in gastric cancer cell lines. The combined use of SUN and PTE might be a new molecular-targeted therapy for gastric cancer.
Collapse
|
6
|
Schere-Levy C, Suberbordes M, Ferri DM, Ayre M, Gattelli A, Kordon EC, Raimondi AR, Walther T. Treatment with Angiotensin-(1-7) Prevents Development of Oral Papilloma Induced in K-ras Transgenic Mice. Int J Mol Sci 2022; 23:ijms23073642. [PMID: 35409002 PMCID: PMC8998511 DOI: 10.3390/ijms23073642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant cancer affecting the oral cavity. It is characterized by high morbidity and very few therapeutic options. Angiotensin (Ang)-(1-7) is a biologically active heptapeptide, generated predominantly from AngII (Ang-(1-8)) by the enzymatic activity of angiotensin-converting enzyme 2 (ACE 2). Previous studies have shown that Ang-(1-7) counterbalances AngII pro-tumorigenic actions in different pathophysiological settings, exhibiting antiproliferative and anti-angiogenic properties in cancer cells. However, the prevailing effects of Ang-(1-7) in the oral epithelium have not been established in vivo. Here, we used an inducible oral-specific mouse model, where the expression of a tamoxifen-inducible Cre recombinase (CreERtam), which is under the control of the cytokeratin 14 promoter (K14-CreERtam), induces the expression of the K-ras oncogenic variant KrasG12D (LSLK-rasG12D). These mice develop highly proliferative squamous papilloma in the oral cavity and hyperplasia exclusively in oral mucosa within one month after tamoxifen treatment. Ang-(1-7) treated mice showed a reduced papilloma development accompanied by a significant reduction in cell proliferation and a decrease in pS6 positivity, the most downstream target of the PI3K/Akt/mTOR signaling route in oral papilloma. These results suggest that Ang-(1-7) may be a novel therapeutic target for OSCC.
Collapse
Affiliation(s)
- Carolina Schere-Levy
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-11-4576-3368; Fax: +54-11-4576-3321
| | - Melisa Suberbordes
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
| | - Darío M. Ferri
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
| | - Marina Ayre
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
| | - Albana Gattelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
| | - Edith C. Kordon
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
| | - Ana R. Raimondi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina; (M.S.); (D.M.F.); (M.A.); (A.G.); (E.C.K.); (A.R.R.)
- IFIBYNE-CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CABA, Buenos Aires C1428EGA, Argentina
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, T12 YN60 Cork, Ireland;
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
- Xitra Therapeutics GmbH, Berlin-Buch, 13125 Berlin, Germany
| |
Collapse
|
7
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Is RAS the Link Between COVID-19 and Increased Stress in Head and Neck Cancer Patients? Front Cell Dev Biol 2021; 9:714999. [PMID: 34336866 PMCID: PMC8320172 DOI: 10.3389/fcell.2021.714999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023] Open
Abstract
The COVID-19 pandemic emerged as a largely unexplained outbreak of pneumonia cases, in Wuhan City, China and rapidly spread across the world. By 11th March 2020, WHO declared it as a global pandemic. The resulting restrictions, to contain its spread, demanded a momentous change in the lifestyle of the general population as well as cancer patients. This augmented negative effects on the mental health of patients with head and neck cancer (HNC), who already battle with the stress of cancer diagnosis and treatment. The causative agent of COVID-19, SARS-CoV2, gains entry through the Angiotensin converting enzyme 2 (ACE2) receptor, which is a component of the Renin Angiotensin System (RAS). RAS has been shown to influence cancer and stress such that it can have progressive and suppressive effects on both. This review provides an overview of SARS-CoV2, looks at how the RAS provides a mechanistic link between stress, cancer and COVID-19 and the probable activation of the RAS axis that increase stress (anxiogenic) and tumor progression (tumorigenic), when ACE2 is hijacked by SARS-CoV2. The mental health crises brought about by this pandemic have been highlighted in many studies. The emerging links between cancer and stress make it more important than ever before to assess the stress burden of cancer patients and expand the strategies for its management.
