1
|
Chen S, Li M, Wang J. RAB39B: A novel biomarker for acute myeloid leukemia identified via multi-omics and functional validation. Open Med (Wars) 2025; 20:20251168. [PMID: 40177653 PMCID: PMC11964188 DOI: 10.1515/med-2025-1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background The objective of this research was to investigate the involvement of RAB39B in acute myeloid leukemia (AML) using bioinformatics analysis and in vitro experiments for validation. Methods In this article, RNA sequencing data from The Cancer Genome Atlas and genotype-tissue expression were utilized to analyze the expression of RAB39BA and identify differentially expressed genes. Results AML exhibited elevated expression of RAB39B in diverse tumor types. In laboratory experiments, it has been demonstrated that RAB39B exhibits a significant expression level in AML cell lines when compared to normal peripheral blood monocytes. Moreover, RAB39B is closely linked to the growth and programmed cell death of AML cells. Conclusion In conclusion, RAB39B shows potential as a biomarker for the identification and prediction of AML, contributing to the growth and cell death processes in AML.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Hematology, Affiliated Medicine of Guizhou Medical University, Guiyang, 550001, China
- Graduate School, Guizhou Medical University, Guiyang, 550001, China
- Hematology Laboratory, Guizhou Medical University, Guiyang, 550001, China
| | - Mengxing Li
- Department of Hematology, Affiliated Medicine of Guizhou Medical University, Guiyang, 550001, China
- Graduate School, Guizhou Medical University, Guiyang, 550001, China
- Hematology Laboratory, Guizhou Medical University, Guiyang, 550001, China
| | - Jishi Wang
- Department of Hematology, Affiliated Medicine of Guizhou Medical University, Guiyang, 550001, China
- Graduate School, Guizhou Medical University, Guiyang, 550001, China
- Hematology Laboratory, Guizhou Medical University, Guiyang, 550001, China
| |
Collapse
|
2
|
Ferrario C, Mackey J, Gelmon KA, Levasseur N, Sorensen PH, Oo HZ, Negri GL, Tse VWL, Spencer SE, Cheng G, Morin GB, Del Rincon S, Cotechini T, Gonçalves C, Hindmarch CCT, Miller WH, Amiri M, Basiri T, Villareal-Corpuz V, Sperry S, Gregorczyk K, Spera G, Sonenberg N, Pollak M. Phase Ib Pharmacodynamic Study of the MNK Inhibitor Tomivosertib (eFT508) Combined With Paclitaxel in Patients With Refractory Metastatic Breast Cancer. Clin Cancer Res 2025; 31:491-502. [PMID: 39576211 DOI: 10.1158/1078-0432.ccr-24-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 11/20/2024] [Indexed: 02/04/2025]
Abstract
PURPOSE Preclinical data motivate clinical evaluation of inhibitors of MAPK-interacting kinases 1 and 2 (MNK1/2). We conducted a phase 1b clinical trial to study target engagement and safety of tomivosertib, a MNK1/2 inhibitor, alone and in combination with paclitaxel. PATIENTS AND METHODS Eligible patients had metastatic breast cancer resistant to standard-of-care treatments. Biopsies were obtained at baseline and during treatment with tomivosertib, and then tomivosertib was continued with the addition of paclitaxel until disease progression or toxicity. Serum drug levels were measured, and pharmacodynamic endpoints included IHC, proteomics, translatomics, and imaging mass cytometry. RESULTS Tomivosertib alone and in combination with paclitaxel was well tolerated. There was no pharmacokinetic interaction between the drugs. We observed a clear reduction in phosphorylation of eIF4E at S209, a major substrate of MNK1/2, and identified tomivosertib-induced perturbations in the proteome, translatome, and cellular populations of biopsied metastatic breast cancer tissue. CONCLUSIONS We conclude that tomivosertib effectively inhibits MNK1/2 activity in metastatic breast cancer tissue and that it can safely be combined with paclitaxel in future phase II studies. We demonstrate feasibility of using proteomic profiles, translatomic profiles, and spatial distribution of immune cell infiltrates for clinical pharmacodynamic studies.
Collapse
Affiliation(s)
- Cristiano Ferrario
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - John Mackey
- Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Karen A Gelmon
- BC Cancer, Vancouver Centre, University of British Columbia, Vancouver, Canada
| | - Nathalie Levasseur
- BC Cancer, Vancouver Centre, University of British Columbia, Vancouver, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Veronica W L Tse
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Sandra E Spencer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Grace Cheng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Sonia Del Rincon
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Science (DBMS), Queen's University, Kingston, Canada
| | - Christophe Gonçalves
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Charles C T Hindmarch
- Department of Biomedical and Molecular Science (DBMS), Queen's University, Kingston, Canada
- Department of Medicine, Queen's University, Kingston, Canada
- Department of Medicine, Queen's Cardio Pulmonary Unit, Translational Institute of Medicine, Queen's University, Kingston, Canada
| | - Wilson H Miller
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Tayebeh Basiri
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | | | - Sam Sperry
- eFFECTOR Therapeutics, Inc., San Diego, California
| | | | - Gonzalo Spera
- TRIO - Translational Research in Oncology, Montevideo, Uruguay
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Michael Pollak
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Ferreira A, Castanheira P, Escrevente C, Barral DC, Barona T. Membrane trafficking alterations in breast cancer progression. Front Cell Dev Biol 2024; 12:1350097. [PMID: 38533085 PMCID: PMC10963426 DOI: 10.3389/fcell.2024.1350097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women, and remains one of the major causes of death in women worldwide. It is now well established that alterations in membrane trafficking are implicated in BC progression. Indeed, membrane trafficking pathways regulate BC cell proliferation, migration, invasion, and metastasis. The 22 members of the ADP-ribosylation factor (ARF) and the >60 members of the rat sarcoma (RAS)-related in brain (RAB) families of small GTP-binding proteins (GTPases), which belong to the RAS superfamily, are master regulators of membrane trafficking pathways. ARF-like (ARL) subfamily members are involved in various processes, including vesicle budding and cargo selection. Moreover, ARFs regulate cytoskeleton organization and signal transduction. RABs are key regulators of all steps of membrane trafficking. Interestingly, the activity and/or expression of some of these proteins is found dysregulated in BC. Here, we review how the processes regulated by ARFs and RABs are subverted in BC, including secretion/exocytosis, endocytosis/recycling, autophagy/lysosome trafficking, cytoskeleton dynamics, integrin-mediated signaling, among others. Thus, we provide a comprehensive overview of the roles played by ARF and RAB family members, as well as their regulators in BC progression, aiming to lay the foundation for future research in this field. This research should focus on further dissecting the molecular mechanisms regulated by ARFs and RABs that are subverted in BC, and exploring their use as therapeutic targets or prognostic markers.
