1
|
Frühbeck G, Criado S, Gómez-Ambrosi J, Ramírez B, Becerril S, Rodríguez A, Neira G, Salmón-Gómez L, Valentí V, Moncada R, Baixauli J, Silva C, Catalán V. Increased IL- 36γ in visceral adipose tissue as a key mediator of obesity-driven inflammation in colon cancer. J Mol Med (Berl) 2025:10.1007/s00109-025-02546-9. [PMID: 40268791 DOI: 10.1007/s00109-025-02546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Dysfunctional adipose tissue (AT) in the context of obesity promotes a chronic inflammatory state, associated with worse cancer progression and prognosis. Interleukin (IL)-36γ is a proinflammatory factor increased in obesity. The aim was to analyse the role of IL-36γ in colon cancer (CC) development in patients with obesity. Samples obtained from 74 volunteers (27 with normal weight (NW) and 47 with obesity (OB)) were used in a case-control study. Participants were also subclassified according to the presence of CC (45 without and 29 with CC). HT-29 cells were treated with pro-inflammatory factors, adipocyte conditioned media (ACM) and IL-36γ to evaluate the expression levels of inflammation- and extracellular matrix (ECM) remodelling-related molecules. Increased gene expression levels of IL36G and IL36R in visceral AT from patients with OB and CC were found. Moreover, mRNA levels of IL36G were significantly associated with the gene expression levels of its receptor and relevant genes involved in AT inflammation (ASC, IL1B and NLRP6). Consistently, IL36G expression was upregulated by hypoxia, inflammation-related factors (LPS, TNF-α and leptin) and by the adipocyte secretome from patients with obesity in HT-29 cancer cells. Furthermore, we revealed that IL-36γ increased the gene expression levels of inflammation-related genes (IL36G, IL1 A, IL1B, IL6, IL8 and NGAL) as well as ECM markers (MMP9, SPP1 and TNC) in HT-29 cells. Increased gene expression levels of IL36G in VAT from patients with OB and CC may promote a pro-inflammatory microenvironment favourable for tumour progression and migration. KEY MESSAGES: Obesity and colon cancer increase gene expression levels of IL36G and IL36R in visceral adipose tissue. Hypoxia, inflammation-related factors and the adipocyte secretome from patients with obesity upregulate mRNA levels of IL36G in HT-29 cancer cells. IL-36γ increase the gene expression levels of inflammation-related genes (IL36G, IL1A, IL1B, IL6, IL8 and NGAL) as well as ECM markers (MMP9, SPP1 and TNC) in HT-29 cells.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology & Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain.
| | - Sofía Criado
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Laura Salmón-Gómez
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology & Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
2
|
Cursano MC, Valsecchi AA, Pantano F, Di Maio M, Procopio G, Berruti A, Bertoldo F, Tucci M, De Giorgi U, Santini D. Bone health and body composition in prostate cancer: Meet-URO and AIOM consensus about prevention and management strategies. ESMO Open 2024; 9:103484. [PMID: 38901175 PMCID: PMC11252762 DOI: 10.1016/j.esmoop.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) treatments are associated with a detrimental impact on bone health (BH) and body composition. However, the evidence on these issues is limited and contradictory. This consensus, based on the Delphi method, provides further guidance on BH management in PCa. MATERIALS AND METHODS In May 2023, a survey made up of 37 questions and 74 statements was developed by a group of oncologists and endocrinologists with expertise in PCa and BH. In June 2023, 67 selected Italian experts, belonging to the Italian scientific societies Italian Association of Medical Oncology and Italian Network for Research in Urologic-Oncology (Meet-URO), were invited by e-mail to complete it, rating their strength of agreement with each statement on a 5-point scale. An agreement ≥75% defined the statement as accepted. RESULTS In non-metastatic hormone-sensitive PCa, the panel agreed that androgen deprivation therapy (ADT) alone implies sufficient fracture risk to warrant antifracture therapy with bone-targeting agents (BTAs) for cancer treatment-induced bone loss (CTIBL) prevention (79%). Therefore, no consensus was reached (48%) for the treatment with BTAs of patients receiving short-term ADT (<6 months). All patients receiving active treatment for metastatic hormone-sensitive PCa (75%), non-metastatic castration-resistant PCa (89%) and metastatic castration-resistant PCa (mCRPC) without bone metastases (84%) should be treated with BTAs at the doses and schedule for CTIBL prevention. All mCRPC patients with bone metastasis should be treated with BTAs to reduce skeletal-related events (94%). In all settings, the panel analyzed the type and timing of treatments and examinations to carry out for BH monitoring. The panel agreed on the higher risk of sarcopenic obesity of these patients and its correlation with bone fragility. CONCLUSIONS This consensus highlights areas lacking major agreement, like non-metastatic hormone-sensitive prostate cancer patients undergoing short-term ADT. Evaluation of these issues in prospective clinical trials and identification of early biomarkers of bone loss are particularly urgent.
