1
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
ctDNA Is Useful to Detect Mutations at Codon 641 of Exon 16 of EZH2, a Biomarker for Relapse in Patients with Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14194650. [PMID: 36230571 PMCID: PMC9563768 DOI: 10.3390/cancers14194650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary It is well known that epigenetic modifications and proteins involved in this process are important in the biogenesis of diffuse large B-cell lymphoma. In this sense, we decided to analyze the EZH2 mutations, which are frequent in this neoplasm, using ctDNA to demonstrate the utility of this tool for searching these mutations. The importance of the study of this gene is due to its role in the biogenesis of lymphomas and also because there are selective inhibitors targeting EZH2. This targeted therapy could be particularly effective in patients with activating mutations in EZH2, remarking the importance of its detection. Abstract (1) Background: The epigenetic regulator EZH2 is a subunit of the polycomb repressive complex 2 (PRC2), and methylates H3K27, resulting in transcriptional silencing. It has a critical role in lymphocyte differentiation within the lymph node. Therefore, mutations at this level are implicated in lymphomagenesis. In fact, the mutation at the Y641 amino acid in the EZH2 gene is mutated in up to 40% of B-cell lymphomas. (2) Methods: We compared the presence of exon 16 EZH2 mutations in tumor samples and ctDNA in a prospective trial. These mutations were determined by Sanger sequencing and ddPCR. (3) Results: One hundred and thirty-eight cases were included. Ninety-eight were germinal center, and twenty had EZH2 mutations. Mean follow-up (IQR 25–75) was 23 (7–42) months. The tumor samples were considered the standard of reference. Considering the results of the mutation in ctDNA by Sanger sequencing, the sensibility (Se) and specificity (Sp) were 52% and 99%, respectively. After adding the droplet digital PCR (ddPCR) analysis, the Se and Sp increased to 95% and 100%, respectively. After bivariate analysis, only the presence of double-hit lymphoma (p = 0.04) or EZH2 mutations were associated with relapse. The median Progression free survival (PFS) (95% interval confidence) was 27.7 (95% IC: 14–40) vs. 44.1 (95% IC: 40–47.6) months for the mutated vs. wild-type (wt) patients. (4) Conclusions: The ctDNA is useful for analyzing EZH2 mutations, which have an impact on PFS.
Collapse
|
3
|
Immunohistochemical loss of enhancer of Zeste Homolog 2 (EZH2) protein expression correlates with EZH2 alterations and portends a worse outcome in myelodysplastic syndromes. Mod Pathol 2022; 35:1212-1219. [PMID: 35504958 DOI: 10.1038/s41379-022-01074-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
EZH2 coding mutation (EZH2MUT), resulting in loss-of-function, is an independent predictor of overall survival in MDS. EZH2 function can be altered by other mechanisms including copy number changes, and mutations in other genes and non-coding regions of EZH2. Assessment of EZH2 protein can identify alterations of EZH2 function missed by mutation assessment alone. Precise evaluation of EZH2 function and gene-protein correlation in clinical MDS cohorts is important in the context of upcoming targeted therapies aimed to restore EZH2 function. In this study, we evaluated the clinicopathologic characteristics of newly diagnosed MDS patients with EZH2MUT and correlated the findings with protein expression using immunohistochemistry. There were 40 (~6%) EZH2MUT MDS [33 men, seven women; median age 74 years (range, 55-90)]. EZH2 mutations spanned the entire coding region. Majority had dominant EZH2 clone [median VAF, 30% (1-92)], frequently co-occurring with co-dominant TET2 (38%) and sub-clonal ASXL1 (55%) and RUNX1 (43%) mutations. EZH2MUT MDS showed frequent loss-of-expression compared to EZH2WT (69% vs. 27%, p = 0.001). Interestingly, NINE (23%) EZH2WT MDS also showed loss-of-expression. EZH2MUT and loss-of-expression significantly associated with male predominance and chr(7) loss. Further, only EZH2 loss-of-expression patients showed significantly lower platelet counts, a trend for higher BM blast% and R-IPSS scores. Over a 14-month median follow-up, both EZH2MUT (p = 0.027) and loss-of-expression (p = 0.0063) correlated with poor survival, independent of R-IPSS, age and gender. When analyzed together, loss-of-expression showed a stronger correlation than mutation (p = 0.061 vs. p = 0.43). In conclusion, immunohistochemical assessment of EZH2 protein, alongside mutation, is important for prognostic workup of MDS.
Collapse
|
4
|
Mamgain G, Naithani M, Patra P, Mamgain M, Morang S, Nayak J, Kumar K, Singh S, Bakliwal A, Rajoreya A, Vaniyath S, Chattopadhyay D, Chetia R, Gupta A, Dhingra G, Sundriyal D, Nath UK. Next-Generation Sequencing Highlights of Diffuse Large B-cell Lymphoma in a Tertiary Care Hospital in North India. Cureus 2022; 14:e28241. [PMID: 36158348 PMCID: PMC9489829 DOI: 10.7759/cureus.28241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Next-generation sequencing (NGS) elucidates the diffuse large B-cell lymphoma (DLBCL) genetic characteristics by finding recurrent and novel somatic mutations. This observational study attempted to create an NGS panel with a focus on identifying novel somatic mutations which could have potential clinical and therapeutic implications. This panel was created to look for mutations in 133 genes chosen on basis of a literature review and it was used to sequence the tumor DNA of 20 DLBCL patients after a centralized histopathologic review. Methods: The study included 20 patients having DLBCL. The quality and quantity of tumor cells were accessed by H&E staining and correlated with histopathology and Immunohistochemistry (IHC) status. Patients were grouped as ABC (activated B-cell), PMBL (primary mediastinal large B-cell lymphoma), and other or unclassified subtypes. The lymphoma panel of 133 was designed on targeted sequencing of multiple genes for the coding regions through NGS. The libraries were prepared and sequenced using the Illumina platform. The alignment of obtained sequences was performed using Burrows-Wheeler Aligner and identification of somatic mutations was done using LoFreq (version 2) variant caller. The mutations were annotated using an annotation pipeline (VariMAT). Previously published literature and databases were used for the annotation of clinically relevant mutations. The common variants were filtered for reporting based on the presence in various population databases (1000G, ExAC, EVS, 1000Japanese, dbSNP, UK10K, MedVarDb). A custom read-depth-based algorithm was used to determine CNV (Copy Number Variants) from targeted sequencing experiments. Rare CNVs were detected using a comparison of the test data read-depths with the matched reference dataset. Reportable mutations were prioritized and prepared based on AMP-ASCO-CAP (Association for Molecular Pathology-American Society of Clinical Oncology-College of American Pathologists), WHO guidelines, and also based on annotation metrics from OncoMD (a knowledge base of genomic alterations). Results: The informativity of the panel was 95 percent. NOTCH 1 was the most frequently mutated gene in 16.1% of patients followed by 12.9% who had ARID1A mutations. MYD88 and TP53 mutations were detected in 9.6% of the patient while 6.4% of patients had CSF3R mutations. NOTCH 1 and TP 53 are the most frequently reported gene in the middle age group (40-60). Mutation in MYD88 is reported in every age group. MYD88 (51%) is the most common mutation in ABC subtypes of DLBCL, followed by NOTCH 1 (44%) and SOCS 1 (33%) according to our findings. NOTCH 1 mutations are frequent in ABC and PMBL subtypes. Closer investigation reveals missense mutation is the most frequent mutation observed in the total cohort targeting 68.4% followed by frameshift deletion reported in 26.3%. Six novel variants have been discovered in this study. Conclusions: This study demonstrates the high yield of information in DLBCL using the NGS Lymphoma panel. Results also highlight the molecular heterogeneity of DLBCL subtypes which indicates the need for further studies to make the results of the NGS more clinically relevant.