Collapse
|
4
|
Yoshida K, Htike K, Eguchi T, Kawai H, Eain HS, Tran MT, Sogawa C, Umemori K, Ogawa T, Kanemoto H, Ono K, Nagatsuka H, Sasaki A, Ibaragi S, Okamoto K. Rab11 suppresses head and neck carcinoma by regulating EGFR and EpCAM exosome secretion. J Oral Biosci 2024; 66:205-216. [PMID: 38072191 DOI: 10.1016/j.job.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Rab11(Rab11a and Rab11b) localizes primarily along recycling endosomes in cells and is involved in various intracellular trafficking processes, including membrane receptor recycling and secretion of exosomes or small extracellular vesicles (EVs). Although Rab11 is closely associated with the progression and metastasis of various cancer types, little is known about Rab11' role in head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the roles of Rab11a and Rab11b in HNSCC. METHODS The clinical significance of Rab11 expression in HNSCC was investigated using a public database and tissue microarray analysis. Stable cell lines with loss and gain of Rab11a or Rab11b were originally established to investigate their roles in the proliferative, migratory, and invasive capabilities of HNSCC cells. RESULTS Database analysis revealed a significant association between Rab11b mRNA expression and a favorable patient survival rate in HNSCC. Tissue microarray analysis revealed that Rab11b expression was the highest in normal tissues and gradually decreased across the stages of HNSCC progression. Overexpression of Rab11a or Rab11b resulted in a decrease in epidermal growth factor receptor (EGFR), Epithelial cell adhesion molecule (EpCAM) exosome secretion, and the migratory and invasive potential of HNSCC cells. The knockdown of Rab11a or Rab11b increased EpCAM/CD9 exosome secretion in addition to the migratory and invasive potential of HNSCC cells. CONCLUSIONS Rab11 suppresses HNSCC by regulating EGFR recycling and EpCAM exosome secretion in HNSCC cells. Our results indicate that Rab11b is a superior prognostic indicator of HNSCC and holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Chiharu Sogawa
- Department of Clinical Engineering, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, 731-5197, Japan
| | - Koki Umemori
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
5
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
6
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
7
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
8
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
9
|
Si L, Zhang L, Xing S, Fang P, Tian X, Liu X, Xv X. Curcumin as a therapeutic agent in cancer therapy: Focusing on its modulatory effects on circular RNAs. Phytother Res 2023. [PMID: 37200228 DOI: 10.1002/ptr.7863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
Curcumin, a natural polyphenol compound, has been identified as an effective therapeutic agent against cancer that exerts its anti-tumor activities by up/downregulating signaling mediators and modulating various cellular processes, including angiogenesis, autophagy, apoptosis, metastasis, and epithelial-mesenchymal transition (EMT). Since almost 98% of genomic transcriptional production is noncoding RNAs in humans, there is evidence that curcumin exerts therapeutic effects through the alterations of noncoding RNAs in various types of cancers. Circular RNAs (circRNAs) are formed by the back-splicing of immature mRNAs and have several functions, including functioning as miRNA sponges. It has been shown that curcumin modulated various circRNAs, including circ-HN1, circ-PRKCA, circPLEKHM3, circZNF83, circFNDC3B, circ_KIAA1199, circRUNX1, circ_0078710, and circ_0056618. The modulation of these circRNAs targeted the expression of mRNAs and modified various signaling pathways and hallmarks of cancer. In this article, we reviewed the pharmacokinetics of curcumin, its anti-cancer activities, as well as the biology and structure of circRNAs. Our main focus was on how curcumin exerts anti-cancer functions by modulating circRNAs and their target mRNAs and pathways.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lina Zhang
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Shaoliang Xing
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Panke Fang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiu Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaohong Xv
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
10
|
Olatunji I, Cui F. Multimodal AI for prediction of distant metastasis in carcinoma patients. FRONTIERS IN BIOINFORMATICS 2023; 3:1131021. [PMID: 37228671 PMCID: PMC10203594 DOI: 10.3389/fbinf.2023.1131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Metastasis of cancer is directly related to death in almost all cases, however a lot is yet to be understood about this process. Despite advancements in the available radiological investigation techniques, not all cases of Distant Metastasis (DM) are diagnosed at initial clinical presentation. Also, there are currently no standard biomarkers of metastasis. Early, accurate diagnosis of DM is however crucial for clinical decision making, and planning of appropriate management strategies. Previous works have achieved little success in attempts to predict DM from either clinical, genomic, radiology, or histopathology data. In this work we attempt a multimodal approach to predict the presence of DM in cancer patients by combining gene expression data, clinical data and histopathology images. We tested a novel combination of Random Forest (RF) algorithm with an optimization technique for gene selection, and investigated if gene expression pattern in the primary tissues of three cancer types (Bladder Carcinoma, Pancreatic Adenocarcinoma, and Head and Neck Squamous Carcinoma) with DM are similar or different. Gene expression biomarkers of DM identified by our proposed method outperformed Differentially Expressed Genes (DEGs) identified by the DESeq2 software package in the task of predicting presence or absence of DM. Genes involved in DM tend to be more cancer type specific rather than general across all cancers. Our results also indicate that multimodal data is more predictive of metastasis than either of the three unimodal data tested, and genomic data provides the highest contribution by a wide margin. The results re-emphasize the importance for availability of sufficient image data when a weakly supervised training technique is used. Code is made available at: https://github.com/rit-cui-lab/Multimodal-AI-for-Prediction-of-Distant-Metastasis-in-Carcinoma-Patients.
Collapse
Affiliation(s)
| | - Feng Cui
- Thomas H. Gosnell School of Life Science, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
11
|
Insights of Endocytosis Signaling in Health and Disease. Int J Mol Sci 2023; 24:ijms24032971. [PMID: 36769293 PMCID: PMC9918140 DOI: 10.3390/ijms24032971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery.
Collapse
|
12
|
RAB3D/MDM2/β-catenin/c-MYC axis exacerbates the malignant behaviors of acute myeloid leukemia cells in vitro and in vivo. Cancer Gene Ther 2023; 30:335-344. [PMID: 36280757 DOI: 10.1038/s41417-022-00549-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
RAB3D, a small Ras-like GTPase involved in regulating secretory pathway, plays a cancer-promoting role in several solid tumors. However, its role in leukemogenesis remains unknown yet. Acute myeloid leukemia (AML) is a common acute leukemia with a high mortality. Here, we found the higher expression of RAB3D in bone marrow mononuclear cells derived from AML patients (n = 54) versus healthy participants (n = 20). The following loss- and gain-of-function experiments demonstrated that RAB3D promoted growth, enhanced colony formation and accelerated G1/S transition of U937, THP-1 and KG-1 AML cells. RAB3D silencing inhibited tumorigenesis of AML cells in vivo and delayed AML cells-induced death of mice. Interestingly, the expression of RAB3D is positively correlated with that of an oncogene mouse double minute 2 (MDM2) in bone marrow mononuclear cells of AML patients (r = 0.923, p < 0.001). Intracellular MDM2 was conjugated with more ubiquitins and degraded faster when RAB3D was silenced. A commonly therapeutic target of AML, β-catenin signaling, was activated by RAB3D overexpression, but deactivated after MDM2 was silenced. The RAB3D-induced proliferation acceleration and β-catenin activation were abolished by MDM2 knockdown, implying that RAB3D function by stabilizing MDM2. In addition, c-MYC, a β-catenin downstream effector, was recruited directly to the RAB3D gene promoter (-360/-349 and -136/-125 sites) and induced its transcription. Collectively, this study demonstrates that RAB3D may exacerbate the malignant behaviors of AML cells through forming a positive feedback loop with MDM2/β-catenin/c-MYC signaling. RAB3D might be a novel target of clinical AML treatment.
Collapse
|
13
|
[miR-125b-5p inhibits proliferation and migration of osteosarcoma cells by negatively regulating RAB3D expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:68-75. [PMID: 36856212 DOI: 10.12122/j.issn.1673-4254.2023.01.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of miR-125b-5p on proliferation and migration of osteosarcoma and the role of RAB3D in mediating this effect. METHODS The expression level of miR-125b-5p was detected by qRT-PCR in a normal bone cell line (hFOB1.19) and in two osteosarcoma OS cell lines (MG63 and HOS). A miR-125b-5p mimic or inhibitor was transfected in the osteosarcoma cell lines via liposome and the changes in cell proliferation and migration were detected with EDU and Transwell experiments. Bioinformatic analysis was conducted for predicting the target gene of miR-125b-5p, and the expression level of RAB3D in hFOB1.19, MG63, and HOS cells was detected by Western blotting. In the two osteosarcoma cell lines transfected with miR-125b-5p mimic or inhibitor, the expression levels of RAB3D mRNA and protein in osteosarcoma cells were examined with qRT-PCR and Western blotting. The effects of RAB3D overexpression, RAB3D knockdown, or overexpression of both miR-125b-5p and RAB3D on the proliferation and migration of cells were assessed using EDU and Transwell experiments. RESULTS The two osteosarcoma cell lines had significantly lower expression levels of miR-125b-5p (P < 0.05). Bioinformatic analysis predicted that RAB3D was a possible target gene regulated by miR-125b-5p. In osteosarcoma cells, overexpression of miR-125b-5p significantly lowered the expression of RAB3D protein (P < 0.05); inhibiting miR-125b-5p expression significantly decreased RAB3D expression only at the protein level (P < 0.05) without obviously affecting its mRNA level. Modulation of miR-125b-5p and RAB3D levels produced opposite effects on proliferation and migration of osteosarcoma cells, and in cells with overexpression of both miR-125b-5p and RAB3D, the effect of RAB3D on cell proliferation and migration was blocked by miR-125b-5p overexpression (P < 0.05). CONCLUSION Overexpression of miR-125b-5p inhibits the proliferation and migration of osteosarcoma cells by regulating the expression of RAB3D at the post-transcriptional level.
Collapse
|
14
|
Yu J, Qi H, Wang Z, Zhang Z, Song E, Song W, An R. RAB3D, upregulated by aryl hydrocarbon receptor (AhR), promotes the progression of prostate cancer by activating the PI3K/AKT signaling pathway. Cell Biol Int 2022; 46:2246-2256. [DOI: 10.1002/cbin.11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/31/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jingsong Yu
- Department of Urology The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Haipeng Qi
- Department of Urology The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Zheng Wang
- Department of Urology The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Ze Zhang
- Department of Urology The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Erlin Song
- Department of Urology The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Wenting Song
- Department of Management Office Heilongjiang Academy of Medical Sciences Harbin China
| | - Ruihua An
- Department of Urology The First Affiliated Hospital of Harbin Medical University Harbin China
| |
Collapse
|
15
|
Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022; 15:ph15070876. [PMID: 35890175 PMCID: PMC9318328 DOI: 10.3390/ph15070876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-derived membrane vesicles (TDMVs) are non-invasive, chemotactic, easily obtained characteristics and contain various tumor-borne substances, such as nucleic acid and proteins. The unique properties of tumor cells and membranes make them widely used in drug loading, membrane fusion and vaccines. In particular, personalized vectors prepared using the editable properties of cells can help in the design of personalized vaccines. This review focuses on recent research on TDMV technology and its application in personalized immunotherapy. We elucidate the strengths and challenges of TDMVs to promote their application from theory to clinical practice.