Collapse
Affiliation(s)
- M C Cursano
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola
| | - A A Valsecchi
- Department of Oncology, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Ospedale Molinette, Turin
| | - F Pantano
- Department of Medical Oncology, Campus Bio-Medico University, Rome
| | - M Di Maio
- Department of Oncology, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Ospedale Molinette, Turin
| | - G Procopio
- Programma Prostata Fondazione Istituto Nazionale Tumori Milano, Milan
| | - A Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST SpedaliCivili di Brescia, Brescia
| | - F Bertoldo
- Emergency Medicine, Department of Medicine, University of Verona, Verona
| | - M Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, Asti
| | - U De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola
| | - D Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy.
| |
Collapse
|
3
|
De Mario A, Trevellin E, Piazza I, Vindigni V, Foletto M, Rizzuto R, Vettor R, Mammucari C. Mitochondrial Ca 2+ signaling is a hallmark of specific adipose tissue-cancer crosstalk. Sci Rep 2024; 14:8469. [PMID: 38605098 PMCID: PMC11009327 DOI: 10.1038/s41598-024-55650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Elisabetta Trevellin
- Internal Medicine Unit, Department of Medicine, Padua University Hospital, via Giustiniani 2, 35128, Padua, Italy
| | - Ilaria Piazza
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Vincenzo Vindigni
- Clinic of Plastic and Reconstructive Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Mirto Foletto
- Bariatric Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Roberto Vettor
- Internal Medicine Unit, Department of Medicine, Padua University Hospital, via Giustiniani 2, 35128, Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
4
|
Akrida I, Papadaki H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer. Mol Cell Biochem 2023; 478:2419-2433. [PMID: 36715963 DOI: 10.1007/s11010-023-04670-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Obesity is a significant risk factor for cancer development. Within the tumor microenvironment, adipocytes interact with cancer cells, immune cells, fibroblasts and endothelial cells, and orchestrate several signaling pathways by secreting bioactive molecules, including adipokines. Adipokines or adipocytokines are produced predominantly by adipocytes and function as autocrine, paracrine and endocrine mediators. Adipokines can exert pro- and anti-inflammatory functions, and they play a pivotal role in the state of chronic low-grade inflammation that characterizes obesity. Epithelial-mesenchymal transition (EMT), a complex biological process whereby epithelial cells acquire the invasive, migratory mesenchymal phenotype is well-known to be implicated in cancer progression and metastasis. Emerging evidence suggests that there is a link between adipokines and EMT. This may contribute to the correlation that has been documented between obesity and cancer progression. This review summarizes the existing body of evidence supporting an association between the process of EMT in cancer and the adipokines leptin, adiponectin, resistin, visfatin/NAMPT, lipocalin-2/NGAL, as well as other newly discovered adipokines including chemerin, nesfatin-1/nucleobindin-2, AZGP1, SFRP5 and FABP4.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
5
|
HU X, YAN C, ZHANG Y, LI G, ZHOU Z, RUAN Y, LIU S, BIAN L. [Leptin-mediated ERK Signaling Pathway Promotes the Transformation
of Rat Alveolar Type II Epithelial Cells Induced by Yunnan Tin Mine Dust]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:732-740. [PMID: 37989336 PMCID: PMC10663774 DOI: 10.3779/j.issn.1009-3419.2023.102.