1
|
Caramella S, Baranzini N, Bruno D, Orlandi VT, Mohamed A, Bolognese F, Grimaldi A, Tettamanti G. Exploring the role of RNASET2 in the immune response of black soldier fly larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22146. [PMID: 39190478 DOI: 10.1002/arch.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
T2 RNases are transferase-type enzymes distributed across phyla, crucial for breaking down single-stranded RNA molecules. In addition to their canonical function, several T2 enzymes exhibit pleiotropic roles, contributing to various biological processes, such as the immune response in invertebrates and vertebrates. This study aims at characterizing RNASET2 in the larvae of black soldier fly (BSF), Hermetia illucens, which are used for organic waste reduction and the production of valuable insect biomolecules for feed formulation and other applications. Given the exposure of BSF larvae to pathogens present in the feeding substrate, it is likely that the mechanisms of their immune response have undergone significant evolution and increased complexity. After in silico characterization of HiRNASET2, demonstrating the high conservation of this T2 homolog, we investigated the expression pattern of the enzyme in the fat body and hemocytes, two districts mainly involved in the insect immune response, in larvae challenged with bacterial infection. While no variation in HiRNASET2 expression was observed in the fat body following infection, a significant upregulation of HiRNASET2 synthesis occurred in hemocytes shortly after the injection of bacteria in the larva. The intracellular localization of HiRNASET2 in lysosomes of plasmatocytes, its extracellular association with bacteria, and the presence of a putative antimicrobial domain in the molecule, suggest its potential role in RNA clean-up and as an alarm molecule promoting phagocytosis activation by hemocytes. These insights contribute to the characterization of the immune response of Hermetia illucens larvae and may facilitate the development of animal feedstuff enriched with highly valuable BSF bioactive compounds.
Collapse
Affiliation(s)
- Sara Caramella
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University Museum of Arthropods, King Saud University, Riyadh, Saudi Arabia
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
2
|
Peak T, Tian Y, Patel A, Shaw T, Obermayer A, Laborde J, Kim Y, Johnson J, Stewart P, Fang B, Teer JK, Koomen J, Berglund A, Marchion D, Francis N, Echevarria PR, Dhillon J, Clark N, Chang A, Sexton W, Zemp L, Chahoud J, Wang L, Manley B. Pathogenic Roles for RNASET2 in Clear Cell Renal Cell Carcinoma. J Transl Med 2024; 104:102041. [PMID: 38431116 DOI: 10.1016/j.labinv.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
A specific splicing isoform of RNASET2 is associated with worse oncologic outcomes in clear cell renal cell carcinoma (ccRCC). However, the interplay between wild-type RNASET2 and its splice variant and how this might contribute to the pathogenesis of ccRCC remains poorly understood. We sought to better understand the relationship of RNASET2 in the pathogenesis of ccRCC and the interplay with a pathogenic splicing isoform (RNASET2-SV) and the tumor immune microenvironment. Using data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium, we correlated clinical variables to RNASET2 expression and the presence of a specific RNASET2-SV. Immunohistochemical staining with matched RNA sequencing of ccRCC patients was then utilized to understand the spatial relationships of RNASET2 with immune cells. Finally, in vitro studies were performed to demonstrate the oncogenic role of RNASET2 and highlight its potential mechanisms. RNASET2 gene expression is associated with higher grade tumors and worse overall survival in The Cancer Genome Atlas cohort. The presence of the RNASET2-SV was associated with increased expression of the wild-type RNASET2 protein and epigenetic modifications of the gene. Immunohistochemical staining revealed increased intracellular accumulation of RNASET2 in patients with increased RNA expression of RNASET2-SV. In vitro experiments reveal that this accumulation results in increased cell proliferation, potentially from altered metabolic pathways. RNASET2 exhibits a tumor-promoting role in the pathogenesis of ccRCC that is increased in the presence of a specific RNASET2-SV and associated with changes in the cellular localization of the protein.