Collapse
Affiliation(s)
- Jiabin Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
- Correspondence:
| |
Collapse
|
16
|
Xu C, Liang T, Liu J, Fu Y. RAB39B as a Chemosensitivity-Related Biomarker for Diffuse Large B-Cell Lymphoma. Front Pharmacol 2022; 13:931501. [PMID: 35910358 PMCID: PMC9336119 DOI: 10.3389/fphar.2022.931501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma with an increased tendency to relapse or refractoriness. RAB39B, a member of the Ras-oncogene superfamily, is associated with a variety of tumors. Nevertheless, the role of RAB39B in DLBCL is still unknown. This study aimed to identify the role of RAB39B in DLBCL using integrated bioinformatics analysis. Methods: RAB39B expression data were examined using TIMER, UCSC, and GEO databases. The LinkedOmics database was used to study the genes and signaling pathways related to RAB39B expression. A Protein–protein interaction network was performed in STRING. TIMER was used to analyze the correlation between RAB39B and infiltrating immune cells. The correlation between RAB39B and m6A-related genes in DLBCL was analyzed using TCGA data. The RAB39B ceRNA network was constructed based on starBase and miRNet2.0 databases. Drug sensitivity information was obtained from the GSCA database. Results: RAB39B was highly expressed in multiple tumors including DLBCL. The protein–protein interaction network showed enrichment of autophagy and RAS family proteins. Functional enrichment analysis of RAB39B co-expression genes revealed that RAB39B was closely related to DNA replication, protein synthesis, cytokine–cytokine receptor interaction, JAK-STAT signaling pathway, NF-kappa B signaling pathway, and autophagy. Immune infiltrate analysis showed that the amount of RAB39B was negatively correlated with iDC, Tem, and CD8 T-cell infiltration. CD4+ T cell and DC were negatively correlated with CNV of RAB39B. DLBCL cohort analysis found that RAB39B expression was related to 14 m6A modifier genes, including YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, RBMX, ZC3H13, METTL14, METTL3, RBM15, RBM15B, VIRMA, FTO, and ALKBH5. We constructed 14 possible ceRNA networks of RAB39B in DLBCL. The RAB39B expression was associated with decreased sensitivity of chemotherapy drugs such as dexamethasone, doxorubicin, etoposide, vincristine, and cytarabine and poor overall survival in DLBCL. In vitro experiments showed that RAB39B was associated with proliferation, apoptosis, and drug sensitivity of DLBCL cells. Conclusion: RAB39B is abnormally elevated and related to drug resistance and poor OS in DLBCL, which may be due to its involvement in immune infiltration, m6A modification, and regulation by multiple non-coding RNAs. RAB39B may be used as an effective biomarker for the diagnosis and treatment of DLBCL.
Collapse
Affiliation(s)
- Cong Xu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ting Liang
- Department of Blood Transfusion, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yunfeng Fu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Yunfeng Fu,
| |
Collapse
|
17
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
18
|
Lin X, Zhong L, Wang N, Chu X, Liu B. Hsa_circ_0103232 promotes melanoma cells proliferation and invasion via targeting miR-661/RAB3D. Cell Cycle 2022; 21:1811-1826. [PMID: 35549813 PMCID: PMC9359370 DOI: 10.1080/15384101.2022.2072636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Little is known about the role of hsa_circ_0103232 in melanoma. This study researched the role of hsa_circ_0103232 in melanoma progression. Hsa_circ_0103232 expression in clinical tissues of melanoma patients and melanoma cells was detected by qRT-PCR. Hsa_circ_0103232 localization in melanoma cells was visualized by fluorescence in situ hybridization. Hsa_circ_0103232 effect on melanoma cells viability, proliferation, migration, and invasion was explored by cell counting kit-8 (CCK-8) assay, Edu experiment, wound healing assay, and Transwell experiment. RNA pull-down assay and dual-luciferase reporter gene assay were performed to verify the binding of hsa_circ_0103232 with miR-661, and the binding of miR-661 and RAB3D. Xenograft tumor models were constructed. Western blot and immunohistochemistry were used for protein expression detection. Hsa_circ_0103232 expression was increased in melanoma patients, indicating lower overall survival. Hsa_circ_0103232 was mainly expressed in the cytoplasm of melanoma cells. Silencing hsa_circ_0103232 suppressed melanoma cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) (P < 0.01). Hsa_circ_0103232 functioned as a sponge of miR-661 to increase RAB3D expression. miR-661 overexpression partially reversed hsa_circ_0103232 promoting effect on melanoma cells viability, proliferation, migration, invasion, and EMT (P < 0.01). In melanoma patients, hsa_circ_0103232 expression was negatively correlated with miR-661 and positively correlated with RAB3D. Silencing hsa_circ_0103232 suppressed melanoma cell growth in vivo and Ki67 and RAB3D expression in xenograft tumors (P < 0.01). Hsa_circ_0103232 is a tumor promoter in melanoma to enhance malignant phenotype and growth in vivo via sponging miR-661/RAB3D. Hsa_circ_0103232 may be a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Xing Lin
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Biological Immunotherapy, Chongqing University Cancer Hospital, Chongqing, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Nian Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Lv W, Li Y, Fu L, Meng F, Li J. Linc01133 promotes proliferation and metastasis of human renal cell carcinoma through sponging miR-760. Cell Cycle 2022; 21:1502-1511. [PMID: 35446199 PMCID: PMC9278430 DOI: 10.1080/15384101.2022.2054250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most frequent human tumors and has brought great threats to the health of the people around the globe. It was reported that linc01133, a long non-coding RNA (lncRNA), was involved in the pathogenesis and development of several human cancer. But the biological role of linc01133 in RCC is still not understood. The present study aimed to investigate the biological functions of linc01133 in RCC. We did some biological experiments in this study, including quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, MTT assay, wound healing assay, Transwell invasion assay and xenograft tumor assay. In this study, we found the expression levels of linc01133 markedly increased in the RCC tissues compared with the normal tissues. And we found that the over-expressing of linc01133 promoted cell proliferation, migration and invasion, the interfering of linc01133 inhibited cell proliferation, migration and invasion. Furthermore, we found that the interfering of linc01133 inhibited tumor growth in murine xenograft models. Additionally, we found that linc01133 promotes RCC cell proliferation, migration and invasion through sponging miR-760. Collectively, our work preliminarily illuminated the tumor-promoting role of linc01133 in RCC and the potential molecular mechanism. Thus, our study may provide some evidence for the treatment of RCC.
Collapse
Affiliation(s)
- Wei Lv
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Liye Fu
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Li
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Patel A, Perl A. Redox Control of Integrin-Mediated Hepatic Inflammation in Systemic Autoimmunity. Antioxid Redox Signal 2022; 36:367-388. [PMID: 34036799 PMCID: PMC8982133 DOI: 10.1089/ars.2021.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Significance: Systemic autoimmunity affects 3%-5% of the population worldwide. Systemic lupus erythematosus (SLE) is a prototypical form of such condition, which affects 20-150 of 100,000 people globally. Liver dysfunction, defined by increased immune cell infiltration into the hepatic parenchyma, is an understudied manifestation that affects up to 20% of SLE patients. Autoimmunity in SLE involves proinflammatory lineage specification in the immune system that occurs with oxidative stress and profound changes in cellular metabolism. As the primary metabolic organ of the body, the liver is uniquely capable to encounter oxidative stress through first-pass derivatization and filtering of waste products. Recent Advances: The traffic of immune cells from their development through recirculation in the liver is guided by cell adhesion molecules (CAMs) and integrins, cell surface proteins that tightly anchor cells together. The surface expression of CAMs and integrins is regulated via endocytic traffic that is sensitive to oxidative stress. Reactive oxygen species (ROS) that elicit oxidative stress in the liver may originate from the mitochondria, the cytosol, or the cell membrane. Critical Issues: While hepatic ROS production is a source of vulnerability, it also modulates the development and function of the immune system. In turn, the liver employs antioxidant defense mechanisms to protect itself from damage that can be harnessed to serve as therapeutic mechanisms against autoimmunity, inflammation, and development of hepatocellular carcinoma. Future Directions: This review is aimed at delineating redox control of integrin signaling in the liver and checkpoints of regulatory impact that can be targeted for treatment of inflammation in systemic autoimmunity. Antioxid. Redox Signal. 36, 367-388.