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Currently, a significant number of miners are involved in mining operations at the Gejiu tin mine in Yunnan. This occupational setting is associated with exposure to dust particles, heavy metals, polycyclic aromatic hydrocarbons, and radioactive radon, thereby significantly elevating the risk of lung cancer. This study aims to investigate the involvement of leptin-mediated extracellular regulated protein kinase (ERK) signaling pathway in the malignant transformation of rat alveolar type II epithelial cells induced by Yunnan tin mine dust. METHODS Immortalized rat alveolar cells type II (RLE-6TN) cells were infected with Yunnan tin mine dust at a concentration of 200 μg/mL for nine consecutive generations to establish the infected cell model, which was named R₂₀₀ cells. The cells were cultured normally, named as R cells. The expression of leptin receptor in both cell groups was detected using the Western blot method. The optimal concentration of leptin and mitogen-activated protein kinase kinase (MEK) inhibitor (U0126) on R₂₀₀ cells was determined using the MTT method. Starting from the 20th generation, the cells in the R group were co-cultured with leptin, while the cells in the R₂₀₀ group were co-cultured with the MEK inhibitor U0126. The morphological alterations of the cells in each group were visualized utilizing hematoxylin-eosin staining. Additionally, concanavalin A (ConA) was utilized to detect any morphological differences, and an anchorage-independent growth assay was conducted to assess the malignant transformation of the cells. The changes in the ERK signaling pathway in epithelial cells after the action of leptin were detected using the Western blot method. RESULTS Both the cells in the R group and R₂₀₀ group express leptin receptor OB-R. Compared to the R₂₀₀ group, the concentration of leptin at 100 ng/mL shows the most significant pro-proliferation effect. The proliferation of R₂₀₀ cells infected with the virus is inhibited by 30 μmol/L U0126, and a statistically significant divergence was seen when compared to the control group (P<0.05). Starting from the 25th generation, the cell morphology of the leptin-induced R₂₀₀ group (R₂₀₀L group) underwent changes, leading to malignant transformation observed at the 30th generation. The characteristics of malignant transformation became evident by the 40th generation in the R₂₀₀L group. In contrast, the other groups showed agglutination of P40 cells, and the speed of cell aggregation increased with an increase in ConA concentration. Notably, the R₂₀₀L group exhibited faster cell aggregation compared to the U0126-induced R₂₀₀ (R₂₀₀LU) group. Additionally, the cells in the R₂₀₀L group were capable of forming clones starting from P30, with a colony formation rate of 2.25‰±0.5‰. However, no clonal colonies were observed in the R₂₀₀LU group and R₂₀₀ group. The expression of phosphorylated extracellular signal-regulated kinase (pERK) was enhanced in cells of the R₂₀₀L group. However, when the cells in the R₂₀₀L group were treated with U0126, a blocking agent, the phosphorylation level of pERK decreased. CONCLUSIONS Leptin can promote the malignant transformation of lung epithelial cells infected by mine dust, and the ERK signaling pathway may be necessary for the transformation of alveolar type II epithelial cells induced by Yunnan tin mine dust.
Collapse
|
6
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
7
|
Samaddar S, Buckles D, Saha S, Zhang Q, Bansal A. Translating Molecular Biology Discoveries to Develop Targeted Cancer Interception in Barrett's Esophagus. Int J Mol Sci 2023; 24:11318. [PMID: 37511077 PMCID: PMC10379200 DOI: 10.3390/ijms241411318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a rapidly increasing lethal tumor. It commonly arises from a metaplastic segment known as Barrett's esophagus (BE), which delineates the at-risk population. Ample research has elucidated the pathogenesis of BE and its progression from metaplasia to invasive carcinoma; and multiple molecular pathways have been implicated in this process, presenting several points of cancer interception. Here, we explore the mechanisms of action of various agents, including proton pump inhibitors, non-steroidal anti-inflammatory drugs, metformin, and statins, and explain their roles in cancer interception. Data from the recent AspECT trial are discussed to determine how viable a multipronged approach to cancer chemoprevention would be. Further, novel concepts, such as the repurposing of chemotherapeutic drugs like dasatinib and the prevention of post-ablation BE recurrence using itraconazole, are discussed.