Collapse
Affiliation(s)
- Taylor Peak
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aman Patel
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Tim Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jose Laborde
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Joseph Johnson
- Analytic Microcopy Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Bin Fang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Doug Marchion
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Natasha Francis
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paola Ramos Echevarria
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Noel Clark
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Andrew Chang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Wade Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Logan Zemp
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
3
|
Biener-Ramanujan E, Rosier F, Coetzee SG, McGovern DDP, Hazelett D, Targan SR, Gonsky R. Diagnostic and therapeutic potential of RNASET2 in Crohn's disease: Disease-risk polymorphism modulates allelic-imbalance in expression and circulating protein levels and recombinant-RNASET2 attenuates pro-inflammatory cytokine secretion. Front Immunol 2022; 13:999155. [PMID: 36466822 PMCID: PMC9709281 DOI: 10.3389/fimmu.2022.999155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 08/28/2023] Open
Abstract
Ribonuclease T2 gene (RNASET2) variants are associated in genome wide association studies (GWAS) with risk for several autoimmune diseases, including Crohn's disease (CD). In T cells, a functional and biological relationship exists between TNFSF15-mediated enhancement of IFN-γ production, mucosal inflammation and RNASET2. Disease risk variants are associated with decreased mRNA expression and clinical characteristics of severe CD; however, functional classifications of variants and underlying molecular mechanisms contributing to pathogenesis remain largely unknown. In this study we demonstrate that allelic imbalance of RNASET2 disease risk variant rs2149092 is associated with transcriptional and post-transcriptional mechanisms regulating transcription factor binding, promoter-transactivation and allele-specific expression. RNASET2 mRNA expression decreases in response to multiple modes of T cell activation and recovers following elimination of activator. In CD patients with severe disease necessitating surgical intervention, preoperative circulating RNASET2 protein levels were decreased compared to non-IBD subjects and rebounded post-operatively following removal of the inflamed region, with levels associated with allelic carriage. Furthermore, overexpression or treatment with recombinant RNASET2 significantly reduced IFN-γ secretion. These findings reveal that RNASET2 cis- and trans-acting variation contributed regulatory complexity and determined expression and provide a basis for linking genetic variation with CD pathobiology. These data may ultimately identify RNASET2 as an effective therapeutic target in a subset of CD patients with severe disease.
Collapse
Affiliation(s)
- Eva Biener-Ramanujan
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Florian Rosier
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Simon G. Coetzee
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States
| | - Dermot D. P. McGovern
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Dennis Hazelett
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Rivkah Gonsky
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| |
Collapse
|
4
|
Human RNASET2: A Highly Pleiotropic and Evolutionary Conserved Tumor Suppressor Gene Involved in the Control of Ovarian Cancer Pathogenesis. Int J Mol Sci 2022; 23:ijms23169074. [PMID: 36012339 PMCID: PMC9409134 DOI: 10.3390/ijms23169074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer represents one of the most malignant gynecological cancers worldwide, with an overall 5-year survival rate, being locked in the 25-30% range in the last decade. Cancer immunotherapy is currently one of the most intensively investigated and promising therapeutic strategy and as such, is expected to provide in the incoming years significant benefits for ovarian cancer treatment as well. Here, we provide a detailed survey on the highly pleiotropic oncosuppressive roles played by the human RNASET2 gene, whose protein product has been consistently reported to establish a functional crosstalk between ovarian cancer cells and key cellular effectors of the innate immune system (the monocyte/macrophages lineage), which is in turn able to promote the recruitment to the cancer tissue of M1-polarized, antitumoral macrophages. This feature, coupled with the ability of T2 ribonucleases to negatively affect several cancer-related parameters in a cell-autonomous manner on a wide range of ovarian cancer experimental models, makes human RNASET2 a very promising candidate to develop a "multitasking" therapeutic approach for innovative future applications for ovarian cancer treatment.