Collapse
Affiliation(s)
| | | | | | | | - Ian Ellis
- Unit of Cell and Molecular Biology, The Dental School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Kishi S, Nishiguchi Y, Honoki K, Mori S, Fujiwara-Tani R, Sasaki T, Fujii K, Kawahara I, Goto K, Nakashima C, Kido A, Tanaka Y, Luo Y, Kuniyasu H. Role of Glycated High Mobility Group Box-1 in Gastric Cancer. Int J Mol Sci 2021; 22:5185. [PMID: 34068442 PMCID: PMC8153607 DOI: 10.3390/ijms22105185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs) are produced in response to a high-glucose environment and oxidative stress and exacerbate various diseases. Nε-(Carboxymethyl)lysine (CML) is an AGE that is produced by the glycation of lysine residues of proteins. There are a few reports on alterations in protein function due to CML modification; however, its association with cancer is not clear. We investigated the significance of CML modification in high mobility group box protein-1 (HMGB1), a cytokine that is significantly associated with cancer progression. Treatment of the gastric cancer cell lines TMK1 and MKN74 with glyoxal or glucose resulted in increased CML modification compared to untreated cells. CML-HMGB1 was modified via oxidation and more pronouncedly activated the receptor for AGE and downstream AKT and NF-κB compared to naïve HMGB1 and oxidized HMGB1. CML-HMGB1 bound with reduced affinity to DNA and histone H3, resulting in enhanced extranuclear translocation and extracellular secretion. Treatment of gastric cancer cells with CML-HMGB1 enhanced cell proliferation and invasion, sphere formation, and protection from thapsigargin-induced apoptosis, and decreased 5-FU sensitivity in comparison to HMGB1. Further, CML-HMGB1 was detected at various levels in all the 10 gastric cancer tumor specimens. HMGB1 levels correlated with primary tumor progression and distant metastasis, whereas CML-HMGB1 levels were associated with primary tumor progression, lymph node metastasis, distant metastasis, and stage. In addition, CML-HMGB1 levels correlated with oxidative stress in cancer tissues and resistance to neoadjuvant therapy. Therefore, CML modification of HMGB1 enhanced the cancer-promoting effect of HMGB1. In this study, CML-HMGB1 has been highlighted as a new therapeutic target, and analysis of the molecular structure of CML-HMGB1 is desired in the future.
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kanya Honoki
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Akira Kido
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Yasuhito Tanaka
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| |
Collapse
|
9
|
Kim YS, Yang SC, Park M, Choi Y, DeMayo FJ, Lydon JP, Kim H, Lim HJ, Song H. Different Cre systems induce differential microRNA landscapes and abnormalities in the female reproductive tracts of Dgcr8 conditional knockout mice. Cell Prolif 2021; 54:e12996. [PMID: 33496365 PMCID: PMC7941225 DOI: 10.1111/cpr.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The female reproductive tract comprises several different cell types. Using three representative Cre systems, we comparatively analysed the phenotypes of Dgcr8 conditional knockout (cKO) mice to understand the function of Dgcr8, involved in canonical microRNA biogenesis, in the female reproductive tract. MATERIALS AND METHODS Dgcr8f/f mice were crossed with Ltficre/+ , Amhr2cre/+ or PRcre/+ mice to produce mice deficient in Dgcr8 in epithelial (Dgcr8ed/ed ), mesenchymal (Dgcr8md/md ) and all the compartments (Dgcr8td/td ) in the female reproductive tract. Reproductive phenotypes were evaluated in Dgcr8 cKO mice. Uteri and/or oviducts were used for small RNA-seq, mRNA-seq, real-time RT-PCR, and/or morphologic and histological analyses. RESULT Dgcr8ed/ed mice did not exhibit any distinct defects, whereas Dgcr8md/md mice showed sub-fertility and oviductal smooth muscle deformities. Dgcr8td/td mice were infertile due to anovulation and acute inflammation in the female reproductive tract and suffered from an atrophic uterus with myometrial defects. The microRNAs and mRNAs related to immune modulation and/or smooth muscle growth were systemically altered in the Dgcr8td/td uterus. Expression profiles of dysregulated microRNAs and mRNAs in the Dgcr8td/td uterus were different from those in other genotypes in a Cre-dependent manner. CONCLUSIONS Dgcr8 deficiency with different Cre systems induces overlapping but distinct phenotypes as well as the profiles of microRNAs and their target mRNAs in the female reproductive tract, suggesting the importance of selecting the appropriate Cre driver to investigate the genes of interest.