Collapse
Affiliation(s)
- Sohini Samaddar
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Daniel Buckles
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Souvik Saha
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Qiuyang Zhang
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center, Dallas, TX 75246, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Ajay Bansal
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Bocian-Jastrzębska A, Malczewska-Herman A, Rosiek V, Kos-Kudła B. Assessment of the Role of Leptin and Adiponectinas Biomarkers in Pancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:3517. [PMID: 37444627 DOI: 10.3390/cancers15133517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Data on the possible connection between circulating adipokines and PanNENs are limited. This novel study aimed to assess the serum levels of leptin and adiponectin and their ratio in patients with PanNENs and to evaluate the possible relationship between them and PanNEN's grade or stage, including the presence of metastases. The study group consisted of PanNENs (n = 83), and healthy controls (n = 39). Leptin and adiponectin measurement by an ELISA assay was undertaken in the entire cohort. The serum concentration of adiponectin was significantly higher in the control group compared to the study group (p < 0.001). The concentration of leptin and adiponectin was significantly higher in females than in males (p < 0.01). Anincreased leptin-adiponectin ratio was observed in well-differentiated PanNENs (G1) vs. moderatelydifferentiated PanNENs (G2) (p < 0.05). An increased leptin-adiponectin ratio was found in PanNENs with Ki-67 < 3% vs. Ki-67 ≥ 3% (p < 0.05). PanNENs with distal disease presented lower leptin levels (p < 0.001) and a decreased leptin-adiponectin ratio (p < 0.01) compared with the localized disease group. Leptin, adiponectin, and the leptin-adiponectin ratio may serve as potential diagnostic, prognostic, and predictive biomarkers for PanNENs. Leptin levels and the leptin-adiponectin ratio may play an important role as predictors of malignancy and metastasis in PanNENs.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| | - Anna Malczewska-Herman
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| | - Violetta Rosiek
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
9
|
Sahin Y, Aygan S, Hacibey I, Yuce M, Yilmaz M, Ozsoy S, Semercioz A, Yaser Muslumanoglu A. Peritumoral Adipose Tissue Density Predicts the Malignancy in cT1 Renal Masses. UROLOGY RESEARCH & PRACTICE 2023; 49:191-197. [PMID: 37877869 PMCID: PMC10346103 DOI: 10.5152/tud.2023.23016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/31/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE Not only the frequency of surgery for small renal masses has increased secondary to the improvements and frequent use of imaging techniques but also the frequency of detection of benign lesions in nephrectomy specimens has increased as well. We aimed to assess the predictive value of computed tomography density of perirenal adipose tissue and peritumoral adipose tissue in distinguishing between benign and malignant renal masses. MATERIALS AND METHODS The current study included 116 patients who underwent nephrectomy for renal masses between January 2015 and December 2020. Clinicodemographic and preoperative computed tomography features and final pathological findings of the patients were recorded. According to the final pathological results, the patients were divided into 2 groups benign (n = 32) and malignant (n = 84). Groups were compared statistically in terms of perirenal adipose tissue and peritumoral adipose tissue density. RESULTS The median tumor size was 5.00 cm. The rate of benign tumors was higher in female patients (P = .005). The median peritumoral adipose tissue density among cT1 and cT1a tumors was higher in the malignant group (P < .001, for each). At a cutoff value of 97.50 Hounsfield Units, the peritumoral adipose tissue density had a sensitivity of 83.0% and a specificity of 79.2% for predicting the presence of malignant tumors in ≤7 cm renal masses. Using a cutoff value of -97.50 Hounsfield Units, the peritumoral adipose tissue density had a sensitivity of 88.9% and a specificity of 83.3% for predicting the presence of malignant tumors in ≤4 cm renal masses. CONCLUSION The peritumoral adipose tissue density in the preoperative computed tomography images predicts the malignancy in cT1 renal masses.
Collapse
Affiliation(s)
- Yusuf Sahin
- Department of Urology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Sinan Aygan
- Department of Radiology, University of Health Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ibrahim Hacibey
- Department of Urology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Murat Yuce
- Department of Radiology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Yilmaz
- Department of Urology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Sule Ozsoy
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Atilla Semercioz
- Department of Urology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Yaser Muslumanoglu
- Department of Urology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Trevellin E, Bettini S, Pilatone A, Vettor R, Milan G. Obesity, the Adipose Organ and Cancer in Humans: Association or Causation? Biomedicines 2023; 11:biomedicines11051319. [PMID: 37238992 DOI: 10.3390/biomedicines11051319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Epidemiological observations, experimental studies and clinical data show that obesity is associated with a higher risk of developing different types of cancer; however, proof of a cause-effect relationship that meets the causality criteria is still lacking. Several data suggest that the adipose organ could be the protagonist in this crosstalk. In particular, the adipose tissue (AT) alterations occurring in obesity parallel some tumour behaviours, such as their theoretically unlimited expandability, infiltration capacity, angiogenesis regulation, local and systemic inflammation and changes to the immunometabolism and secretome. Moreover, AT and cancer share similar morpho-functional units which regulate tissue expansion: the adiponiche and tumour-niche, respectively. Through direct and indirect interactions involving different cellular types and molecular mechanisms, the obesity-altered adiponiche contributes to cancer development, progression, metastasis and chemoresistance. Moreover, modifications to the gut microbiome and circadian rhythm disruption also play important roles. Clinical studies clearly demonstrate that weight loss is associated with a decreased risk of developing obesity-related cancers, matching the reverse-causality criteria and providing a causality correlation between the two variables. Here, we provide an overview of the methodological, epidemiological and pathophysiological aspects, with a special focus on clinical implications for cancer risk and prognosis and potential therapeutic interventions.