Collapse
|
5
|
Rosini E, Volpi NA, Ziffels B, Grimaldi A, Sacchi S, Neri D, Pollegioni L. An antibody-based enzymatic therapy for cancer treatment: The selective localization of D-amino acid oxidase to EDA fibronectin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102424. [PMID: 34174417 DOI: 10.1016/j.nano.2021.102424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Noemi Antonella Volpi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Barbara Ziffels
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Gho YS, Choi H, Moon S, Song MY, Park HE, Kim DH, Ha SH, Jung KH. Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay. FRONTIERS IN PLANT SCIENCE 2020; 11:585561. [PMID: 33424882 PMCID: PMC7793952 DOI: 10.3389/fpls.2020.585561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis. In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. We then compared the in silico expression patterns of all RNS genes in rice and Arabidopsis under normal and Pi-deficient conditions and further confirmed the expression patterns of rice RNS genes via qRT-PCR analysis. Subsequently, we found that most of the OsRNS genes were differentially regulated under Pi-deficient treatment. Association of Pi recycling by RNase activity in rice was confirmed by measuring total RNA concentration and ribonuclease activity of shoot and root samples under Pi-sufficient or Pi-deficient treatment during 21 days. The total RNA concentrations were decreased by < 60% in shoots and < 80% in roots under Pi starvation, respectively, while ribonuclease activity increased correspondingly. We further elucidate the signaling pathway of Pi starvation through upregulation of the OsRNS genes. The 2-kb promoter region of all OsRNS genes with inducible expression patterns under Pi deficiency contains a high frequency of P1BS cis-acting regulatory element (CRE) known as the OsPHR2 binding site, suggesting that the OsRNS family is likely to be controlled by OsPHR2. Finally, the dynamic transcriptional regulation of OsRNS genes by overexpression of OsPHR2, ospho2 mutant, and overexpression of OsPT1 lines involved in Pi signaling pathway suggests the molecular basis of OsRNS family in Pi recycling via RNA decay under Pi starvation.
Collapse
Affiliation(s)
- Yun-Shil Gho
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Heebak Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Min Yeong Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ha Eun Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Doh-Hoon Kim
- Department of Life Science, College of Life Science and Natural Resources, Dong-A University, Busan, South Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
7
|
Kawahara R, Recuero S, Nogueira FCS, Domont GB, Leite KRM, Srougi M, Thaysen-Andersen M, Palmisano G. Tissue Proteome Signatures Associated with Five Grades of Prostate Cancer and Benign Prostatic Hyperplasia. Proteomics 2019; 19:e1900174. [PMID: 31576646 DOI: 10.1002/pmic.201900174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/28/2019] [Indexed: 12/22/2022]
Abstract
The histology-based Gleason score (GS) of prostate cancer (PCa) tissue biopsy is the most accurate predictor of disease aggressiveness and an important measure to guide treatment strategies and patient management. The variability associated with PCa tumor sampling and the subjective determination of the GS are challenges that limit accurate diagnostication and prognostication. Thus, novel molecular signatures are needed to distinguish between indolent and aggressive forms of PCa for better patient management and outcomes. Herein, label-free LC-MS/MS proteomics is used to profile the proteome of 50 PCa tissues spanning five grade groups (n = 10 per group) relative to tissues from individuals with benign prostatic hyperplasia (BPH). Over 2000 proteins are identified albeit at different levels between and within the patient groups, revealing biological processes associated with specific grades. A panel of 11 prostate-derived proteins including IGKV3D-20, RNASET2, TACC2, ANXA7, LMOD1, PRCP, GYG1, NDUFV1, H1FX, APOBEC3C, and CTSZ display the potential to stratify patients from low and high PCa grade groups. Parallel reaction monitoring of the same sample cohort validate the differential expression of LMOD1, GYG1, IGKV3D-20, and RNASET2. The four proteins associated with low and high PCa grades reported here warrant further exploration as candidate biomarkers for PCa aggressiveness.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, CEP: 05508-000, Brazil.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Saulo Recuero
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, CEP: 01246-903, Brazil
| | - Fabio C S Nogueira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP: 21941-909, Brazil
| | - Gilberto B Domont
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP: 21941-909, Brazil
| | - Katia R M Leite
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, CEP: 01246-903, Brazil
| | - Miguel Srougi
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, CEP: 01246-903, Brazil
| | | | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, CEP: 05508-000, Brazil
| |
Collapse
|
8
|
Turconi G, Scaldaferri D, Fabbri M, Monti L, Lualdi M, Pedrini E, Gribaldo L, Taramelli R, Acquati F. RNASET2 silencing affects miRNAs and target gene expression pattern in a human ovarian cancer cell model. Int J Oncol 2016; 49:2637-2646. [PMID: 27840914 DOI: 10.3892/ijo.2016.3763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022] Open
Abstract
Ribonucleases (RNases) are hydrolytic enzymes endowed with the ability to either process or degrade ribonucleic acids. Among the many biological functions assigned to RNases, a growing attention has been recently devoted to the control of cancer growth, in the attempt to bring novel therapeutic approaches to clinical oncology. Indeed, several enzymes belonging to different ribonuclease families have been reported in the last decade to display a marked oncosuppressive activity in a wide range of experimental models. The human RNASET2 gene, the only member of the highly conserved T2/Rh/S family of endoribonucleolytic enzymes described in our species, has been shown to display oncosuppressive roles in both in vitro and in vivo models representing several human malignancies. In the present study, we extend previous findings obtained in ovarian cancer models to shed further light on the cell-autonomous roles played by this gene in the context of its oncosuppresive role and to show that RNASET2 silencing can significantly affect the transcriptional output in one of the most thoroughly investigated human ovarian cancer cell lines. Moreover, we report for the first time that RNASET2-mediated changes in the cell transcriptome are in part mediated by its apparent ability to affect the cell's microRNA expression pattern.