Collapse
|
5
|
H3K27m3 overexpression as a new, BCL2 independent diagnostic tool in follicular and cutaneous follicle center lymphomas. Virchows Arch 2022; 481:489-497. [PMID: 35661922 PMCID: PMC9485181 DOI: 10.1007/s00428-022-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022]
Abstract
Approximately 15% of follicular lymphomas (FL) lack overexpression of BCL2 and the underlying translocation t(14;18). These cases can be diagnostically challenging, especially regarding follicular hyperplasia (FH). In a subset of FL, mutations in genes encoding for epigenetic modifiers, such as the histone-lysine N-methyltransferase EZH2 (enhancer of zeste homolog 2), were found, which might be used diagnostically. These molecular alterations can lead to an increased tri-methylation of histone H3 at position lysine 27 (H3K27m3) that, in turn, can be visualized immunohistochemically. The aim of this study was to analyze the expression of H3K27m3 in FL, primary cutaneous follicle center lymphomas (PCFCL), and pediatric-type FL (PTFL) in order to investigate its value in the differential diagnosis to FH and other B cell lymphomas and to correlate it to BCL2 expression and the presence of t(14;18). Additionally, the mutational profile of selected cases was considered to address H3K27m3’s potential use as a surrogate parameter for mutations in genes encoding for epigenetic modifiers. Eighty-nine percent of FL and 100% of PCFCL cases overexpressed H3K27m3, independently of BCL2, EZH2, and the presence of mutations. In contrast, 95% of FH and 100% of PTFL cases lacked H3K27m3 overexpression. Other B cell lymphomas considered for differential diagnosis also showed overexpression of H3K27m3 in the majority of cases. In summary, overexpression of H3K27m3 can serve as a new, BCL2 independent marker in the differential diagnosis of FL and PCFCL, but not PTFL, to FH, while being not of help in the differential diagnosis of FL to other B cell lymphomas.
Collapse
|
6
|
Inhibition of the deubiquitinating enzyme USP47 as a novel targeted therapy for hematologic malignancies expressing mutant EZH2. Leukemia 2022; 36:1048-1057. [PMID: 35034955 DOI: 10.1038/s41375-021-01494-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Activating mutations in EZH2, the catalytic component of PRC2, promote cell proliferation, tumorigenesis, and metastasis through enzymatic or non-enzymatic activity. The EZH2-Y641 gain-of-function mutation is one of the most significant in diffuse large B-cell lymphoma (DLBCL). Although EZH2 kinase inhibitors, such as EPZ-6438, provide clinical benefit, certain cancer cells are resistant to the enzymatic inhibition of EZH2 because of the inability to functionally target mutant EZH2, or because of cells' dependence on the non-histone methyltransferase activity of EZH2. Consequently, destroying mutant EZH2 protein may be more effective in targeting EZH2 mutant cancers that are dependent on the non-catalytic activity of EZH2. Here, using extensive selectivity profiling, combined with genetic and animal model studies, we identified USP47 as a novel regulator of mutant EZH2. Inhibition of USP47 would be anticipated to block the function of mutated EZH2 through induction of EZH2 degradation by promoting its ubiquitination. Moreover, targeting of USP47 leads to death of mutant EZH2-positive cells in vitro and in vivo. Taken together, we propose targeting USP47 with a small molecule inhibitor as a novel potential therapy for DLBCL and other hematologic malignancies characterized by mutant EZH2 expression.
Collapse
|
7
|
Prognostic Value of Histone Modifying Enzyme EZH2 in RCHOP-Treated Diffuse Large B-Cell Lymphoma and High Grade B-Cell Lymphoma. J Pers Med 2021; 11:jpm11121384. [PMID: 34945856 PMCID: PMC8703891 DOI: 10.3390/jpm11121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Background: DLBCL represent a heterogeneous group of aggressive diseases. High grade B-cell lymphomas (HGBCL) were recently individualized from DLBCL as a discrete diagnostic entity due to their worse prognosis. Currently, although most patients are successfully treated with RCHOP regimens, 1/3 will either not respond or ultimately relapse. Alterations in histone modifying enzymes have emerged as the most common alterations in DLBCL, but their role as prognostic biomarkers is controversial. We aimed to ascertain the prognostic value of EZH2 immunoexpression in RCHOP-treated DLBCL and HGBCL. Results: We performed a retrospective cohort study including 125 patients with RCHOP-treated DLBCL or HGBCL. EZH2 expression levels did not differ between diagnostic groups or between DLBCL-NOS molecular groups. We found no associations between EZH2 expression levels and outcome, including in the subgroup analysis (GC versus non-GC). Nonetheless, EZH2/BCL2 co-expression was significantly associated with worse outcome (event free survival and overall survival). Conclusion: Although EZH2 mutations are almost exclusively found in GC-DLBCL, we found similar EZH2 expression levels in both DLBCL-NOS molecular groups, suggesting non-mutational mechanisms of EZH2 deregulation. These findings suggest that the use of EZH2 antagonists might be extended to non-GC DLBCL patients with clinical benefit. EZH2/BCL2 co-expression was associated with a worse outcome.