Collapse
Affiliation(s)
- Elisabetta Trevellin
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Anna Pilatone
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Roberto Vettor
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Gabriella Milan
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| |
Collapse
|
11
|
Kotsafti A, Fassan M, Cavallin F, Angerilli V, Saadeh L, Cagol M, Alfieri R, Pilati P, Castoro C, Castagliuolo I, Scarpa M, Scarpa M. Tumor immune microenvironment in therapy-naive esophageal adenocarcinoma could predict the nodal status. Cancer Med 2023; 12:5526-5535. [PMID: 36281585 PMCID: PMC10028023 DOI: 10.1002/cam4.5386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Currently, preoperative staging of esophageal adenocarcinoma (EAC) has modest reliability and accuracy for pT and pN stages prediction, which heavily affects overall survival. The interplay among immune checkpoints, oncogenes, and intratumoral and peritumoral immune infiltrating cells could be used to predict loco-regional metastatic disease in early EAC. METHODS We prospectively evaluated immune markers expression and oncogenes status as well as intratumoral and peritumoral immune infiltrating cells populations in esophageal mucosa samples obtained from neoadjuvant therapy-naïve patients who had esophagectomy for EAC. RESULTS Vascular invasion and high infiltration of lamina propria mononuclear cells resulted associated with nodal metastasis. Low infiltration of activated CD8+ CD28+ T cells was observed in both intratumoral and peritumoral mucosa of patients with nodal metastasis. Low levels of CD69, MYD88, and TLR4 transcripts were detected in the intratumoral specimen of patients with lymph node involvement. Receiver operating characteristic curve analysis showed good accuracy for detecting nodal metastasis for all the markers tested. Significant lower infiltration of CD8 T cells and M1 macrophages and a lower expression of CD8A, CD8B, and TBX21 were found also in Esophageal Adenocarcinoma TCGA panCancer Atlas in the normal tissue of patients with nodal metastasis. CONCLUSIONS Our data suggest that immune surveillance failure is the main driver of nodal metastasis onset. Moreover, nodal metastasis containment also involves the immune microenvironment of the peritumoral healthy tissue.
Collapse
Affiliation(s)
- Andromachi Kotsafti
- Laboratory of Advanced Translational ResearchVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Matteo Fassan
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | | | | | - Luca Saadeh
- Chirurgia Generale 3University Hospital of PaduaPaduaItaly
| | - Matteo Cagol
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Rita Alfieri
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Pierluigi Pilati
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Carlo Castoro
- Department of Upper GI SurgeryHumanitas Research Hospital‐Humanitas UniversityRozzanoItaly
| | | | - Melania Scarpa
- Laboratory of Advanced Translational ResearchVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Marco Scarpa
- Chirurgia Generale 3University Hospital of PaduaPaduaItaly
| |
Collapse
|
12
|
Moreira-Barbosa C, Matos A, Fernandes R, Mendes-Ferreira M, Rodrigues R, Cruz T, Costa ÂM, Cardoso AP, Ghilardi C, Oliveira MJ, Ribeiro R. The role of fatty acids metabolism on cancer progression and therapeutics development. BIOACTIVE LIPIDS 2023:101-132. [DOI: 10.1016/b978-0-12-824043-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073942. [PMID: 35409299 PMCID: PMC8999972 DOI: 10.3390/ijms23073942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.