Collapse
Affiliation(s)
- Giovanna Turconi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Debora Scaldaferri
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Fabbri
- Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Laura Monti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marta Lualdi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Edoardo Pedrini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Laura Gribaldo
- JRC Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, Ispra, Varese (VA), Italy
| | - Roberto Taramelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Lualdi M, Pedrini E, Rea K, Monti L, Scaldaferri D, Gariboldi M, Camporeale A, Ghia P, Monti E, Tomassetti A, Acquati F, Taramelli R. Pleiotropic modes of action in tumor cells of RNASET2, an evolutionary highly conserved extracellular RNase. Oncotarget 2016; 6:7851-65. [PMID: 25797262 PMCID: PMC4480721 DOI: 10.18632/oncotarget.3490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/02/2015] [Indexed: 02/03/2023] Open
Abstract
As widely recognized, tumor growth entails a close and complex cross-talk among cancer cells and the surrounding tumor microenvironment. We recently described the human RNASET2 gene as one key player of such microenvironmental cross-talk. Indeed, the protein encoded by this gene is an extracellular RNase which is able to control cancer growth in a non-cell autonomous mode by inducing a sustained recruitment of immune-competent cells belonging to the monocyte/macrophage lineage within a growing tumor mass. Here, we asked whether this oncosuppressor gene is sensitive to stress challenges and whether it can trigger cell-intrinsic processes as well. Indeed, RNASET2 expression levels were consistently found to increase following stress induction. Moreover, changes in RNASET2 expression levels turned out to affect several cancer-related parameters in vitro in an ovarian cancer cell line model. Of note, a remarkable rearrangement of the actin cytoskeleton organization, together with changes in cell adhesion and motility, emerged as putative mechanisms by which such cell-autonomous role could occur. Altogether, these biological features allow to put forward the hypothesis that the RNASET2 protein can act as a molecular barrier for limiting the damages and tissue remodeling events occurring during the earlier step of cell transformation.
Collapse
Affiliation(s)
- Marta Lualdi
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Edoardo Pedrini
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Katia Rea
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Monti
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Debora Scaldaferri
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Annalisa Camporeale
- Division of Molecular Oncology and Department of Onco-Hematology, IRCCS Ospedale San Raffaele, Milan, Italy.,Present address: Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Turin, Italy
| | - Paolo Ghia
- Division of Molecular Oncology and Department of Onco-Hematology, IRCCS Ospedale San Raffaele, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Acquati
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Roberto Taramelli
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
10
|
Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization. Oncoscience 2014; 2:31-43. [PMID: 25815360 PMCID: PMC4341462 DOI: 10.18632/oncoscience.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/26/2014] [Indexed: 02/02/2023] Open
Abstract
Human RNASET2 (hRNASET2) has been demonstrated to exert antiangiogenic and antitumorigenic effects independent of its ribonuclease capacity. We suggested that RNASET2 exerts its antiangiogenic and antitumorigenic activities via binding to actin and consequently inhibits cell motility. We focused herein on the identification of the actin binding site of hRNASET2 using defined sequences encountered within the whole hRNASET2 protein. For that purpose we designed 29 different hRNASET2-derived peptides. The 29 peptides were examined for their ability to bind immobilized actin. Two selected peptides-A103-Q159 consisting of 57 amino acids and peptide K108-K133 consisting of 26 amino acids were demonstrated to have the highest actin binding ability and concomitantly the most potent anti-angiogenic activity. Further analyses on the putative mechanisms associated with angiogenesis inhibition exerted by peptide K108-K133 involved its location during treatment within the HUVE cells. Peptide K108-K133 readily penetrates the cell membrane within 10 min of incubation. In addition, supplementation with angiogenin delays the entrance of peptide K108-K133 to the cell suggesting competition on the same cell internalization route. The peptide was demonstrated to co-localize with angiogenin, suggesting that both molecules bind analogous cellular epitopes, similar to our previously reported data for ACTIBIND and trT2-50.