Collapse
|
8
|
Lopez-Santillan M, Lopez-Lopez E, Alvarez-Gonzalez P, Martinez G, Arzuaga-Mendez J, Ruiz-Diaz I, Guerra-Merino I, Gutierrez-Camino A, Martin-Guerrero I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit Rev Oncol Hematol 2021; 165:103430. [PMID: 34339834 DOI: 10.1016/j.critrevonc.2021.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/05/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), is a highly heterogeneous and aggressive disease. Regardless of this heterogeneity, all patients receive the same first-line therapy, which fails in 30-40 % of patients, who are either refractory or relapse after remission. With the aim of stratifying patients to improve treatment outcome, different clinical and genetic biomarkers have been studied. The present systematic review aimed to identify somatic mutations that could serve as prognosis biomarkers or as therapeutic target mutations in DLBCL. Regarding their role as prognostic markers, mutations in CD58 and TP53 seem the most promising predictors of poor outcome although the combination of different alterations and other prognostic factors could be a more powerful strategy. On the other hand, different approaches regarding targeted therapy have been proposed. Therefore, mutational analysis could help guide treatment choice in DLBCL yet further studies and clinical trials are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Medical Oncology Service, Basurto University Hospital, Avenida De Montevideo, 18, 48013, Bilbao, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain
| | - Paula Alvarez-Gonzalez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Garazi Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Hematologic Neoplasm Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, Barakaldo, Spain
| | - Irune Ruiz-Diaz
- Pathology Department, Donostia University Hospital, Paseo Doctor Begiristain, 109, 20014, San Sebastián, Spain
| | - Isabel Guerra-Merino
- Pathology Department, Araba University Hospital, Calle Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Division of Hematology-Oncology, CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Canada
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain.
| |
Collapse
|
9
|
Abstract
The technique of cell-free DNA (cfDNA) analysis, also called liquid biopsy, has been developed over the past several years to serve as a minimal residual disease tool, as has already been done with reliability and robustness in acute leukemias. This technique has important theoretical advantages, including the simplicity of acquiring blood samples, which can easily be repeated over time, its noninvasive and quantitative nature, which provides results consistent with the results obtained from tumor genomic DNA, and its speed and low cost. cfDNA analysis, as the leading tool to quantify somatic mutations, is a major technological leap in the noninvasive management of lymphomas. This technology may empower monitoring and treatment adjustment in real time and enable the quick detection of refractory lymphomas and resistance to routine therapies. Here, we summarize the results that have established the clinical relevance of cfDNA in diagnostic and prognostic stratification and the monitoring of lymphoma treatments.
Collapse
Affiliation(s)
- Vincent Camus
- Department of Hematology, Centre Henri Becquerel, 1 Rue D'Amiens, 76038 Rouen Cedex, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, 1 Rue D'Amiens, 76038 Rouen Cedex, France
| |
Collapse
|
10
|
Dubois S, Tesson B, Mareschal S, Viailly PJ, Bohers E, Ruminy P, Etancelin P, Peyrouze P, Copie-Bergman C, Fabiani B, Petrella T, Jais JP, Haioun C, Salles G, Molina TJ, Leroy K, Tilly H, Jardin F. Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles. EBioMedicine 2019; 48:58-69. [PMID: 31648986 PMCID: PMC6838437 DOI: 10.1016/j.ebiom.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. Methods 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. Findings ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. Interpretation The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Sylvain Mareschal
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Pierre-Julien Viailly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France; Normandie Univ, EdN BISE 497, Normandy, France
| | - Elodie Bohers
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pascaline Etancelin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Christiane Copie-Bergman
- Department of Pathology, Henri Mondor Hospital, APHP, INSERM U955, Université Paris-Est, Créteil, France
| | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | - Tony Petrella
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada
| | - Jean-Philippe Jais
- Institut Imagine HGID, Inserm U1163, AP-HP Hôpital Necker, Université Paris Descartes, Paris, France
| | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Thierry Jo Molina
- Pathology, AP-HP, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Karen Leroy
- Inserm U1016 - CNRS UMR8104 - Université Paris Descartes Groupe Hospitalier Cochin, Paris, France
| | - Hervé Tilly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Fabrice Jardin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Diffuse large B cell lymphoma (DLBCL) is characterized by clinical heterogeneity that is not fully accounted for by pathologic features. Furthermore, real-time treatment modifications and detection of relapse are typically guided by radiographic imaging modalities which are imperfect. Here, we review the potential utility of minimal residual disease (MRD) assessment for informing treatment decisions and detecting relapse. RECENT FINDINGS The most promising method of MRD detection is based on analysis of circulating tumor DNA in the peripheral blood of patients with DLBCL. This approach can predict outcomes and response to treatment as well as detect relapse prior to clinical signs of recurrent disease. While some studies of MRD in DLBCL have been in the prospective setting, the ability of this technology to alter clinical outcomes is currently unknown. MRD detection provides a non-invasive way to gather information about DLBCL at various time points throughout the disease course. Its role is evolving and should be incorporated into prospective studies in order to demonstrate an impact on patient outcomes.
Collapse
|
12
|
Metzger ML, Mauz-Körholz C. Epidemiology, outcome, targeted agents and immunotherapy in adolescent and young adult non-Hodgkin and Hodgkin lymphoma. Br J Haematol 2019; 185:1142-1157. [PMID: 30729493 DOI: 10.1111/bjh.15789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidemiology, outcome and targeted immunotherapy in adolescent and young adult non-Hodgkin and Hodgkin lymphoma were discussed during the 6th International Symposium on Childhood, Adolescent and Young Adult Non-Hodgkin Lymphoma September 26th-29th 2018 in Rotterdam, the Netherlands. This review summarizes some of those presentations, as well as other current and novel antibody therapy, immune check-point inhibitors, chimeric antigen receptor T cells, cancer vaccines and cytotoxic T lymphocyte therapy.