Collapse
Affiliation(s)
- Akshay Patel
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
22
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
23
|
Ma J, Li Q, Li Y. CircRNA PRH1-PRR4 stimulates RAB3D to regulate the malignant progression of NSCLC by sponging miR-877-5p. Thorac Cancer 2022; 13:690-701. [PMID: 35076987 PMCID: PMC8888154 DOI: 10.1111/1759-7714.14264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous reports have confirmed the importance of circular RNA (circRNA) in the malignant progression of non-small-cell lung cancer (NSCLC). However, the role of circRNA PRH1-PRR4 readthrough (circPRH1-PRR4) in NSCLC progression was unclear. This study was designed to reveal the mechanism behind circPRH1-PRR4 regulating NSCLC progression. METHODS Quantitative real-time polymerase chain reaction and western blot were employed to detect the expression of circPRH1-PRR4, microRNA-877-5p (miR-877-5p), the member RAS oncogene family (RAB3D), and other indicated protein markers. The positive expression rate of RAB3D was detected by immunohistochemistry assay. Cell proliferation was investigated by cell colony formation and 5-ethynyl-2'-deoxyuridine assays. Flow cytometry was employed to quantify apoptotic cells. Wound-healing and transwell invasion assays were used to evaluate cell metastasis. The interaction among circPRH1-PRR4, miR-877-5p, and RAB3D was identified by dual-luciferase reporter assay. In vivo assay was implemented to demonstrate the effect of circPRH1-PRR4 on tumor formation. RESULTS As compared with controls, NSCLC tissues and cells displayed high expression of circPRH1-PRR4 and RAB3D, and low expression of miR-877-5p. Reduced expression of circPRH1-PRR4 resulted in inhibition of cell proliferation, migration, and invasion, but promotion of cell apoptosis in vitro. In support, circPRH1-PRR4 silencing inhibited tumor formation in vivo. Knockdown of miR-877-5p, a target miRNA of circPRH1-PRR4, relieved circPRH1-PRR4 absence-mediated action. Additionally, RAB3D was identified as a target mRNA of miR-877-5p. Importantly, circPRH1-PRR4 regulated RAB3D expression by miR-877-5p. CONCLUSION CircPRH1-PRR4 knockdown impeded NSCLC cell malignancy by the miR-877-5p/RAB3D pathway, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Jun Ma
- Department of Respiratory and Critical Care Medicine, Dongying People's Hospital, Dongying City, 257000, Shandong, China
| | - Quanxing Li
- Department of Cardiothoracic Surgery, Dongying People's Hospital, Dongying City, 257000, Shandong, China
| | - Yuling Li
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou Ctiy, 277500, Shandong, China
| |
Collapse
|
24
|
Hasan H, Sohal IS, Soto-Vargas Z, Byappanahalli AM, Humphrey SE, Kubo H, Kitdumrongthum S, Copeland S, Tian F, Chairoungdua A, Kasinski AL. Extracellular vesicles released by non-small cell lung cancer cells drive invasion and permeability in non-tumorigenic lung epithelial cells. Sci Rep 2022; 12:972. [PMID: 35046472 PMCID: PMC8770483 DOI: 10.1038/s41598-022-04940-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) released from non-small cell lung cancer (NSCLC) cells are known to promote cancer progression. However, it remains unclear how EVs from various NSCLC cells differ in their secretion profile and their ability to promote phenotypic changes in non-tumorigenic cells. Here, we performed a comparative analysis of EV release from non-tumorigenic cells (HBEC/BEAS-2B) and several NSCLC cell lines (A549, H460, H358, SKMES, and Calu6) and evaluated the potential impact of NSCLC EVs, including EV-encapsulated RNA (EV-RNA), in driving invasion and epithelial barrier impairment in HBEC/BEAS-2B cells. Secretion analysis revealed that cancer cells vary in their secretion level, with some cell lines having relatively low secretion rates. Differential uptake of NSCLC EVs was also observed, with uptake of A549 and SKMES EVs being the highest. Phenotypically, EVs derived from Calu6 and H358 cells significantly enhanced invasion, disrupted an epithelial barrier, and increased barrier permeability through downregulation of E-cadherin and ZO-1. EV-RNA was a key contributing factor in mediating these phenotypes. More nuanced analysis suggests a potential correlation between the aggressiveness of NSCLC subtypes and the ability of their respective EVs to induce cancerous phenotypes.
Collapse
Affiliation(s)
- Humna Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ikjot Singh Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Zulaida Soto-Vargas
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Sean E Humphrey
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hana Kubo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Sarah Copeland
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Tian
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Beck EA, Healey HM, Small CM, Currey MC, Desvignes T, Cresko WA, Postlethwait JH. Advancing human disease research with fish evolutionary mutant models. Trends Genet 2022; 38:22-44. [PMID: 34334238 PMCID: PMC8678158 DOI: 10.1016/j.tig.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.
Collapse
Affiliation(s)
- Emily A Beck
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Clayton M Small
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - William A Cresko
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
26
|
Soelch S, Beaufort N, Loessner D, Kotzsch M, Reuning U, Luther T, Kirchner T, Magdolen V. Rab31-dependent regulation of transforming growth factor ß expression in breast cancer cells. Mol Med 2021; 27:158. [PMID: 34906074 PMCID: PMC8670132 DOI: 10.1186/s10020-021-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells. METHODS Commercially available profiler PCR arrays were applied to search for differentially expressed genes in Rab31 high- and low-expressing CAMA-1 breast cancer cells. Differential expression of selected candidate genes in response to Rab31 overexpression in CAMA-1 cells was validated by independent qPCR and protein assays. RESULTS Gene expression profiling of key genes involved in EMT, or its reciprocal process MET, identified 9 genes being significantly up- or down-regulated in Rab31 overexpressing CAMA-1 cells, with the strongest effects seen for TGFB1, encoding TGF-ß1 (> 25-fold down-regulation in Rab31 overexpressing cells). Subsequent validation analyses by qPCR revealed a strong down-regulation of TGFB1 mRNA levels in response to increased Rab31 expression not only in CAMA-1 cells, but also in another breast cancer cell line, MDA-MB-231. Using ELISA and Western blot analysis, a considerable reduction of both intracellular and secreted TGF-ß1 antigen levels was determined in Rab31 overexpressing cells compared to vector control cells. Furthermore, reduced TGF-ß activity was observed upon Rab31 overexpression in CAMA-1 cells using a sensitive TGF-ß bioassay. Finally, the relationship between Rab31 expression and the TGF-ß axis was analyzed by another profiler PCR array focusing on genes involved in TGF-ß signaling. We found 12 out of 84 mRNAs significantly reduced and 7 mRNAs significantly increased upon Rab31 overexpression. CONCLUSIONS Our results demonstrate that Rab31 is a potent modulator of the expression of TGF-ß and other components of the TGF-ß signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Susanne Soelch
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Munich, Germany
| | - Daniela Loessner
- Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.,Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany
| | | | | | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany.
| |
Collapse
|
27
|
Narmontė M, Gibas P, Daniūnaitė K, Gordevičius J, Kriukienė E. Multiomics Analysis of Neuroblastoma Cells Reveals a Diversity of Malignant Transformations. Front Cell Dev Biol 2021; 9:727353. [PMID: 34557494 PMCID: PMC8452964 DOI: 10.3389/fcell.2021.727353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system that exhibits significant variation in the stage of differentiation and cell composition of tumors. Global loss of DNA methylation and genomic 5-hydroxymethylcytosine (5hmC) is a hallmark of human cancers. Here, we used our recently developed single-base resolution approaches, hmTOP-seq and uTOP-seq, for construction of 5hmC maps and identification of large partially methylated domains (PMDs) in different NB cell subpopulations. The 5hmC profiles revealed distinct signatures characteristic to different cell lineages and stages of malignant transformation of NB cells in a conventional and oxygen-depleted environment, which often occurs in tumors. The analysis of the cell-type-specific PMD distribution highlighted differences in global genome organization among NB cells that were ascribed to the same lineage identity by transcriptomic networks. Collectively, we demonstrated a high informativeness of the integrative epigenomic and transcriptomic research and large-scale genome structure in investigating the mechanisms that regulate cell identities and developmental stages of NB cells. Such multiomics analysis, as compared with mutational studies, open new ways for identification of novel disease-associated features which bring prognostic and therapeutic value in treating this aggressive pediatric disease.