Collapse
|
11
|
Caric A, Poljicanin A, Tomic S, Vilovic K, Saraga-Babic M, Vukojevic K. Apoptotic pathways in ovarian surface epithelium of human embryos during embryogenesis and carcinogenesis: close relationship of developmental plasticity and neoplasm. Acta Histochem 2014; 116:304-11. [PMID: 24055196 DOI: 10.1016/j.acthis.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Cell differentiation and different pathways of cell death were immunohistochemically analyzed in ovaries of six human embryos, 20 serous borderline tumors (SBT) and ovarian serous carcinomas (OSC) using markers for apoptosis (caspase-3, AIF, TUNEL) and stemness (Oct-4). In the 5-8-week ovaries, caspase-3 was absent in the ovarian surface epithelium (ose) and mildly positive in the ovarian stroma (os), AIF was expressed moderately, while Oct-4 expression gradually decreased during that period. Some ovarian cells expressed only caspase-3 or AIF together with TUNEL, while both caspase-3 and AIF were co-expressed in other ovarian cells. Mild expression of Oct-4 and caspase-3 characterized some cells of SBT, while their expression varied from mild to strong in OSC. AIF displayed mild to strong expression in ose of SBT and moderate to strong expression in OSC, while no expression of AIF was observed in os of both tumors. In the ose of both SBT and OSC, caspase-3 and AIF were co-expressed only occasionally, while AIF and Oct-4 were co-expressed strongly. Our study showed the presence of stemness cells and different pathways of cell death (caspase-3 and AIF-mediated) in the ovarian tissue during development and carcinogenesis, indicating the correlation between developmental plasticity in human embryonic ovaries and OSC.
Collapse
|
12
|
Zhao Y, Chen S, Gou WF, Niu ZF, Zhao S, Xiao LJ, Takano Y, Zheng HC. The role of EMMPRIN expression in ovarian epithelial carcinomas. Cell Cycle 2013; 12:2899-913. [PMID: 23966157 PMCID: PMC3899202 DOI: 10.4161/cc.25950] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose: Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of ovarian epithelial carcinomas.
Methods: EMMPRIN siRNA were transfected into ovarian carcinoma cells with the phenotypes and their related molecules examined. EMMPRIN expression was determined in ovarian normal tissue, benign and borderline tumors, and epithelial carcinomas by real-time PCR, western blot, and immunohistochemisty.
Results: EMMPRIN siRNA treatment resulted in a lower growth, G1 arrest, apoptotic induction, decreased migration, and invasion. The transfectants showed reduced expression of Wnt5a, Akt, p70s6k, Bcl-xL, survivin, VEGF, and MMP-9 than mock and control cells at both mRNA and protein levels. According to real-time PCR and western blot, EMMPRIN mRNA or protein level was higher in ovarian borderline tumor and carcinoma than normal ovary and benign tumors (P < 0.05), and positively correlated with dedifferentiation and FIGO staging (P < 0.05). Immuhistochemically, EMMPRIN expression was positively correlated with FIGO staging, dedifferentiation, Ki-67 expression, the lower cumulative and relapse-free survival rate (P < 0.05).