Collapse
Affiliation(s)
- Yeon Sun Kim
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
- Present address:
Division of reproductive sciencesDepartment of PediatricsCincinnati Children’s HospitalOHUSA
| | | | - Mira Park
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative BiotechnologyKonkuk UniversitySeoulKorea
| | - Francesco J. DeMayo
- Department of Reproductive and Developmental Biology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - John P. Lydon
- Department of Molecular and Cellular Biology and Center for Reproductive MedicineBaylor College of MedicineHoustonTXUSA
| | - Hye‐Ryun Kim
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
| | - Hyunjung Jade Lim
- Department of Veterinary Medicine, School of Veterinary MedicineKonkuk UniversitySeoulKorea
| | - Haengseok Song
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
| |
Collapse
|
10
|
Owari T, Sasaki T, Fujii K, Fujiwara-Tani R, Kishi S, Mori S, Mori T, Goto K, Kawahara I, Nakai Y, Miyake M, Luo Y, Tanaka N, Kondoh M, Fujimoto K, Kuniyasu H. Role of Nuclear Claudin-4 in Renal Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21218340. [PMID: 33172177 PMCID: PMC7664319 DOI: 10.3390/ijms21218340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Claudin-4 (CLDN4) is a tight junction protein to maintain the cancer microenvironment. We recently reported the role of the CLDN4 not forming tight junction in the induction of epithelial-mesenchymal transition (EMT). Herein, we investigated the role of CLDN4 in renal cell carcinoma (RCC), focusing on CLDN4. CLDN4 expression in 202 RCCs was examined by immunostaining. CLDN4 phosphorylation and subcellular localization were examined using high metastatic human RCC SN12L1 and low metastatic SN12C cell lines. In 202 RCC cases, the CLDN4 expression decreased in the cell membrane and had no correlation with clinicopathological factors. However, CLDN4 was localized in the nucleus in 5 cases (2%), all of which were pT3. Contrastingly, only 6 of 198 nuclear CLDN4-negative cases were pT3. CLDN4 was found in the nuclear fraction of a highly metastatic human RCC cell line, SN12L1, but not in the low metastatic SN12C cells. In SN12L1 cells, phosphorylation of tyrosine and serine residues was observed in cytoplasmic CLDN4, but not in membranous CLDN4. In contrast, phosphorylation of serine residues was observed in nuclear CLDN4. In SN12L1 cells, CLDN4 tyrosine phosphorylation by EphA2/Ephrin A1 resulted in the release of CLDN4 from tight junction and cytoplasmic translocation. Furthermore, protein kinase C (PKC)-ε phosphorylated the CLDN4 serine residue, resulting in nuclear import. Contrarily, in SN12C cells that showed decreased expression of EphA2/Ephrin A1 and PKCε, the activation of EphA2/EphrinA1 and PKCε induced cytoplasmic and nuclear translocation of CLDN4, respectively. Furthermore, the nuclear translocation of CLDN4 promoted the nuclear translocation of Yes-associated protein (YAP) bound to CLDN4, which induced the EMT phenotype. These findings suggest that the release of CLDN4 by impaired tight junction might be a mechanism underlying the malignant properties of RCC. These findings suggest that the release of CLDN4 by impaired tight junction might be one of the mechanisms of malignant properties of RCC.