Collapse
Affiliation(s)
- Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kristina Daniūnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Human Genome Research Group, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juozas Gordevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
28
|
Croft PKD, Sharma S, Godbole N, Rice GE, Salomon C. Ovarian-Cancer-Associated Extracellular Vesicles: Microenvironmental Regulation and Potential Clinical Applications. Cells 2021; 10:cells10092272. [PMID: 34571921 PMCID: PMC8471580 DOI: 10.3390/cells10092272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most diagnosed gynecological cancers in women. Due to the lack of effective early stage screening, women are more often diagnosed at an advanced stage; therefore, it is associated with poor patient outcomes. There are a lack of tools to identify patients at the highest risk of developing this cancer. Moreover, early detection strategies, therapeutic approaches, and real-time monitoring of responses to treatment to improve survival and quality of life are also inadequate. Tumor development and progression are dependent upon cell-to-cell communication, allowing cancer cells to re-program cells not only within the surrounding tumor microenvironment, but also at distant sites. Recent studies established that extracellular vesicles (EVs) mediate bi-directional communication between normal and cancerous cells. EVs are highly stable membrane vesicles that are released from a wide range of cells, including healthy and cancer cells. They contain tissue-specific signaling molecules (e.g., proteins and miRNA) and, once released, regulate target cell phenotypes, inducing a pro-tumorigenic and immunosuppressive phenotype to contribute to tumor growth and metastasis as well as proximal and distal cell function. Thus, EVs are a “fingerprint” of their cell of origin and reflect the metabolic status. Additionally, via the capacity to evade the immune system and remain stable over long periods in circulation, EVs can be potent therapeutic agents. This review examines the potential role of EVs in the different aspects of the tumor microenvironment in OC, as well as their application in diagnosis, delivery of therapeutic agents, and disease monitoring.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Nihar Godbole
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
- Correspondence: ; Tel.: +61-7-3346-5500; Fax: +61-7-3346-5509
| |
Collapse
|
29
|
Liu BHM, Tey SK, Mao X, Ma APY, Yeung CLS, Wong SWK, Ng TH, Xu Y, Yao Y, Fung EYM, Tan KV, Khong P, Ho DW, Ng IO, Tang AHN, Cai SH, Yun JP, Yam JWP. TPI1-reduced extracellular vesicles mediated by Rab20 downregulation promotes aerobic glycolysis to drive hepatocarcinogenesis. J Extracell Vesicles 2021; 10:e12135. [PMID: 34401050 PMCID: PMC8357635 DOI: 10.1002/jev2.12135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Rab GTPases are major mediators that ensure the proper spatiotemporal regulation of intracellular trafficking. Functional impairment and altered expression of Rab proteins have been revealed in various human cancers. There is an emerging evidence about the role of Rab proteins in the biogenesis of extracellular vesicles (EVs). In hepatocellular carcinoma (HCC), using RNA sequencing comparing expression profiles of adjacent non-tumorous tissues and HCC, Rab20 is identified to be the most frequently downregulated Rab member in HCC. Functionally, restoration of Rab20 in metastatic HCC cells results in the release of EVs with a diminished activity to promote cell growth, motility and metastasis. Conversely, EVs released from normal liver cells with Rab20 knockdown loses suppressive effect on HCC cell growth and motility. Proteomic profiling revealed the level of triosephosphate isomerase 1 (TPI1), a glycolytic enzyme, in EVs to be positively associated with Rab20 expression of the releasing cells. TPI1 targeted to be expressed in EVs released by Rab20 knockdown cells compromises the oncogenic activity of EVs. Besides, EVs released by TPI1 knockdown cells recapitulates the promoting effect of EVs derived from HCC cells with Rab20 underexpression. Aerobic glycolysis is beneficial to the survival and proliferation of tumour cells. Here, we observed that the enhanced cell growth and motility are driven by the enhanced aerobic glycolysis induced by EVs with reduced TPI1. The addition of glycolytic inhibitor blocks the promoting effect of EVs with reduced TPI1. Taken together, our study provides a mechanistic link among tumour cell-derived EVs and glucose metabolism in HCC with Rab20 deregulation.
Collapse
Affiliation(s)
- Bonnie Hei Man Liu
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Sze Keong Tey
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xiaowen Mao
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Angel Po Yee Ma
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Cherlie Lot Sum Yeung
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Samuel Wan Ki Wong
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tung Him Ng
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yi Xu
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yue Yao
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of EndocrinologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Eva Yi Man Fung
- Department of ChemistryState Key Laboratory of Synthetic ChemistryThe University of Hong KongHong KongChina
| | - Kel Vin Tan
- Department of Diagnostic RadiologyQueen Mary Hospitalthe University of Hong KongHong KongChina
| | - Pek‐Lan Khong
- Department of Diagnostic RadiologyQueen Mary Hospitalthe University of Hong KongHong KongChina
| | - Daniel Wai‐Hung Ho
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong KongChina
| | - Irene Oi‐Lin Ng
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong KongChina
| | - Alexander Hin Ning Tang
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Shao Hang Cai
- Department of Infectious DiseasesNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CentreGuangzhouChina
| | - Judy Wai Ping Yam
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong KongChina
| |
Collapse
|
30
|
Bi H, Ren D, Zhang J, Wang H. [Advances in Exosomes in the Pathogenesis and Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:589-596. [PMID: 32702793 PMCID: PMC7406446 DOI: 10.3779/j.issn.1009-3419.2020.104.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The incidence of lung cancer is high worldwide, and lung cancer is the leading cause of death from malignant tumors in both men and women. Early diagnosis of lung cancer can significantly improve the patient's prognosis. Therefore, searching for specific markers to assist in the early diagnosis of lung cancer is urgent question. Exosomes are nano-sized microvesicles and contain various biomaterial, including nucleic acids, proteins, and lipids. Exosomes are important carriers of these biomaterial, serve important roles in intracellular communications and signal transduction among tissues. Due to its unique enrichment mechanism, it has the stability and specificity as a biomarker. Exosomes are not only involved in the formation of tumor microenvironment and new blood vessels in lung cancer, but also involved in chemotherapy, targeted therapy response and prognosis assessment. Many research advances bring new hope for prolonging the survival of lung cancer patients. This article reviews the value of exosome specific protein and microRNA (miRNA) in lung cancer in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Huanhuan Bi
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongmei Wang
- Department of Respiratory and Critical Care Medcine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
31
|
Raffaniello RD. Rab3 proteins and cancer: Exit strategies. J Cell Biochem 2021; 122:1295-1301. [PMID: 33982832 DOI: 10.1002/jcb.29948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Rab proteins are GTPases involved in all stages of vesicular transport and membrane fusion in mammalian cells. Individual Rab proteins localize to specific cellular organelles and regulate a specific membrane trafficking pathway. Recent studies suggest an important role for Rab proteins in cancer. Rab3 isoforms (Rab3A, Rab3B, Rab3C, and Rab3D) are expressed almost exclusively in neurons and secretory cells. In this review, the role of Rab3 isoforms in a variety of tumor types is discussed. Of the four Rab3 isoforms, Rab3D has been studied most extensively in cancer cells and this isoform appears to play an oncogenic role in breast, colon, esophageal, skin, and brain tumors. Overexpression of Rab3A and Rab3C was observed in gliomas and colon cancers, respectively. Increased expression of the Rab3 isoforms is related to increased proliferation, migration, and invasiveness. Moreover, high Rab3 isoform levels are often associated with decreased survival and advanced pathological stage in clinical samples. Rab3 isoform-dependent activation of the AKT pathway has been observed in several studies. Although the effects of Rab3 isoforms on cancer cell growth and function have been examined in many tumor types, a number of important questions remain. Are the Rab3-positive vesicles in cancer cells actually secretory in nature? If so, are the contents of these vesicles secreted in a regulated or constitutive manner? How does Rab3-regulated secretion affect cellular signaling and tumor growth? Finally, can Rab3 isoforms be therapeutically manipulated in cancer cells? The fact that knockout of a single Rab3 isoform does not affect viability, at least in mouse models, suggests that targeting of these proteins may be a safe and effective treatment strategy for tumor cells expressing any of the Rab3 isoforms.
Collapse
Affiliation(s)
- Robert D Raffaniello
- Department of Medical Laboratory Sciences, Hunter College, School of Arts and Sciences, New York, New York, USA
| |
Collapse
|
32
|
Xiang H, Li F, Luo J, Long W, Hong L, Hu Y, Du H, Yuan Y, Luo M. A meta-analysis on the relationship of exosomes and the prognosis of lung cancer. Medicine (Baltimore) 2021; 100:e25332. [PMID: 33847632 PMCID: PMC8051998 DOI: 10.1097/md.0000000000025332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A lot of research evidence shows that exosomes play an indelible role in the prognosis of lung cancer, but there are many disputes. Therefore, we conduct a meta-analysis to further demonstrate. METHODS A literature retrieval was performed through a search of PubMed, Embase, Web of Science, Cochrane, CKNI, Wanfang, and other databases to locate documents from the literature that satisfied the inclusion criteria. There were four outcome indicators: overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), and progression-free survival (PFS). Subgroup analysis was conducted according to sample size, country, detection method, analysis method, and pathological type. Stata 14.0 software was used to evaluate the prognostic value of exosomes in lung cancer. RESULTS A total of 2456 patients with lung cancer from 29 studies in 16 articles were included. The expression level of exosomes was closely associated with the OS and DFS of patients, although no statistical difference was observed between exosomes and DSS or PFS. Eighteen studies with 2,110 patients were evaluated to examine the prognostic value of exosomes in lung cancer by exploring the association between exosomes and OS. The results showed that exosomes were strongly associated with worse OS, and the combined hazard ratio (HR) was 2.01 (95% confidence interval [CI]: 1.70-2.39, P = .000). Six studies investigated the association between exosomes and DFS, and showed a pooled HR of 2.48 (95% CI: 1.75-3.53, P = .000). CONCLUSION Our analysis indicated that the expression level of exosomes was closely associated with the OS and DFS of patients with lung cancer, suggesting that exosomes are associated with poor prognosis of lung cancer. Exosomes may be a new biomarker for the prognosis of lung cancer, although a large number of prospective studies are still needed to support this.