Conclusions: Upregulated expression of EMMPRIN protein and mRNA might be involved in the pathogenesis, differentiation, and progression of ovarian carcinomas, possibly by modulating cellular events, such as proliferation, cell cycle, apoptosis, migration, and invasion.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology; The First Affiliated Hospital of China Medical University; Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Loss of function of Ribonuclease T2, an ancient and phylogenetically conserved RNase, plays a crucial role in ovarian tumorigenesis. Proc Natl Acad Sci U S A 2013; 110:8140-5. [PMID: 23630276 DOI: 10.1073/pnas.1222079110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the role played by the stromal microenvironment has been given growing attention in order to achieve a full understanding of cancer initiation and progression. Because cancer is a tissue-based disease, the integrity of tissue architecture is a major constraint toward cancer growth. Indeed, a large contribution of the natural resistance to cancer stems from stromal microenvironment components, the dysregulation of which can facilitate cancer occurrence. For instance, recent experimental evidence has highlighted the involvement of stromal cells in ovarian carcinogenesis, as epitomized by ovarian xenografts obtained by a double KO of the murine Dicer and Pten genes. Likewise, we reported the role of an ancient extracellular RNase, called Ribonuclease T2 (RNASET2), within the ovarian stromal microenvironment. Indeed, hyperexpression of RNASET2 is able to control tumorigenesis by recruiting macrophages (mostly of the anticancer M1 subtype) at the tumor sites. We present biological data obtained by RNASET2 silencing in the poorly tumorigenetic and highly RNASET2-expressing human OVCAR3 cell line. RNASET2 knockdown was shown to stimulate in vivo tumor growth early after microinjection of OVCAR3 cells in nude mice. Moreover, we have investigated by molecular profiling the in vivo expression signature of human and mouse cell xenografts and disclosed the activation of pathways related to activation of the innate immune response and modulation of ECM components. Finally, we provide evidence for a role of RNASET2 in triggering an in vitro chemotactic response in macrophages. These results further highlight the critical role played by the microenvironment in RNASET2-mediated ovarian tumor suppression, which could eventually contribute to better clarify the pathogenesis of this disease.
Collapse
|
14
|
Lal A, Panos R, Marjanovic M, Walker M, Fuentes E, Kapp DS, Henner WD, Buturovic LJ, Halks-Miller M. A gene expression profile test for the differential diagnosis of ovarian versus endometrial cancers. Oncotarget 2012; 3:212-23. [PMID: 22371431 PMCID: PMC3326651 DOI: 10.18632/oncotarget.450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have developed a gene expression profile test (Pathwork Tissue of Origin Endometrial Test) that distinguishes primary epithelial ovarian and endometrial cancers in formalin-fixed, paraffin-embedded (FFPE) specimens using a 316–gene classification model. The test was validated in a blinded study using a pre-specified algorithm and microarray files for 75 metastatic, poorly differentiated or undifferentiated specimens with a known ovarian or endometrial cancer diagnosis. Measures of test performance include a 94.7% overall agreement with the known diagnosis, an area under the ROC curve (AUC) of 0.997 and a diagnostic odds ratio (DOR) of 406. Ovarian cancers (n=30) gave an agreement of 96.7% with the known diagnosis while endometrial cancers (n=45) gave an agreement of 93.3%. In a precision study, concordance in test results was 100%. Reproducibility in test results between three laboratories was 94.3%. The Tissue of Origin Endometrial Test can aid in resolving important differential diagnostic questions in gynecologic oncology.
Collapse
Affiliation(s)
- Anita Lal
- Pathwork Diagnostics, Redwood City, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Thorn A, Steinfeld R, Ziegenbein M, Grapp M, Hsiao HH, Urlaub H, Sheldrick GM, Gärtner J, Krätzner R. Structure and activity of the only human RNase T2. Nucleic Acids Res 2012; 40:8733-42. [PMID: 22735700 PMCID: PMC3458558 DOI: 10.1093/nar/gks614] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the gene of human RNase T2 are associated with white matter disease of the human brain. Although brain abnormalities (bilateral temporal lobe cysts and multifocal white matter lesions) and clinical symptoms (psychomotor impairments, spasticity and epilepsy) are well characterized, the pathomechanism of RNase T2 deficiency remains unclear. RNase T2 is the only member of the Rh/T2/S family of acidic hydrolases in humans. In recent years, new functions such as tumor suppressing properties of RNase T2 have been reported that are independent of its catalytic activity. We determined the X-ray structure of human RNase T2 at 1.6 Å resolution. The α+β core fold shows high similarity to those of known T2 RNase structures from plants, while, in contrast, the external loop regions show distinct structural differences. The catalytic features of RNase T2 in presence of bivalent cations were analyzed and the structural consequences of known clinical mutations were investigated. Our data provide further insight into the function of human RNase T2 and may prove useful in understanding its mode of action independent of its enzymatic activity.
Collapse
Affiliation(s)
- Andrea Thorn
- Department of Structural Chemistry, University of Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|