Collapse
Affiliation(s)
- Takuya Owari
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
- Correspondence: (K.F.); (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Correspondence: (K.F.); (H.K.)
| |
Collapse
|
11
|
Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2020; 199:101919. [PMID: 33039415 PMCID: PMC7543790 DOI: 10.1016/j.pneurobio.2020.101919] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is one of the oldest hormone systems in vertebrate phylogeny. RAS was initially related to regulation of blood pressure and sodium and water homeostasis. However, local or paracrine RAS were later identified in many tissues, including brain, and play a major role in their physiology and pathophysiology. In addition, a major component, ACE2, is the entry receptor for SARS-CoV-2. Overactivation of tissue RAS leads several oxidative stress and inflammatory processes involved in aging-related degenerative changes. In addition, a third level of RAS, the intracellular or intracrine RAS (iRAS), with still unclear functions, has been observed. The possible interaction between the intracellular and extracellular RAS, and particularly the possible deleterious or beneficial effects of the iRAS activation are controversial. The dopaminergic system is particularly interesting to investigate the RAS as important functional interactions between dopamine and RAS have been observed in the brain and several peripheral tissues. Our recent observations in mitochondria and nucleus of dopaminergic neurons may clarify the role of the iRAS. This may be important for the developing of new therapeutic strategies, since the effects on both extracellular and intracellular RAS must be taken into account, and perhaps better understanding of COVID-19 cell mechanisms.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
12
|
Nakashima C, Kirita T, Yamamoto K, Mori S, Luo Y, Sasaki T, Fujii K, Ohmori H, Kawahara I, Mori T, Goto K, Kishi S, Fujiwara-Tani R, Kuniyasu H. Malic Enzyme 1 Is Associated with Tumor Budding in Oral Squamous Cell Carcinomas. Int J Mol Sci 2020; 21:ijms21197149. [PMID: 32998265 PMCID: PMC7582746 DOI: 10.3390/ijms21197149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Budding at the tumor invasive front has been correlated with the malignant properties of many cancers. Malic enzyme 1 (ME1) promotes the Warburg effect in cancer cells and induces epithelial–mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC). Therefore, we investigated the role of ME1 in tumor budding in OSCC. Tumor budding was measured in 96 human OSCCs by immunostaining for an epithelial marker (AE1/AE3), and its expression was compared with that of ME1. A significant correlation was observed between tumor budding and ME1 expression. The correlation increased with the progression of cancer. In human OSCC cells, lactate secretion decreased when lactate fermentation was suppressed by knockdown of ME1 and lactate dehydrogenase A or inhibition of pyruvate dehydrogenase (PDH) kinase. Furthermore, the extracellular pH increased, and the EMT phenotype was suppressed. In contrast, when oxidative phosphorylation was suppressed by PDH knockdown, lactate secretion increased, extracellular pH decreased, and the EMT phenotype was promoted. Induction of chemical hypoxia in OSCC cells by CoCl2 treatment resulted in increased ME1 expression along with HIF1α expression and promotion of the EMT phenotype. Hypoxic conditions also increased matrix metalloproteinases expression and decreased mitochondrial membrane potential, mitochondrial oxidative stress, and extracellular pH. Furthermore, the hypoxic treatment resulted in the activation of Yes-associated protein (YAP), which was abolished by ME1 knockdown. These findings suggest that cancer cells at the tumor front in hypoxic environments increase their lactate secretion by switching their energy metabolism from oxidative phosphorylation to glycolysis owing to ME1 overexpression, decrease in extracellular pH, and YAP activation. These alterations enhance EMT and the subsequent tumor budding. Tumor budding and ME1 expression are thus considered useful markers of OSCC malignancy, and ME1 is expected to be a relevant target for molecular therapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Aged
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Hypoxia
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Glycolysis/genetics
- Humans
- Hydrogen-Ion Concentration
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- L-Lactate Dehydrogenase/antagonists & inhibitors
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lymphatic Metastasis
- Malate Dehydrogenase/antagonists & inhibitors
- Malate Dehydrogenase/genetics
- Malate Dehydrogenase/metabolism
- Male
- Middle Aged
- Monocarboxylic Acid Transporters/antagonists & inhibitors
- Monocarboxylic Acid Transporters/genetics
- Monocarboxylic Acid Transporters/metabolism
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Oxidative Phosphorylation
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Symporters/antagonists & inhibitors
- Symporters/genetics
- Symporters/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
- Correspondence: (T.K.); (H.K.); Tel.: +81-744-22-3051 (T.K. & H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China;
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (C.N.); (S.M.); (T.S.); (K.F.); (H.O.); (I.K.); (T.M.); (K.G.); (S.K.); (R.F.-T.)