Collapse
Affiliation(s)
- Hui Xiang
- Guilin Medical University, Department of Respiratory and Critical care Medicine, Affiliated Hospital of Guilin Medical University
| | - Fan Li
- Department of Urology, Affiliated Hospital of Guilin Medical University
| | - Jingying Luo
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenting Long
- Guilin Medical University, Department of Respiratory and Critical care Medicine, Affiliated Hospital of Guilin Medical University
| | - Liuyan Hong
- Guilin Medical University, Department of Respiratory and Critical care Medicine, Affiliated Hospital of Guilin Medical University
| | - Yuzhui Hu
- Department of Urology, Affiliated Hospital of Guilin Medical University
| | - Hongying Du
- Department of Urology, Affiliated Hospital of Guilin Medical University
| | - Yunxiao Yuan
- Department of Urology, Affiliated Hospital of Guilin Medical University
| | - Miao Luo
- Department of Urology, Affiliated Hospital of Guilin Medical University
| |
Collapse
|
33
|
Liu H, Zhou Y, Qiu H, Zhuang R, Han Y, Liu X, Qiu X, Wang Z, Xu L, Tan R, Hong W, Wang T. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src. Cell Death Dis 2021; 12:284. [PMID: 33731709 PMCID: PMC7969620 DOI: 10.1038/s41419-021-03561-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Rab proteins play crucial roles in membrane trafficking. Some Rab proteins are implicated in cancer development through regulating protein sorting or degradation. In this study, we found that the expression of Rab26 is suppressed in the aggressive breast cancer cells as compared to the levels in non-invasive breast cancer cells. Over-expression of Rab26 inhibits cell migration and invasion, while Rab26 knockdown significantly promotes the migration and invasion of breast cancer cells. Rab26 reduces focal adhesion association of Src kinase and induces endosomal translocation of Src. Further experiments revealed that Rab26 mediates the autophagic degradation of phosphorylated Src through interacting with ATG16L1, consequently, resulting in the suppression of the migration and invasion ability of breast cancer cells.
Collapse
Affiliation(s)
- Huiying Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yuxia Zhou
- grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Hantian Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ruijuan Zhuang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yang Han
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xiaoqing Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xi Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ziyan Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Liju Xu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ran Tan
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Wanjin Hong
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China ,grid.185448.40000 0004 0637 0221Institute of Molecular and Cell Biology, A STAR (Agency of ScienceTechnology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| | - Tuanlao Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| |
Collapse
|
34
|
Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124:66-75. [PMID: 33262521 PMCID: PMC7782782 DOI: 10.1038/s41416-020-01179-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
A potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion. Multiple endocytic proteins are dysregulated in cancer and regulate tumour metastasis, particularly migration and invasion. Importantly, four metastasis suppressor genes function in part by regulating endocytosis, namely, the NME, KAI, MTSS1 and KISS1 pathways. Data on metastasis suppressors identify a new point of dysregulation operative in tumour metastasis, alterations in signalling through endocytosis. This review will focus on the multicomponent process of endocytosis affecting different steps of metastasis and how metastatic-suppressor genes use endocytosis to suppress metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Gvaldin DY, Pushkin AA, Timoshkina NN, Rostorguev EE, Nalgiev AM, Kit OI. Integrative analysis of mRNA and miRNA sequencing data for gliomas of various grades. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00119-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
The purpose of this study was to characterize subtype-specific patterns of mRNA and miRNA expression of gliomas using The Cancer Genome Atlas (TCGA) data to search for genetic determinants that predict prognosis in terms of overall survival and to create interaction networks for grade 2 and 3 (G2 and G3) astrocytomas, oligodendrogliomas and grade 4 (G4) glioblastoma multiforme. Based on open-access TCGA data, 5 groups were formed: astrocytoma G2 (n = 58), astrocytoma G3 (n = 128), oligodendroglioma G2 (n = 102), oligodendroglioma G3 (n = 72) and glioblastoma G4 (n = 564); normal samples of brain tissue were also analysed (n = 15). Data of patient age, sex, survival and expression patterns of mRNA and miRNA were extracted for each sample. After stratification of the data into groups, a differential analysis of expression was carried out, genes and miRNAs that affect overall survival were identified and gene set enrichment analysis (GSEA) and interaction analysis were performed.
Results
A total of 939 samples of glial tumours were analysed, for which subtype-specific expression profiles of genes and miRNAs were identified and networks of mRNA-miRNA interactions were constructed. Genes whose aberrant expression level was associated with survival were determined, and pairwise correlations between differential gene expression (DEG) and differential miRNA expression (DE miRNA) were calculated.
Conclusions
The developed panel of genes and miRNAs allowed us to differentiate glioma subtypes and evaluate prognosis in terms of the overall survival of patients. The regulatory miRNA-mRNA pairs unique to the five glioma subtypes identified in this study can stimulate the development of new therapeutic approaches based on subtype-specific mechanisms of oncogenesis.
Collapse
|
36
|
Gorji-Bahri G, Moghimi HR, Hashemi A. RAB5A is associated with genes involved in exosome secretion: Integration of bioinformatics analysis and experimental validation. J Cell Biochem 2020; 122:425-441. [PMID: 33225526 DOI: 10.1002/jcb.29871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Exosomes, as cell-cell communicators with an endosomal origin, are involved in the progression of various diseases. RAB5A, a member of the small Rab GTPases family, which is well known as a key regulator of cellular endocytosis, is expected to be involved in exosome secretion. Here, we found the impact of RAB5A on exosome secretion from human hepatocellular carcinoma cell line using a rapid yet reliable bioinformatics approach followed by experimental analysis. Initially, RAB5A and exosome secretion-related genes were gathered from bioinformatics tools, namely, CTD, COREMINE, and GeneMANIA; and published papers. Protein-protein interaction (PPI) was then constructed by the Search Tool for Retrieval of Interacting Genes (STRING) database. Among them, several genes with different combined scores were validated by the real-time quantitative polymerase chain reaction (RT-qPCR) in stable RAB5A knockdown cells. Thereafter, to validate the bioinformatics results functionally, the impact of RAB5A knockdown on exosome secretion was evaluated. Bioinformatics analysis showed that RAB5A interacts with 37 genes involved in exosome secretion regulatory pathways. Validation by RT-qPCR confirmed the association of RAB5A with candidate interacted genes and interestingly showed that even medium to low combined scores of the STRING database could be experimentally valid. Moreover, the functional analysis demonstrated that the stable silencing of RAB5A could experimentally decrease exosome secretion. In conclusion, we suggest RAB5A as a regulator of exosome secretion based on our bioinformatics approach and experimental analysis. Also, we propose the usage of PPI-derived from the STRING database regardless of their combined scores in advanced bioinformatics analysis.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Abstract
The Bateson–Dobzhansky–Muller (BDM) model describes negative epistatic interactions that occur between genes with a different evolutionary history to account for hybrid incompatibility and is a central theory explaining genetic mechanisms underlying speciation. Since the early 1900 s when the BDM model was forwarded examples of BDM incompatibility have been described in only a few nonvertebrate cases. This study reports the only vertebrate system, with clearly defined interacting loci, that supports the BDM model. In addition, this study also poses that tumorigenesis serves as a novel mechanism that accounts for postzygotic isolation. Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations make Xiphophorus one of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene, rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role of egfr regulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.
Collapse
|
38
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
39
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
40
|
Beeraka NM, Doreswamy SH, Sadhu SP, Srinivasan A, Pragada RR, Madhunapantula SV, Aliev G. The Role of Exosomes in Stemness and Neurodegenerative Diseases-Chemoresistant-Cancer Therapeutics and Phytochemicals. Int J Mol Sci 2020; 21:ijms21186818. [PMID: 32957534 PMCID: PMC7555629 DOI: 10.3390/ijms21186818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes exhibit a wide range of biological properties and functions in the living organisms. They are nanometric vehicles and used for delivering drugs, as they are biocompatible and minimally immunogenic. Exosomal secretions derived from cancer cells contribute to metastasis, immortality, angiogenesis, tissue invasion, stemness and chemo/radio-resistance. Exosome-derived microRNAs (miRNAs) and long non-coding RNAs (lnc RNAs) are involved in the pathophysiology of cancers and neurodegenerative diseases. For instance, exosomes derived from mesenchymal stromal cells, astrocytes, macrophages, and acute myeloid leukemia (AML) cells are involved in the cancer progression and stemness as they induce chemotherapeutic drug resistance in several cancer cells. This review covered the recent research advances in understanding the role of exosomes in cancer progression, metastasis, angiogenesis, stemness and drug resistance by illustrating the modulatory effects of exosomal cargo (ex. miRNA, lncRNAs, etc.) on cell signaling pathways involved in cancer progression and cancer stem cell growth and development. Recent reports have implicated exosomes even in the treatment of several cancers. For instance, exosomes-loaded with novel anti-cancer drugs such as phytochemicals, tumor-targeting proteins, anticancer peptides, nucleic acids are known to interfere with drug resistance pathways in several cancer cell lines. In addition, this review depicted the need to develop exosome-based novel diagnostic biomarkers for early detection of cancers and neurodegenerative disease. Furthermore, the role of exosomes in stroke and oxidative stress-mediated neurodegenerative diseases including Alzheimer’s disease (AD), and Parkinson’s disease (PD) is also discussed in this article.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (N.M.B.); (S.H.D.)
| | - Shalini H. Doreswamy
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (N.M.B.); (S.H.D.)