Collapse
|
14
|
Favaretto F, Bettini S, Busetto L, Milan G, Vettor R. Adipogenic progenitors in different organs: Pathophysiological implications. Rev Endocr Metab Disord 2022; 23:71-85. [PMID: 34716543 PMCID: PMC8873140 DOI: 10.1007/s11154-021-09686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
In physiological conditions, the adipose organ resides in well-defined areas, where it acts providing an energy supply and as an endocrine organ involved in the control of whole-body energy metabolism. Adipose tissue adipokines connect the body's nutritional status to the regulation of energy balance. When it surrounds organs, it provides also for mechanical protection. Adipose tissue has a complex and heterogenous cellular composition that includes adipocytes, adipose tissue-derived stromal and stem cells (ASCs) which are mesenchymal stromal cells, and endothelial and immune cells, which signal to each other and to other tissues to maintain homeostasis. In obesity and in other nutrition related diseases, as well as in age-related diseases, biological and functional changes of adipose tissue give rise to several complications. Obesity triggers alterations of ASCs, impairing adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance and other metabolic disorders. Adipose tissue grows by hyperplasia recruiting new ASCs and by hypertrophy, up to its expandability limit. To overcome this limitation and to store the excess of nutrients, adipose tissue develops ectopically, involving organs such as muscle, bone marrow and the heart. The origin of ectopic adipose organ is not clearly elucidated, and a possible explanation lies in the stimulation of the adipogenic differentiation of mesenchymal precursor cells which normally differentiate toward a lineage specific for the organ in which they reside. The chronic exposition of these newly-formed adipose depots to the pathological environment, will confer to them all the phenotypic characteristics of a dysfunctional adipose tissue, perpetuating the organ alterations. Visceral fat, but also ectopic fat, either in the liver, muscle or heart, can increase the risk of developing insulin resistance, type 2 diabetes, and cardiovascular diseases. Being able to prevent and to target dysfunctional adipose tissue will avoid the progression towards the complications of obesity and other nutrition-related diseases. The aim of this review is to summarize some of the knowledge regarding the presence of adipose tissue in particular tissues (where it is not usually present), describing the composition of its adipogenic precursors, and the interactions responsible for the development of organ pathologies.
Collapse
Affiliation(s)
- Francesca Favaretto
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Silvia Bettini
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Luca Busetto
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Gabriella Milan
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Roberto Vettor
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| |
Collapse
|
15
|
Blaszczak AM, Quiroga D, Jalilvand A, Torres Matias GS, Wright VP, Liu J, Yu L, Bradley D, Hsueh WA, Carson WE. Characterization of inflammatory changes in the breast cancer associated adipose tissue and comparison to the unaffected contralateral breast. Surg Oncol 2021; 39:101659. [PMID: 34534729 DOI: 10.1016/j.suronc.2021.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adipose tissue has emerged as an important window into cancer pathophysiology, revealing potential targets for novel therapeutic interventions. The goal of this study was to compare the breast adipose tissue (BrAT) immune milieu surrounding breast carcinoma and contralateral unaffected breast tissue obtained from the same patient. MATERIALS AND METHODS Patients undergoing bilateral mastectomy for unilateral breast cancer were enrolled for bilateral BrAT collection at the time of operation. After BrAT was processed, adipocyte and stromal vascular fraction (SVF) gene expression was quantified by PCR. SVF cells were also processed for flow cytometric immune cell characterization. RESULTS Twelve patients underwent bilateral mastectomy for unilateral ductal carcinoma. BrAT adipocyte CXCL2 gene expression trended higher in the tumor-affected breast as compared to the unaffected breast. Macrophage MCP-1 and PPARγ gene expression also tended to be higher in the tumor-affected breasts. T cell gene expression of FOXP3 (p = 0.0370) were significantly greater in tumor-affected breasts than unaffected breasts. Affected BrAT contained higher numbers of Th2 CD4+ cells (p = 0.0165) and eosinophils (p = 0.0095) while trending towards increased macrophage and lower Th1 CD4+ cells infiltration than tumor-affected BrAT. CONCLUSION This preliminary study aimed to identify the immunologic environment present within BrAT and is the first to directly compare this in individual patients' tumor-associated and unaffected BrAT. These findings suggest that cancer-affected BrAT had increased levels of T cell specific FOXP3 and higher levels of anti-inflammatory/regulatory cells compared to the contralateral BrAT.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dionisia Quiroga