- Correspondence: (T.K.); (H.K.); Tel.: +81-744-22-3051 (T.K. & H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
13
|
Martelli-Júnior H, Machado RA, Martelli DRB, Andrade MC, Coletta RD. Oral cancer and ACE2 receptor of SARS-CoV-2. Oral Oncol 2020; 108:104920. [PMID: 32713810 PMCID: PMC7373056 DOI: 10.1016/j.oraloncology.2020.104920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hercílio Martelli-Júnior
- Oral Diagnosis, Dental School, State University of Montes Claros, Unimontes, Montes Claros, Minas Gerais, Brazil; Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of Alfenas, Minas Gerais, Brazil
| | - Renato Assis Machado
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, São Paulo, Brazil; Department of Oral Diagnosis, School of Dentistry, University of Campinas, FOP-UNICAMP, Piracicaba, São Paulo, Brazil.
| | | | - Mariléia Chaves Andrade
- Department of Pathophysiology, State University of Montes Claros, Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, FOP-UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|
14
|
Sasaki T, Mori S, Kishi S, Fujiwara-Tani R, Ohmori H, Nishiguchi Y, Hojo Y, Kawahara I, Nakashima C, Fujii K, Luo Y, Kuniyasu H. Effect of Proton Pump Inhibitors on Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21113877. [PMID: 32485921 PMCID: PMC7312442 DOI: 10.3390/ijms21113877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Proton pump inhibitors (PPIs) are administered commonly to aged people; however, their effect on colorectal cancer (CRC) has still not been fully elucidated. Here, we examined the effect of PPIs and consequent alkalization on CRC cells. PPI administration alkalized the fecal pH and increased serum gastrin concentration. PPI and pH8 treatment (alkalization) of CMT93 mouse colon cancer cells inhibited cell growth and invasion, increased oxidative stress and apoptosis, and decreased mitochondrial volume and protein levels of cyclin D1 and phosphorylated extracellular signal-regulated kinase (pERK) 1/2. In contrast, gastrin treatment enhanced growth and invasion, decreased oxidative stress and apoptosis, and increased mitochondrial volume and cyclin D1 and pERK1/2 levels. Concurrent treatment with a PPI, pH8, and gastrin increased aldehyde dehydrogenase activity and also enhanced liver metastasis in the BALB/c strain of mice. PPI administration was associated with Clostridiumperfringens enterotoxin (CPE) in CRC lesions. CPE treatment activated yes-associated protein (YAP) signals to enhance proliferation and stemness. The orthotopic colon cancer model of CMT93 cells with long-term PPI administration showed enhanced tumor growth and liver metastasis due to gastrin and YAP activation, as indicated by gastrin receptor knockdown and treatment with a YAP inhibitor. These findings suggest that PPI promotes CRC growth and metastasis by increasing gastrin concentration and YAP activation, resulting in gut flora alteration and fecal alkalization. These findings suggest that PPI use in colorectal cancer patients might create a risk of cancer promotion.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Yudai Hojo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-85051805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-85051805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
15
|