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; (S.P.S.); (R.R.P.)
| | - Asha Srinivasan
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Rajeswara Rao Pragada
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; (S.P.S.); (R.R.P.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Correspondence: (S.V.M.); or (G.A.); Tel.: +1-440-263-7461 or +7-964-493-1515 (G.A.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: (S.V.M.); or (G.A.); Tel.: +1-440-263-7461 or +7-964-493-1515 (G.A.)
| |
Collapse
|
41
|
Cabeza L, Perazzoli G, Peña M, Cepero A, Luque C, Melguizo C, Prados J. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Release 2020; 327:296-315. [PMID: 32814093 DOI: 10.1016/j.jconrel.2020.08.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles of nanometric size secreted by cells to communicate with other cells, either nearby or remotely. Their physicochemical properties make them a promising nanomedicine for drug transport and release in cancer therapy. In this review, we present the different types and biogenesis of EVs and highlight the importance of adequately selecting the cell of origin in cancer therapy. Furthermore, the main methodologies followed for the isolation of EVs and drug loading, as well as the modification and functionalization of these vesicles to generate EV-based nanocarriers are discussed. Finally, we review some of the main studies using drug-loaded exosomes in tumor therapy both in in vitro and in vivo models (even in resistant tumors). These investigations show promising results, achieving significant improvement in the antitumor effect of drugs in most cases. However, the number of clinical trials and patents based on these nanoformulations is still low, thus further research is still warranted in this area.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
42
|
Comprehensive Analysis of Expression, Clinicopathological Association and Potential Prognostic Significance of RABs in Pancreatic Cancer. Int J Mol Sci 2020; 21:ijms21155580. [PMID: 32759795 PMCID: PMC7432855 DOI: 10.3390/ijms21155580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
RAB proteins (RABs) represent the largest subfamily of Ras-like small GTPases that regulate a wide variety of endosomal membrane transport pathways. Their aberrant expression has been demonstrated in various malignancies and implicated in pathogenesis. Using The Cancer Genome Atlas (TCGA) database, we analyzed the differential expression and clinicopathological association of RAB genes in pancreatic ductal adenocarcinoma (PDAC). Of the 62 RAB genes analyzed, five (RAB3A, RAB26, RAB25, RAB21, and RAB22A) exhibited statistically significant upregulation, while five (RAB6B, RAB8B, RABL2A, RABL2B, and RAB32) were downregulated in PDAC as compared to the normal pancreas. Racially disparate expression was also reported for RAB3A, RAB25, and RAB26. However, no clear trend of altered expression was observed with increasing stage and grade, age, and gender of the patients. PDAC from occasional drinkers had significantly higher expression of RAB21 compared to daily or weekly drinkers, whereas RAB25 expression was significantly higher in social drinkers, compared to occasional ones. The expression of RABL2A was significantly reduced in PDAC from diabetic patients, whereas RAB26 was significantly lower in pancreatitis patients. More importantly, a significant association of high expression of RAB21, RAB22A, and RAB25, and low expression of RAB6B, RABL2A, and RABL2B was observed with poorer survival of PC patients. Together, our study suggests potential diagnostic and prognostic significance of RABs in PDAC, warranting further investigations to define their functional and mechanistic significance.
Collapse
|
43
|
Li L, Wan K, Xiong L, Liang S, Tou F, Guo S. CircRNA hsa_circ_0087862 Acts as an Oncogene in Non-Small Cell Lung Cancer by Targeting miR-1253/RAB3D Axis. Onco Targets Ther 2020; 13:2873-2886. [PMID: 32308420 PMCID: PMC7138622 DOI: 10.2147/ott.s243533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Circular RNAs (circRNAs) have been found to regulate several human tumors. The present study was to explore the mechanism of hsa_circ_0087862 in regulating non-small cell lung cancer (NSCLC). Methods Totally 102 NSCLC cases were enrolled. NCI-H1359 and A549 cells were transfected. Cells viability, apoptosis, migration and invasion were determined by CCK-8 assay, flow cytometry, scratch test and transwell experiment, respectively. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were performed. Xenograft tumor experiments were performed using nude mice. hsa_circ_0087862, miR-1253 and RAB3D expression in tissues/cells were detected by qRT-PCR. RAB3D and Ki67 protein expressions in cells/tissues were researched by Western blot and immunohistochemistry. Apoptosis of xenograft tumor tissue cells was detected using Tunel assay. Results hsa_circ_0087862 was significantly up-regulated in NSCLC patients, which was associated with poor prognosis (P < 0.05). hsa_circ_0087862 down-regulation prominently weakened NSCLC cells viability, migration, invasion and enhanced apoptosis (P < 0.01). hsa_circ_0087862 overexpression exhibited the opposite results in NSCLC cells. miR-1253 was sponged by hsa_circ_0087862. miR-1253 expression in NSCLC tissues was negatively correlated with hsa_circ_0087862 (P < 0.001). RAB3D expression in NSCLC was directly inhibited by miR-1253. miR-1253 down-regulation or RAB3D overexpression dramatically reversed NSCLC cells phenotype induced by hsa_circ_0087862 down-regulation. hsa_circ_0087862 down-regulation markedly inhibited tumor growth in vivo (P < 0.01). In xenograft tumor tissues, hsa_circ_0087862 down-regulation obviously decreased expression of RAB3D, Ki67 and increased apoptosis. Conclusion hsa_circ_0087862 acted as an oncogene in NSCLC by targeting miR-1253/RAB3D.
Collapse
Affiliation(s)
- Lin Li
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Ke Wan
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Linkai Xiong
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Shuang Liang
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Fangfang Tou
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| | - Shanxian Guo
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, People's Republic of China
| |
Collapse
|
44
|
Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, Liu J, Zhang Y, Ke Y. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol 2020; 10:170. [PMID: 32154171 PMCID: PMC7047435 DOI: 10.3389/fonc.2020.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Glioma is the most common malignant tumor of the central nervous system, and often displays invasive growth. Recently, circular RNA (circRNA), which is a novel non-coding type of RNA, has been shown to play a vital role in glioma tumorigenesis. However, the functions and mechanism of lipocalin-2 (Lcn2)-derived circular RNA (hsa_circ_0088732) in glioma progression remain unclear. Methods: We evaluated hsa_circ_0088732 expression by fluorescence in situ hybridization (FISH), Sanger sequencing, and PCR assays. Cell apoptosis was evaluated by flow cytometry and Hoechst 33258 staining. Transwell migration and invasion assays were performed to measure cell metastasis and viability. In addition, the target miRNA of hsa_circ_0088732 and the target gene of miR-661 were predicted by a bioinformatics analysis, and the interactions were verified by dual-luciferase reporter assays. RAB3D expression was analyzed by an immunochemistry assay, and E-cadherin, N-cadherin, and vimentin protein expression were examined by western blot assays. A mouse xenograft model was developed and used to analyze the effects of hsa_circ_0088732 on glioma growth in vivo. Results: We verified that hsa_circ_0088732 is circular and highly expressed in glioma tissues. Knockdown of hsa_circ_0088732 induced glioma cell apoptosis and inhibited glioma cell migration, invasion, and epithelial-mesenchymal transition (EMT). We found that hsa_circ_0088732 negatively regulated miR-661 by targeting miR-661, and RAB3D was a target gene of miR-661. In addition, inhibition of miR-661 promoted glioma cell metastasis and suppressed cell apoptosis. Knockdown of RAB3D induced cell apoptosis and suppressed cell metastasis. Moreover, hsa_circ_0088732 accelerated glioma progression through its effects on the miR-661/RAB3D axis. Finally, results from a mouse xenograft model confirmed that knockdown of hsa_circ_0088732 induced miR-661 expression, resulting in suppression of RAB3D expression and inhibition of tumor growth in vivo. Conclusion: We demonstrated that hsa_circ_0088732 facilitated glioma progression by sponging miR-661 to increase RAB3D expression. This study provides a theoretical basis for understanding the development and occurrence of glioma, as well as for the development of targeted drugs.