Collapse
Affiliation(s)
- Monika L Metzger
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christine Mauz-Körholz
- Pädiatrische Hämatologie und Onkologie, Justus-Liebig-Universität Gießen and Medical Faculty of the Martin-Luther University of Halle, Germany
| |
Collapse
|
13
|
Cyclin D1-positive Mediastinal Large B-Cell Lymphoma With Copy Number Gains of CCND1 Gene. Am J Surg Pathol 2019; 43:110-120. [DOI: 10.1097/pas.0000000000001154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Wu FT, Lu L, Xu W, Li JY. Circulating tumor DNA: clinical roles in diffuse large B cell lymphoma. Ann Hematol 2018; 98:255-269. [PMID: 30368587 DOI: 10.1007/s00277-018-3529-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma (NHL), is a clinically and molecularly heterogeneous malignant lymphoproliferative disease. In the era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic option, and monitoring disease relapse. However, lacking a circulating disease with most DLBCL cases hampers the acquisition of tumor genomic landscapes and disease dynamics. Circulating tumor DNA (ctDNA) is a novel noninvasive, real-time, and tumor-specific biomarker, reliably reflecting the comprehensive tumor genetic profiles, thus holds great promise in individualized medicine, including precise diagnosis and prognosis, response monitoring, and relapse detection of DLBCL. Here, we reviewed the recent advances of ctDNA in DLBCL and discussed its clinical values at different time points during the disease courses by comparing with the current routine methods in clinical practice. Collectively, we anticipated that ctDNA will ultimately be integrated into the management of DLBCL to facilitate precision medicine.
Collapse
Affiliation(s)
- Fang-Tian Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Luo Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
15
|
Mauz-Körholz C, Ströter N, Baumann J, Botzen A, Körholz K, Körholz D. Pharmacotherapeutic Management of Pediatric Lymphoma. Paediatr Drugs 2018; 20:43-57. [PMID: 29127674 DOI: 10.1007/s40272-017-0265-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) comprise approximately 15% of all childhood malignancies. Cure rates for both lymphoma entities have evolved tremendously during the last couple of decades, raising the 5-year survival rates to almost 100% for HL and to 85% for NHL. The mainstay therapy for both malignancies is still chemotherapy-with different regimens recommended for different types of disease. In HL, combined modality treatment, i.e., chemotherapy followed by radiotherapy, has long been the standard regimen. In order to reduce long-term side effects, such as second malignancies, most major pediatric HL consortia have studied response-based radiotherapy reduction strategies over the last 3 decades. For recurrent disease, high-dose chemotherapy followed by an autologous or an allogeneic hematopoietic stem-cell transplant is an option. No targeted agents have yet gained regulatory approval for use in pediatric patients with lymphoma. For adult lymphoma patients, the CD20 antibody rituximab and the CD30 antibody-drug conjugate brentuximab vedotin are targeted agents used regularly in first- and second-line treatment regimens. More recently, immune checkpoint inhibitors, phosphatidyl-inositol-3-kinase inhibitors, and Bruton's tyrosine kinase inhibitors appear to be very promising new treatment options in adult lymphoma. Here, we discuss the current experience with these types of agents in pediatric lymphoma patients.
Collapse
Affiliation(s)
- Christine Mauz-Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany. .,Medical Faculty of the Martin-Luther-University of Halle-Wittenberg, Halle, Germany.
| | - Natascha Ströter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Julia Baumann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Ante Botzen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Katharina Körholz
- Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research center (DKFZ), Heidelberg, Germany
| | - Dieter Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| |
Collapse
|
16
|
Camus V, Bohers E, Dubois S, Tilly H, Jardin F. Circulating tumor DNA: an important tool in precision medicine for lymphoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2018.1412798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vincent Camus
- UMR INSERM U1245 and Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Elodie Bohers
- UMR INSERM U1245 and Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Sydney Dubois
- UMR INSERM U1245 and Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Hervé Tilly
- UMR INSERM U1245 and Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Fabrice Jardin
- UMR INSERM U1245 and Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| |
Collapse
|
17
|
Zhou Z, Fang Q, Ma D, Zhe N, Ren M, Cheng B, Li P, Liu P, Lin X, Tang S, Hu X, Liao Y, Zhang Y, Lu T, Wang J. Silencing heme oxygenase-1 increases the sensitivity of ABC-DLBCL cells to histone deacetylase inhibitor in vitro and in vivo. Oncotarget 2017; 8:78480-78495. [PMID: 29108243 PMCID: PMC5667976 DOI: 10.18632/oncotarget.19652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/23/2017] [Indexed: 01/04/2023] Open
Abstract
Heme oxygenase-1 (HO-1) can promote tumor growth and reinforce the resistance of diffuse large B-cell lymphoma (DLBCL) cells to chemotherapeutic drug vincristine. We herein found that HO-1 protein expression was higher in high-risk DLBCL patients than in low-risk ones. Silencing HO-1 gene expression resisted vorinostat-induced apoptosis and arrested cell cycle in the G0/G1 phase of LY-10 cells. Western blot, co-immunoprecipitation and chromatin immunoprecipitation assays confirmed that the possible mechanisms may be increased cleaved caspase-3 protein expression, decreased phospho-histone deacetylase 3 protein expression, and activated histone acetylation of P27Kip1 promoter. Moreover, silencing HO-1 gene expression enhanced vorinostat-induced tumor cell apoptosis, prolonged survival time and promoted P27Kip1 protein expression in a xenograft mouse model. In conclusion, HO-1 is a potential therapeutic target of DLBCL. The findings provide a valuable preclinical evidence for sensitizing DLBCL patients with poor prognosis to histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China.,Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Nana Zhe
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Mei Ren
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Bingqing Cheng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Peifan Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Xiaojing Lin
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Sishi Tang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Xiuying Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Yudan Liao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Yaming Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treatment Centre of Guizhou Province, Guiyang 550004, China.,Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| |
Collapse
|
18
|
Sujobert P, Salles G, Bachy E. Molecular Classification of Diffuse Large B-cell Lymphoma: What Is Clinically Relevant? Hematol Oncol Clin North Am 2017; 30:1163-1177. [PMID: 27888873 DOI: 10.1016/j.hoc.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Major progress in the understanding of diffuse large B-cell lymphoma (DLBCL) biology has been made in the last decade. Many specific compounds have now entered early phase clinical trials. However, further efforts are needed to find an accurate, fast, reproducible, and affordable technique to translate DLBCL subtype determination by gene expression profiles into clinical application. This article discusses the advantages and drawbacks of the currently available techniques of DLBCL subtype determination as well as important prognostic implications related to the cell of origin. Furthermore, the article provides a schematic description of how molecularly defined DLBCL subtypes could guide tailored therapy.