Fujiwara-Tani R, Fujii K, Mori S, Kishi S, Sasaki T, Ohmori H, Nakashima C, Kawahara I, Nishiguchi Y, Mori T, Sho M, Kondoh M, Luo Y, Kuniyasu H. Role of Clostridium perfringens Enterotoxin on YAP Activation in Colonic Sessile Serrated Adenoma/ Polyps with Dysplasia. Int J Mol Sci 2020; 21:ijms21113840. [PMID: 32481659 PMCID: PMC7313056 DOI: 10.3390/ijms21113840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Sessile serrated adenoma/polyp with dysplasia (SSA/P-D) is an SSA/P with cellular dysplasia and has a higher risk of progressing to colon carcinogenesis. Previously, we reported that tight junction impairment by Clostridiumperfringens enterotoxin (CPE) leads to activation of the transcriptional co-activator yes-associated protein (YAP) in oral squamous cell carcinoma. Here, we investigated whether CPE activates YAP to promote the malignant progression of SSA/P. E-cadherin expression was lower in the 12 cases with SSA/P-D examined than that in normal mucosa, SSA/P, or tubular adenoma (TA). Furthermore, intracellular translocation of claudin-4 (CLDN4) and nuclear translocation of YAP were observed. The CPE gene was detected in DNA extracted from SSA/P-D lesions, but not in SSA/P or TA. Treatment of the rat intestinal epithelial cell line IEC6 with low-dose CPE resulted in intracellular translocation of CLDN4 to the cytoplasmic membrane. Cytoplasmic CLDN4 showed co-precipitation with transcriptional co-activator with PDZ-binding motif, zonula occludens (ZO)-1, large tumor suppressor, and mammalian Ste20-like. Additionally, YAP co-precipitated with ZO-2 under CPE treatment led to decreased YAP phosphorylation and nuclear translocation. YAP activation promoted increase in nuclear TEA domain family member level, expression of cyclin D1, snail, vimentin, CD44, NS and decrease in E-cadherin levels, thereby inducing stemness and epithelial-mesenchymal-transition (EMT). The Hippo complex with the incorporation of CLDN4 increased stability. Upon low-dose CPE treatment, HT29 cells with BRAFV600E gene mutation showed increased growth, enhanced invasive potential, stemness, and induced EMT phenotype, whereas HCT116 cells, which carry KRASG13D gene mutation, did not show such changes. In an examination of 10 colorectal cancers, an increase in EMT and stemness was observed in CPE (+) and BRAF mutation (+) cases. These findings suggest that C.perfringens might enhance the malignant transformation of SSA/P-D via YAP activation. Our findings further highlight the importance of controlling intestinal flora using probiotics or antibiotics.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
16
|
The current markers of cancer stem cell in oral cancers. Life Sci 2020; 249:117483. [PMID: 32135187 DOI: 10.1016/j.lfs.2020.117483] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022]
Abstract
Head and neck cancer (HNC) constitute 5% of all reported cancers. Among all, the oral cavity cancer is the most frequent type of HNC which accounts for over half of HNC cases. Mouth cancer ranks the sixth leading cause of cancer-related mortality. Generally, conventional chemotherapy has shown success at decreasing relapse and metastasis rates and improves the overall prognosis. Recently, target therapy and targeted drug delivery systems have been introduced as promising treatments. The elimination of efficiency of current therapeutic strategies due to the spared cancer stem cells that cause chemotherapy resistance, relapse and metastasis. Inefficiency methodologies in the elimination of all cancer cells in the body are a major problem that remained to be resolved before to confront the new cancer therapies. Many studies imply to cancer stem cell markers as important agents for targeted anti-cancer as well as improving chemotherapy efficiencies. The potentials of targeted cancer therapy led us to search for novel markers in the mouth cancer stem cells especially in rare cancers. The aimed of this research was, first a comprehensive critical review of the previous studies on the markers of cancer stem cells in oral cancers including oral squamous cell carcinoma, salivary gland cancers, and to highlight the most common cancer stem cell markers which have potential to be exploited as indicators for the preneoplastic lesion malignancy, oral cancer progression, and/or treatment prognosis.