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 410 W 12th Avenue, Columbus, OH, 43210, USA; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Starling Loving Hall, 320 W10th Ave, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Gina S Torres Matias
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, 2012 Kenny Rd, Columbus, OH, 43221, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 410 W 12th Avenue, Columbus, OH, 43210, USA; Department of Surgery, The Ohio State University, 410 W 10th Ave, N911 Doan Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Zhang J, Wu H, Wang R. Metabolic syndrome and esophageal cancer risk: a systematic review and meta‑analysis. Diabetol Metab Syndr 2021; 13:8. [PMID: 33468224 PMCID: PMC7816502 DOI: 10.1186/s13098-021-00627-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Many clinical studies evaluating the relationship between metabolic syndrome and esophageal cancer yielded uncertain results. The purpose of this study is to systematically assess the relationship between metabolic syndrome and esophageal cancer. METHODS We searched clinical studies on metabolic syndrome and esophageal cancer risk in PubMed, Embase, and the Cochrane Library. Meta-analysis was conducted by RevMan 5.3 softwares. RESULTS A total of four cohort studies and two case-control studies met eligibility criteria and were included in the meta-analysis. Meta-analysis using a fixed-effect model indicated that MetS was related with a higher risk of EC (OR: 1.16, 95% CI 1.08-1.25). Subgroup analyses grouped by pathological types showed that MetS was related with a higher risk of EAC (OR: 1.19, 95% CI 1.10-1.28). Subgroup analyses grouped by metabolic conditions showed hyperglycemia (OR: 1.12, 95% CI 1.03-1.21),hypertension (OR: 1.23, 95% CI 1.04-1.46), obesity (OR: 1.40, 95% CI 1.22-1.60, P < 0.05) were related with a higher risk of EAC. CONCLUSIONS Overall, our meta-analysis provides high quality evidence that metabolic syndrome was related with a higher risk of EAC. Among the individual components of the metabolic syndrome, hyperglycemia, hypertension and obesity may be the key factors.
Collapse
Affiliation(s)
- Jinjia Zhang
- Department of General Practice, Second Hospital of Hebei Medical University, Heping Western Road No. 215, Shijiazhuang, 050000 Hebei China
| | - Huadong Wu
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Rongying Wang
- Department of General Practice, Second Hospital of Hebei Medical University, Heping Western Road No. 215, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
17
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
18
|
Fairfield H, Dudakovic A, Khatib CM, Farrell M, Costa S, Falank C, Hinge M, Murphy CS, DeMambro V, Pettitt JA, Lary CW, Driscoll HE, McDonald MM, Kassem M, Rosen C, Andersen TL, van Wijnen AJ, Jafari A, Reagan MR. Myeloma-Modified Adipocytes Exhibit Metabolic Dysfunction and a Senescence-Associated Secretory Phenotype. Cancer Res 2020; 81:634-647. [PMID: 33218968 PMCID: PMC7854508 DOI: 10.1158/0008-5472.can-20-1088] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Bone marrow adipocytes (BMAd) have recently been implicated in accelerating bone metastatic cancers, such as acute myelogenous leukemia and breast cancer. Importantly, bone marrow adipose tissue (BMAT) expands with aging and obesity, two key risk factors in multiple myeloma disease prevalence, suggesting that BMAds may influence and be influenced by myeloma cells in the marrow. Here, we provide evidence that reciprocal interactions and cross-regulation of myeloma cells and BMAds play a role in multiple myeloma pathogenesis and treatment response. Bone marrow biopsies from patients with multiple myeloma revealed significant loss of BMAT with myeloma cell infiltration of the marrow, whereas BMAT was restored after treatment for multiple myeloma. Myeloma cells reduced BMAT in different preclinical murine models of multiple myeloma and in vitro using myeloma cell-adipocyte cocultures. In addition, multiple myeloma cells altered adipocyte gene expression and cytokine secretory profiles, which were also associated with bioenergetic changes and induction of a senescent-like phenotype. In vivo, senescence markers were also increased in the bone marrow of tumor-burdened mice. BMAds, in turn, provided resistance to dexamethasone-induced cell-cycle arrest and apoptosis, illuminating a new possible driver of myeloma cell evolution in a drug-resistant clone. Our findings reveal that bidirectional interactions between BMAds and myeloma cells have significant implications for the pathogenesis and treatment of multiple myeloma. Targeting senescence in the BMAd or other bone marrow cells may represent a novel therapeutic approach for treatment of multiple myeloma. SIGNIFICANCE: This study changes the foundational understanding of how cancer cells hijack the bone marrow microenvironment and demonstrates that tumor cells induce senescence and metabolic changes in adipocytes, potentially driving new therapeutic directions.