Collapse
Affiliation(s)
- Pierre Sujobert
- Laboratory of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France; Université Claude Bernard Lyon1, Université de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS 5286, Lyon, France
| | - Gilles Salles
- Université Claude Bernard Lyon1, Université de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS 5286, Lyon, France; Department of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France.
| | - Emmanuel Bachy
- Université Claude Bernard Lyon1, Université de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS 5286, Lyon, France; Department of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France
| |
Collapse
|
19
|
Camus V, Jardin F, Tilly H. The value of liquid biopsy in diagnosis and monitoring of diffuse large b-cell lymphoma: recent developments and future potential. Expert Rev Mol Diagn 2017; 17:557-566. [DOI: 10.1080/14737159.2017.1319765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
EZH2 alterations in follicular lymphoma: biological and clinical correlations. Blood Cancer J 2017; 7:e555. [PMID: 28430172 PMCID: PMC5436075 DOI: 10.1038/bcj.2017.32] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
The histone methyltransferase EZH2 has an essential role in the development of follicular lymphoma (FL). Recurrent gain-of-function mutations in EZH2 have been described in 25% of FL patients and induce aberrant methylation of histone H3 lysine 27 (H3K27). We evaluated the role of EZH2 genomic gains in FL biology. Using RNA sequencing, Sanger sequencing and SNP-arrays, the mutation status, copy-number and gene-expression profiles of EZH2 were assessed in a cohort of 159 FL patients from the PRIMA trial. Immunohistochemical (IHC) EZH2 expression (n=55) and H3K27 methylation (n=63) profiles were also evaluated. In total, 37% of patients (59/159) harbored an alteration in the EZH2 gene (mutation n=46, gain n=23). Both types of alterations were associated with highly similar transcriptional changes, with increased proliferation programs. An H3K27me3/me2 IHC score fully distinguished mutated from wild-type samples, showing its applicability as surrogate for EZH2 mutation analysis. However, this score did not predict the presence of gains at the EZH2 locus. The presence of an EZH2 genetic alteration was an independent factor associated with a longer progression-free survival (hazard ratio 0.58, 95% confidence interval 0.36–0.93, P=0.025). We propose that the copy-number status of EZH2 should also be considered when evaluating patient stratification and selecting patients for EZH2 inhibitor-targeted therapies.
Collapse
|
21
|
Rizzo D, Viailly PJ, Mareschal S, Bohers E, Picquenot JM, Penther D, Dubois S, Marchand V, Bertrand P, Maingonnat C, Etancelin P, Feuillard J, Bastard C, Tilly H, Jardin F, Ruminy P. Oncogenic events rather than antigen selection pressure may be the main driving forces for relapse in diffuse large B-cell lymphomas. Am J Hematol 2017; 92:68-76. [PMID: 27737507 DOI: 10.1002/ajh.24584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023]
Abstract
Little is known on the phylogenetic relationship between diagnostic and relapse clones of diffuse large B-cell lymphoma (DLBCL). We applied high throughput sequencing (HTS) of the VDJ locus of Immunoglobulin heavy chain (IGHV) on 14 DLBCL patients with serial samples, including tumor biopsies and/or peripheral blood mononuclear cells (PBMC). Phylogenetic data were consolidated with targeted sequencing and cytogenetics. Phylogeny clearly showed that DLBCL relapse could occur according either an early or a late divergent mode. These two modes of divergence were independent from the elapsed time between diagnosis and relapse. We found no significant features for antigen selection pressure in complementary determining region both at diagnosis and relapse for 9/12 pairs and a conserved negative selection pressure for the three remaining cases. Targeted HTS and conventional cytogenetics revealed a branched vs. linear evolution for 5/5 IGHV early divergent cases, but unexpected such "oncogenetic" branched evolution could be found in at least 2/7 IGHV late divergent cases. Thus, if BCR signaling is mandatory for DLBCL emergence, oncogenetic events under chemotherapy selection pressure may be the main driving forces at relapse. Finally, circulating subclones with divergent IGHV somatic hypermutations patterns from initial biopsy could be detected in PBMC at diagnosis for 4/6 patients and, for two of them, at least one was similar to the ones found at relapse. This study highlights that oncogenetic intraclonal diversity of DLBCL should be evaluated beyond the scope a single biopsy and represents a rationale for future investigations using peripheral blood for lymphoid malignancies genotyping. Am. J. Hematol. 92:68-76, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Rizzo
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of biological hematology; Centre Hospitalier Universitaire Dupuytren; Limoges France
| | - Pierre-Julien Viailly
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Sylvain Mareschal
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Elodie Bohers
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Jean-Michel Picquenot
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of pathology; Centre Henri Becquerel; Rouen France
| | - Dominique Penther
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of oncology genetics; Centre Henri Becquerel; Rouen France
| | - Sydney Dubois
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Vinciane Marchand
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Philippe Bertrand
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Catherine Maingonnat
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| | - Pascaline Etancelin
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of oncology genetics; Centre Henri Becquerel; Rouen France
| | - Jean Feuillard
- Department of biological hematology; Centre Hospitalier Universitaire Dupuytren; Limoges France
- UMR CNRS 7276, University of Limoges; Limoges France
| | - Christian Bastard
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of oncology genetics; Centre Henri Becquerel; Rouen France
| | - Hervé Tilly
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of clinical hematology; Centre Henri Becquerel; Rouen France
| | - Fabrice Jardin
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
- Department of clinical hematology; Centre Henri Becquerel; Rouen France
| | - Philippe Ruminy
- INSERM U918, Centre Henri Becquerel, Institute for Research and Innovation in Biomedicine, University of Rouen; Rouen France
| |
Collapse
|
22
|
Herviou L, Cavalli G, Cartron G, Klein B, Moreaux J. EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget 2016; 7:2284-96. [PMID: 26497210 PMCID: PMC4823035 DOI: 10.18632/oncotarget.6198] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb repressive complex 2, inhibits gene expression through methylation on lysine 27 of histone H3. EZH2 regulates normal hematopoietic stem cell self-renewal and differentiation. EZH2 also controls normal B cell differentiation. EZH2 deregulation has been described in many cancer types including hematological malignancies. Specific small molecules have been recently developed to exploit the oncogenic addiction of tumor cells to EZH2. Their therapeutic potential is currently under evaluation. This review summarizes the roles of EZH2 in normal and pathologic hematological processes and recent advances in the development of EZH2 inhibitors for the personalized treatment of patients with hematological malignancies.