Collapse
|
17
|
Nakashima C, Yamamoto K, Kishi S, Sasaki T, Ohmori H, Fujiwara-Tani R, Mori S, Kawahara I, Nishiguchi Y, Mori T, Kondoh M, Luo Y, Kirita T, Kuniyasu H. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget 2020; 11:309-321. [PMID: 32064037 PMCID: PMC6996904 DOI: 10.18632/oncotarget.27424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Claudin (CLDN)-4 expression has been associated with malignancy in various cancers. When CLDN4 expression was examined in oral squamous cell carcinoma (OSCC), 22 out of 57 (39%) cases showed immunoreactivity in the nucleus. Nuclear CLDN4-positive cases showed a stronger correlation with cancer progression than the negative cases. Intratumoral anaerobic bacterial DNA examination revealed nuclear CLDN4 expression in 81% of Clostridium perfringens-positive cases. Treatment of human oral squamous cell carcinoma cell lines HSC3 and HSC4 with Clostridium perfringens enterotoxin (CPE), induced CLDN4 nuclear translocation to enhance epithelial-mesenchymal transition (EMT), stemness, cell proliferation and invasive ability. In addition, CPE treatment suppressed phosphorylation of yes-associated protein-1 (YAP1) and promoted YAP1 nuclear translocation, resulting in increased expression of YAP1 target genes; cyclin D1 and connective tissue growth factor. Moreover, it was revealed that the complex of YAP1, CLDN4 and zona occludens-2 (ZO-2) was formed by CPE treatment, further suppressing YAP1 phosphorylation by LATS1 and activating it. Thus YAP activation in OSCC was regarded important in promoting malignant phenotypes. Our research suggested that the control of oral anaerobic bacteria may suppress YAP activation and in turn tumor progression.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
18
|
Khowal S, Wajid S. Role of Smoking-Mediated molecular events in the genesis of oral cancers. Toxicol Mech Methods 2019; 29:665-685. [DOI: 10.1080/15376516.2019.1646372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Rao R, Husain A, Bharti AC, Kashyap MK. Discovery of a Novel Connecting Link between Renin-Angiotensin System and Cancer in Barrett's Esophagus by Proteomic Screening. Proteomics Clin Appl 2019; 13:e1900006. [PMID: 30891939 DOI: 10.1002/prca.201900006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 02/05/2023]
Abstract
The renin-angiotensin system (RAS) plays a central role in the regulation of homeostasis and blood pressure. This involves an important enzyme called angiotensin-converting enzyme that leads to the conversion of angiotensin I into angiotensin II. RAS has been reported to show association with inflammation, and in sporadic studies, with cancer. In particular, angiotensin II has been reported to be prevalent in the hypoxic microenvironment and associated with cancer signaling pathways. In a recent study, Bratlie et al. (Proteomics Clin. Appl. 2019, 4, 1800102) is shown to exploit 2D gel electrophoresis, and mass spectrometry (MS) to identify differentially expressed proteins by comparing low-grade dysplasia in Barrett's Esophagus (BE) following administration of agents that interfere with RAS, that is, enalapril and candesartan, and identified specific modulation of HSP60, PDIA3, and PPA1. Though 2D gel coupled with MS is a commonly-used tool for studying proteomes, it still has limitations in terms of a comprehensive analysis due to lack of absolute quantitation in a high-throughput manner. Despite technical limitations and the small size of the study, preliminary data emerging from the investigation show interference caused by clinically approved RAS inhibitors resulting in alteration of molecular markers associated with tumorigenicity. The authors propose potential factors that may influence the progression of the disease. However, these are conspicuous changes in high-abundance proteins only. Therefore, there is a need to carry out detailed experimental studies either using an in vitro labeling technique (isobaric labeling for relative and absolute quantitation) for tissues or an in vivo labeling technique (stable isotope labeling in animal cell culture) coupled with LC-MS/MS to identify differentially-regulated proteins to delineate the role of RAS in BE.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| | - Amjad Husain
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manoj K Kashyap
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| |
Collapse
|