Collapse
Affiliation(s)
- Tao Jin
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yan Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yuanzhi Li
- Department of Neurosurgery, Affiliated Hengyang Hospital of Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Haoqi He
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Liu
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Ke
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P. Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020259. [PMID: 31973201 PMCID: PMC7072214 DOI: 10.3390/cancers12020259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Eleanor A. Woodward
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Nathan J. Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
46
|
Daßler-Plenker J, Küttner V, Egeblad M. Communication in tiny packages: Exosomes as means of tumor-stroma communication. Biochim Biophys Acta Rev Cancer 2020; 1873:188340. [PMID: 31926290 DOI: 10.1016/j.bbcan.2020.188340] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Tumor-derived exosomes are nano-sized vesicles acting as multi-signal devices influencing tumor growth at local and distant sites. Exosomes are derived from the endolysosomal compartment and can shuttle diverse biomolecules like nucleic acids (microRNAs and DNA fragments), lipids, proteins, and even pharmacological compounds from a donor cell to recipient cells. The transfer of cargo to recipient cells enables tumor-derived exosomes to influence diverse cellular functions like proliferation, cell survival, and migration in recipient cells, highlighting tumor-derived exosomes as important players in communication within the tumor microenvironment and at distant sites. In this review, we discuss the mechanisms associated with exosome biogenesis and cargo sorting. In addition, we highlight the communication of tumor-derived exosomes in the tumor microenvironment during different phases of tumor development, focusing on angiogenesis, immune escape mechanisms, drug resistance, and metastasis.
Collapse
Affiliation(s)
| | - Victoria Küttner
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
47
|
Li X, Gao Y, Xu Z, Zhang Z, Zheng Y, Qi F. Identification of prognostic genes in adrenocortical carcinoma microenvironment based on bioinformatic methods. Cancer Med 2019; 9:1161-1172. [PMID: 31856409 PMCID: PMC6997077 DOI: 10.1002/cam4.2774] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background To identify prognostic genes which were associated with adrenocortical carcinoma (ACC) tumor microenvironment (TME). Methods and materials Transcriptome profiles and clinical data of ACC samples were collected from The Cancer Genome Atlas (TCGA) database. We use ESTIMATE (estimation of stromal and Immune cells in malignant tumor tissues using expression data) algorithm to calculate immune scores, stromal scores and estimate scores. Heatmap and volcano plots were applied for differential analysis. Venn plots were used for intersect genes selection. We used protein‐protein interaction (PPI) networks and functional analysis to explore underlying pathways. After performing stepwise regression method and multivariate Cox analysis, we finally screened hub genes associated with ACC TME. We calculated risk scores (RS) for ACC cases based on multivariate Cox results and evaluated the prognostic value of RS shown by receiver operating characteristic curve (ROC). We investigated the association between hub genes with immune infiltrates supported by algorithm from online TIMER database. Results Gene expression profiles and clinical data were downloaded from TCGA. Lower immune scores were observed in disease with distant metastasis (DM) and locoregional recurrence (LR) than other cases (P = .0204). Kaplan‐Meier analysis revealed that lower immune scores were significantly associated with poor overall survival (OS) (P = .0495). We screened 1649 differentially expressed genes (DEGs) and 1521 DEGs based on immune scores and stromal scores, respectively. Venn plots helped us find 1122 intersect genes. After analysing by cytoHubba from Cytoscape software, 18 hub genes were found. We calculated RS and ROC showed significantly predictive accuracy (area under curve (AUC) = 0.887). ACC patients with higher RS had worse survival outcomes (P < .0001). Results from TIMER (tumor immune estimation resource) database revealed that HLA‐DOA was significantly related with immune cells infiltration. Conclusion We screened a list of TME‐related genes which predict poor survival outcomes in ACC patients from TCGA database.
Collapse
Affiliation(s)
- Xiao Li
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Gao
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zicheng Xu
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhang
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Jiashi W, Chuang Q, Zhenjun Z, Guangbin W, Bin L, Ming H. MicroRNA-506-3p inhibits osteosarcoma cell proliferation and metastasis by suppressing RAB3D expression. Aging (Albany NY) 2019; 10:1294-1305. [PMID: 29905536 PMCID: PMC6046236 DOI: 10.18632/aging.101468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is an aggressive bone tumor primarily affecting children and adolescents. Its cause is not yet fully understood, and there is an urgent need for more effective treatment. In the present study we identified several miRNAs whose expression is altered in osteosarcoma compared to adjacent normal tissue. Moreover, expression levels of one of those miRNAs, miR-506-3p, correlated negatively with expression of RAB3D (a Ras-related protein). Suppression of miR-506-3p in osteosarcoma led to increased expression of RAB3D, which in turn led to increased CDK4 (cyclin-dependent kinase 4) and MMP9 (matrix metalloprotein 9) activities. Our results suggest that miR-506-3p acts as a tumor suppressor in osteosarcoma and that its downregulation leads to tumor cell proliferation and metastasis due to upregulation of RAB3D- and CDK4-mediated signaling. miR-506-3p thus appears be a potentially useful target for adjuvant therapy in osteosarcoma patients.
Collapse
Affiliation(s)
- Wang Jiashi
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qiu Chuang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhang Zhenjun
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wang Guangbin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Li Bin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - He Ming
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
49
|
Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 2019; 35:531-545. [PMID: 31529349 DOI: 10.1007/s10103-019-02880-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
This review article aims to address the kinetic of TDEs in cancer cells pre- and post-radiotherapy. Radiotherapy is traditionally used for the treatment of multiple cancer types; however, there is growing evidence to show that radiotherapy exerts NTEs on cells near to the irradiated cells. In tumor mass, irradiated cells can affect non-irradiated cells in different ways. Of note, exosomes are nano-scaled cell particles releasing from tumor cells and play key roles in survival, metastasis, and immunosuppression of tumor cells. Recent evidence indicated that irradiation has the potential to affect the dynamic of different signaling pathways such as exosome biogenesis. Indeed, exosomes act as intercellular mediators in various cell communication through transmitting bio-molecules. Due to their critical roles in cancer biology, exosomes are at the center of attention. TDEs contain an exclusive molecular signature that they may serve as tumor biomarker in the diagnosis of different cancers. Interestingly, radiotherapy and IR could also contribute to altering the dynamic of exosome secretion. Most probably, the content of exosomes in irradiated cells is different compared to exosomes originated from the non-irradiated BCs. Irradiated cells release exosomes with exclusive content that mediate NTEs in BCs. Considering variation in cell type, IR doses, and radio-resistance or radio-sensitivity of different cancers, there is, however, contradictions in the feature and activity of irradiated exosomes on neighboring cells.
Collapse
|
50
|
Liu W, Li J, Zhang P, Hou Q, Feng S, Liu L, Cui D, Shi H, Fu Y, Luo Y. A novel pan-cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Cancer Sci 2019; 110:2941-2959. [PMID: 31343810 PMCID: PMC6726694 DOI: 10.1111/cas.14143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
A sensitive and specific diagnosis biomarker, in principle scalable to most cancer types, is needed to reduce the prevalent cancer mortality. Meanwhile, the investigation of diagnosis determinants of a biomarker will facilitate the interpretation of its screening results in clinic. Here we design a large-scale (1558 enrollments), multicenter (multiple hospitals), and cross-validation (two datasets) clinic study to validate plasma Hsp90α quantified by ELISA as a pan-cancer biomarker. ROC curve shows the optimum diagnostic cutoff is 69.19 ng/mL in discriminating various cancer patients from all controls (AUC 0.895, sensitivity 81.33% and specificity 81.65% in test cohort; AUC 0.893, sensitivity 81.72% and specificity 81.03% in validation cohort). Similar results are noted in detecting early-stage cancer patients. Plasma Hsp90α maintains also broad-spectrum for cancer subtypes, especially with 91.78% sensitivity and 91.96% specificity in patients with AFP-limited liver cancer. In addition, we demonstrate levels of plasma Hsp90α are determined by ADAM10 expression, which will affect Hsp90α content in exosomes. Furthermore, Western blotting and PRM-based quantitative proteomics identify that partial false ELISA-negative patients secret high levels of plasma Hsp90α. Mechanism analysis reveal that TGFβ-PKCγ gene signature defines a distinct pool of hyperphosphorylated Hsp90α at Theronine residue. In clinic, a mechanistically relevant population of false ELISA-negative patients express also higher levels of PKCγ. In sum, plasma Hsp90α is a novel pan-cancer diagnosis biomarker, and cancer diagnosis with plasma Hsp90α is particularly effective in those patients with high expression of ADAM10, but may be insufficient to detect the patients with low ADAM10 and those with hyperphosphorylated Hsp90α.
Collapse
Affiliation(s)
- Wei Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ping Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Qiaoyun Hou
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lisheng Liu
- Clinical Laboratory, Shandong Cancer Hospital, Jinan, China
| | - Dawei Cui
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|