Collapse
Affiliation(s)
- Laurie Herviou
- Institute of Human Genetics, CNRS UPR1142, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142, Montpellier, France
| | - Guillaume Cartron
- University of Montpellier 1, UFR de Médecine, Montpellier, France.,Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Bernard Klein
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS UPR1142, Montpellier, France.,University of Montpellier 1, UFR de Médecine, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS UPR1142, Montpellier, France.,University of Montpellier 1, UFR de Médecine, Montpellier, France
| |
Collapse
|
23
|
Dubois S, Viailly PJ, Bohers E, Bertrand P, Ruminy P, Marchand V, Maingonnat C, Mareschal S, Picquenot JM, Penther D, Jais JP, Tesson B, Peyrouze P, Figeac M, Desmots F, Fest T, Haioun C, Lamy T, Copie-Bergman C, Fabiani B, Delarue R, Peyrade F, André M, Ketterer N, Leroy K, Salles G, Molina TJ, Tilly H, Jardin F. Biological and Clinical Relevance of Associated Genomic Alterations in MYD88 L265P and non-L265P-Mutated Diffuse Large B-Cell Lymphoma: Analysis of 361 Cases. Clin Cancer Res 2016; 23:2232-2244. [PMID: 27923841 DOI: 10.1158/1078-0432.ccr-16-1922] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/01/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Purpose:MYD88 mutations, notably the recurrent gain-of-function L265P variant, are a distinguishing feature of activated B-cell like (ABC) diffuse large B-cell lymphoma (DLBCL), leading to constitutive NFκB pathway activation. The aim of this study was to examine the distinct genomic profiles of MYD88-mutant DLBCL, notably according to the presence of the L265P or other non-L265P MYD88 variants.Experimental Design: A cohort of 361 DLBCL cases (94 MYD88 mutant and 267 MYD88 wild-type) was submitted to next-generation sequencing (NGS) focusing on 34 genes to analyze associated mutations and copy number variations, as well as gene expression profiling, and clinical and prognostic analyses.Results: Importantly, we highlighted different genomic profiles for MYD88 L265P and MYD88 non-L265P-mutant DLBCL, shedding light on their divergent backgrounds. Clustering analysis also segregated subgroups according to associated genetic alterations among patients with the same MYD88 mutation. We showed that associated CD79B and MYD88 L265P mutations act synergistically to increase NFκB pathway activation, although the majority of MYD88 L265P-mutant cases harbors downstream NFκB alterations, which can predict BTK inhibitor resistance. Finally, although the MYD88 L265P variant was not an independent prognostic factor in ABC DLBCL, associated CD79B mutations significantly improved the survival of MYD88 L265P-mutant ABC DLBCL in our cohort.Conclusions: This study highlights the relative heterogeneity of MYD88-mutant DLBCL, adding to the field's knowledge of the theranostic importance of MYD88 mutations, but also of associated alterations, emphasizing the usefulness of genomic profiling to best stratify patients for targeted therapy. Clin Cancer Res; 23(9); 2232-44. ©2016 AACR.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pierre-Julien Viailly
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.,LITIS EA 4108, Normandie Université, Rouen, France
| | - Elodie Bohers
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Bertrand
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Vinciane Marchand
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Sylvain Mareschal
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Dominique Penther
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | | | | | | | | | | | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | | | | | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | - Richard Delarue
- Department of Hematology, AP-HP Hôpital Necker, Paris, France
| | | | - Marc André
- CHU Dinant Godinne, UcL Namur, Yvoir, Belgium
| | | | - Karen Leroy
- Inserm U955 Team 09, AP-HP Hôpital Henri Mondor, Créteil, France
| | | | - Thierry J Molina
- Pathology, AP-HP Hôpital Necker, Université Paris Descartes, Paris, France
| | - Hervé Tilly
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Fabrice Jardin
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| |
Collapse
|
24
|
Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S, Bertrand P, Viailly PJ, Ruminy P, Maingonnat C, Lemasle E, Stamatoullas A, Picquenot JM, Cornic M, Beaussire L, Bastard C, Frebourg T, Tilly H, Jardin F. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 57:2171-9. [PMID: 26883583 DOI: 10.3109/10428194.2016.1139703] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy harboring frequent targetable activating somatic mutations. Emerging evidence suggests that circulating cell-free DNA (cfDNA) can be used to detect somatic variants in DLBCL using Next-Generation Sequencing (NGS) experiments. In this proof-of-concept study, we chose to develop simple and valuable digital PCR (dPCR) assays for the detection of recurrent exportin-1 (XPO1) E571K, EZH2 Y641N, and MYD88 L265P mutations in DLBCL patients, thereby identifying patients most likely to potentially benefit from targeted therapies. We demonstrated that our dPCR assays were sufficiently sensitive to detect rare XPO1, EZH2, and MYD88 mutations in plasma cfDNA, with a sensitivity of 0.05%. cfDNA somatic mutation detection by dPCR seems to be a promising technique in the management of DLBCL, in addition to NGS experiments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- DNA, Neoplasm/blood
- DNA, Neoplasm/genetics
- Female
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Karyopherins/genetics
- Liquid Biopsy
- Lymphoma, Large B-Cell, Diffuse/diagnostic imaging
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Mutation
- Myeloid Differentiation Factor 88/genetics
- Neoplasm Staging
- Positron-Emission Tomography
- Real-Time Polymerase Chain Reaction
- Receptors, Cytoplasmic and Nuclear/genetics
- Recurrence
- Exportin 1 Protein
Collapse
Affiliation(s)
- Vincent Camus
- a Department of Hematology , Centre Henri Becquerel , Rouen , France
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | | | - Elodie Bohers
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | - Sydney Dubois
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | - Sylvain Mareschal
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | - Philippe Bertrand
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | | | - Philippe Ruminy
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | | | - Emilie Lemasle
- a Department of Hematology , Centre Henri Becquerel , Rouen , France
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | - Aspasia Stamatoullas
- a Department of Hematology , Centre Henri Becquerel , Rouen , France
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | | | - Marie Cornic
- d Department of Pathology , Centre Henri Becquerel , Rouen , France
| | | | - Christian Bastard
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
- e Department of Genetic Oncology , Centre Henri Becquerel , Rouen , France
| | | | - Hervé Tilly
- a Department of Hematology , Centre Henri Becquerel , Rouen , France
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| | - Fabrice Jardin
- a Department of Hematology , Centre Henri Becquerel , Rouen , France
- b INSERM U918, Centre Henri Becquerel, University of Rouen , Rouen , France
| |
Collapse
|
25
|
Camus V, Stamatoullas A, Mareschal S, Viailly PJ, Sarafan-Vasseur N, Bohers E, Dubois S, Picquenot JM, Ruminy P, Maingonnat C, Bertrand P, Cornic M, Tallon-Simon V, Becker S, Veresezan L, Frebourg T, Vera P, Bastard C, Tilly H, Jardin F. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica 2016; 101:1094-101. [PMID: 27479820 PMCID: PMC5060026 DOI: 10.3324/haematol.2016.145102] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
Classical Hodgkin lymphoma is one of the most common lymphomas and shares clinical and genetic features with primary mediastinal B-cell lymphoma. In this retrospective study, we analyzed the recurrent hotspot mutation of the exportin 1 (XPO1, p.E571K) gene, previously identified in primary mediastinal B-cell lymphoma, in biopsies and plasma circulating cell-free DNA from patients with classical Hodgkin lymphoma using a highly sensitive digital PCR technique. A total of 94 patients were included in the present study. This widely expressed XPO1 E571K mutation is present in one quarter of classical Hodgkin lymphoma patients (24.2%). Mutated and wild-type classical Hodgkin lymphomas were similar regarding the main clinical features. Patients with a detectable XPO1 mutation at the end of treatment displayed a tendency toward shorter progression-free survival, as compared to patients with undetectable mutation in plasma cell-free DNA (2-year progression-free survival: 57.1%, 95% confidence interval: 30.1-100% versus 2-year progression-free survival: 90.5%, 95% confidence interval: 78.8-100%, respectively, P=0.0601). To conclude, the detection of the XPO1 E571K mutation in biopsy and plasma cell-free DNA by digital PCR may be used as a novel biomarker in classical Hodgkin lymphoma for both diagnosis and minimal residual disease, and pinpoints a crucial role of XPO1 in classical Hodgkin lymphoma pathogenesis. The detection of somatic mutation in the plasma cell-free DNA of patients represents a major technological advance in the context of liquid biopsies and noninvasive management of classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Vincent Camus
- Department of Hematology, Centre Henri Becquerel, Rouen, France INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Aspasia Stamatoullas
- Department of Hematology, Centre Henri Becquerel, Rouen, France INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Sylvain Mareschal
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | | | | | - Elodie Bohers
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Sydney Dubois
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Jean Michel Picquenot
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France Department of Pathology, Centre Henri Becquerel, Rouen, France
| | - Philippe Ruminy
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | | | - Philippe Bertrand
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Marie Cornic
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | | - Stéphanie Becker
- Department of Nuclear Medicine and Radiology, Centre Henri Becquerel and QuantIF (Litis EA4108 - FR CNRS 3638), Rouen, France
| | - Liana Veresezan
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | | - Pierre Vera
- Department of Nuclear Medicine and Radiology, Centre Henri Becquerel and QuantIF (Litis EA4108 - FR CNRS 3638), Rouen, France
| | - Christian Bastard
- INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France Department of Genetic Oncology, Centre Henri Becquerel, Rouen, France
| | - Hervé Tilly
- Department of Hematology, Centre Henri Becquerel, Rouen, France INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, Rouen, France INSERM U918, Centre Henri Becquerel, University of Rouen, Rouen, France
| |
Collapse
|
26
|
Dubois S, Viailly PJ, Mareschal S, Bohers E, Bertrand P, Ruminy P, Maingonnat C, Jais JP, Peyrouze P, Figeac M, Molina TJ, Desmots F, Fest T, Haioun C, Lamy T, Copie-Bergman C, Brière J, Petrella T, Canioni D, Fabiani B, Coiffier B, Delarue R, Peyrade F, Bosly A, André M, Ketterer N, Salles G, Tilly H, Leroy K, Jardin F. Next-Generation Sequencing in Diffuse Large B-Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study. Clin Cancer Res 2016; 22:2919-28. [PMID: 26819451 DOI: 10.1158/1078-0432.ccr-15-2305] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Next-generation sequencing (NGS) has detailed the genomic characterization of diffuse large B-cell lymphoma (DLBCL) by identifying recurrent somatic mutations. We set out to design a clinically feasible NGS panel focusing on genes whose mutations hold potential therapeutic impact. Furthermore, for the first time, we evaluated the prognostic value of these mutations in prospective clinical trials. EXPERIMENTAL DESIGN A Lymphopanel was designed to identify mutations in 34 genes, selected according to literature and a whole exome sequencing study of relapsed/refractory DLBCL patients. The tumor DNA of 215 patients with CD20(+)de novo DLBCL in the prospective, multicenter, and randomized LNH-03B LYSA clinical trials was sequenced to deep, uniform coverage with the Lymphopanel. Cell-of-origin molecular classification was obtained through gene expression profiling with HGU133+2.0 Affymetrix GeneChip arrays. RESULTS The Lymphopanel was informative for 96% of patients. A clear depiction of DLBCL subtype molecular heterogeneity was uncovered with the Lymphopanel, confirming that activated B-cell-like (ABC), germinal center B-cell like (GCB), and primary mediastinal B-cell lymphoma (PMBL) are frequently affected by mutations in NF-κB, epigenetic, and JAK-STAT pathways, respectively. Novel truncating immunity pathway, ITPKB, MFHAS1, and XPO1 mutations were identified as highly enriched in PMBL. Notably, TNFAIP3 and GNA13 mutations in ABC patients treated with R-CHOP were associated with significantly less favorable prognoses. CONCLUSIONS This study demonstrates the contribution of NGS with a consensus gene panel to personalized therapy in DLBCL, highlighting the molecular heterogeneity of subtypes and identifying somatic mutations with therapeutic and prognostic impact. Clin Cancer Res; 22(12); 2919-28. ©2016 AACRSee related commentary by Lim and Elenitoba-Johnson, p. 2829.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pierre-Julien Viailly
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France. LITIS EA 4108, Normandie Université, Rouen, France
| | - Sylvain Mareschal
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Elodie Bohers
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Bertrand
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | | | | | | | - Thierry J Molina
- Pathology, AP-HP, Hôpital Necker, Université Paris Descartes, Paris, France
| | | | | | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | | | | | - Josette Brière
- Inserm U728, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. Department of Pathology, AP-HP Hôpital Saint-Louis, Paris, France
| | - Tony Petrella
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada
| | | | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | | | - Richard Delarue
- Department of Hematology, AP-HP Hôpital Necker, Paris, France
| | | | - André Bosly
- CHU Dinant Godinne, UcL Namur, Yvoir, Belgium
| | - Marc André
- CHU Dinant Godinne, UcL Namur, Yvoir, Belgium
| | - Nicolas Ketterer
- Department of Oncology, Lausanne Hospital, Lausanne, Switzerland
| | | | - Hervé Tilly
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Karen Leroy
- Inserm U955 Team 09, AP-HP Hôpital Henri Mondor, Créteil, France
| | - Fabrice Jardin
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| |
Collapse
|
27
|
Jang SH, Lee JE, Oh MH, Lee JH, Cho HD, Kim KJ, Kim SY, Han SW, Kim HJ, Bae SB, Lee HJ. High EZH2 Protein Expression Is Associated with Poor Overall Survival in Patients with Luminal A Breast Cancer. J Breast Cancer 2016; 19:53-60. [PMID: 27066096 PMCID: PMC4822107 DOI: 10.4048/jbc.2016.19.1.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The enhancer of zeste homologue 2 (EZH2) is a catalytic subunit of the polycomb repressive complex 2, a highly conserved histone methyltransferase. EZH2 overexpression has been implicated in various malignancies, including breast cancer, where is associated with poor outcomes. This study aims to clarify nuclear EZH2 expression levels in breast cancers using immunohistochemistry (IHC) and correlate these findings with clinicopathologic variables, including prognostic significance. METHODS IHC was performed on tissue microarrays of 432 invasive ductal carcinoma (IDC) tumors. Associations between EZH2 expression, clinicopathologic characteristics, and molecular subtype were retrospectively analyzed. The relationship between EZH2 protein expression in normal breast tissue and ductal carcinoma in situ (DCIS) was also assessed. RESULTS High EZH2 expression was demonstrated in 215 of 432 tumors (49.8%). EZH2 was more frequently expressed in DCIS and IDC than in normal breast tissue (p=0.001). High EZH2 expression significantly correlated with high histologic grade (p<0.001), large tumor size (p=0.014), advanced pathologic stage (p=0.006), negative estrogen receptor status (p<0.001), positive human epidermal growth factor receptor 2 (HER2) status (p<0.001), high Ki-67 staining index (p<0.001), positive cytokeratin 5/6 status (p=0.003), positive epidermal growth factor receptor status (p<0.001), and positive p53 status (p<0.001). Based on molecular subtypes, high EZH2 expression was significantly associated with HER2-negative luminal B, HER2-positive luminal B, and HER2 type and triple-negative basal cancers (p<0.001). In patients with luminal A, there was a significant trend toward shorter overall survival for those with tumors having high EZH2 expression compared to those with tumors having low EZH2 expression (p=0.045). CONCLUSION EZH2 is frequently upregulated in breast malignancies, and it may play an important role in cancer development and progression. Furthermore, EZH2 may be a prognostic marker, especially in patients with luminal A cancer.
Collapse
Affiliation(s)
- Si-Hyong Jang
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Eun Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Deuk Cho
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kyung-Ju Kim
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Yong Kim
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sun Wook Han
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Han Jo Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Byung Bae
- Division of Hemato-Oncology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
28
|
Dubois S, Jardin F. The role of next-generation sequencing in understanding the genomic basis of diffuse large B cell lymphoma and advancing targeted therapies. Expert Rev Hematol 2016; 9:255-69. [PMID: 26652775 DOI: 10.1586/17474086.2016.1130616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Next Generation Sequencing (NGS) has redefined the genetic landscape of Diffuse Large B-Cell Lymphoma (DLBCL) by identifying recurrent somatic mutations. Importantly, in some cases these mutations impact potentially actionable targets, thus affording novel personalized therapy opportunities. At the forefront of today's precision therapy era, how to best incorporate NGS into daily clinical practice is of primordial concern, in order to tailor patient's treatment regimens according to their individual mutational profiles. With the advent of cell-free DNA sequencing, which provides a sensitive and less invasive means of monitoring DLBCL patients, the clinical feasibility of NGS has been greatly improved. This article reviews the current landscape of DLBCL mutations, as well as the targeted therapies developed to counter their effects, and discusses how best to utilize NGS data for treatment decision-making.
Collapse
Affiliation(s)
- Sydney Dubois
- a Inserm U918, Centre Henri Becquerel , Université de Rouen, IRIB , Rouen , France
| | - Fabrice Jardin
- a Inserm U918, Centre Henri Becquerel , Université de Rouen, IRIB , Rouen , France.,b Department of Hematology , Centre Henri Becquerel , Rouen , France
| |
Collapse
|
29
|
New developments in the pathology of malignant lymphoma: a review of literature published from January 2015 to April 2015. J Hematop 2015; 8:71-79. [PMID: 26146524 PMCID: PMC4481308 DOI: 10.1007/s12308-015-0249-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|