Collapse
Affiliation(s)
- Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Amel Dudakovic
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Casper M Khatib
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Mariah Farrell
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Samantha Costa
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Carolyne Falank
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Maja Hinge
- Division of Haematology, Department of Internal Medicine, Vejle Hospital, Vejle, Denmark
| | - Connor S Murphy
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Victoria DeMambro
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Jessica A Pettitt
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | - Michelle M McDonald
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.,Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Clifford Rosen
- Maine Medical Center Research Institute, Scarborough, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| | - Thomas L Andersen
- Clinical Cell Biology, Department of Regional Health Research, Vejle/Lillebaelt Hospital, University of Southern Denmark, Vejle, Denmark.,Clinical Cell Biology, Department of Pathology, Odense University Hospital - Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.
| | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, Maine. .,Tufts University School of Medicine, Boston, Massachusetts.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine
| |
Collapse
|
19
|
Chang ML, Yang Z, Yang SS. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int J Mol Sci 2020; 21:E8308. [PMID: 33167521 PMCID: PMC7663948 DOI: 10.3390/ijms21218308] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a highly dynamic endocrine tissue and constitutes a central node in the interorgan crosstalk network through adipokines, which cause pleiotropic effects, including the modulation of angiogenesis, metabolism, and inflammation. Specifically, digestive cancers grow anatomically near adipose tissue. During their interaction with cancer cells, adipocytes are reprogrammed into cancer-associated adipocytes and secrete adipokines to affect tumor cells. Moreover, the liver is the central metabolic hub. Adipose tissue and the liver cooperatively regulate whole-body energy homeostasis via adipokines. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, is currently considered a global epidemic and is related to low-grade systemic inflammation characterized by altered adipokine regulation. Obesity-related digestive diseases, including gastroesophageal reflux disease, Barrett's esophagus, esophageal cancer, colon polyps and cancer, non-alcoholic fatty liver disease, viral hepatitis-related diseases, cholelithiasis, gallbladder cancer, cholangiocarcinoma, pancreatic cancer, and diabetes, might cause specific alterations in adipokine profiles. These patterns and associated bases potentially contribute to the identification of prognostic biomarkers and therapeutic approaches for the associated digestive diseases. This review highlights important findings about altered adipokine profiles relevant to digestive diseases, including hepatic, pancreatic, gastrointestinal, and biliary tract diseases, with a perspective on clinical implications and mechanistic explorations.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 10630, Taiwan;
| |
Collapse
|
20
|
Wu HD, Zhang JJ, Zhou BJ. The effect of metformin on esophageal cancer risk in patients with type 2 diabetes mellitus: a systematic review and meta‑analysis. Clin Transl Oncol 2020; 23:275-282. [PMID: 32507907 DOI: 10.1007/s12094-020-02415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recently, numerous studies have yielded inconsistent results regarding the effect of metformin on esophageal cancer risk in type 2 diabetes mellitus patients. The purpose of this study is to systematically assess this effect using meta-analysis. METHODS We searched clinical studies on metformin and esophageal cancer risk in PubMed, Embase, and the Cochrane Library. After literature screening, a series of meta-analyses were conducted using RevMan 5.3 software. The pooled hazard ratio (HR) and the corresponding 95% confidence interval (CI) were used as the effect size. RESULTS Five eligible studies (four cohort studies and one case-control study) were included for our meta-analysis using a random-effect model. The analysis showed that metformin could not reduce esophageal cancer risk in type 2 diabetes mellitus patients (HR 0.88, 95% CI 0.60-1.28, P > 0.05). Subgroup analyses by geographic location showed that metformin significantly reduced esophageal cancer risk in Asian patients with type 2 diabetes mellitus (HR 0.59, 95% CI 0.39-0.91, P = 0.02), without heterogeneity between studies (P = 0.80 and I2 = 0%). CONCLUSIONS Overall, our systematic review and meta-analysis demonstrate that metformin does not reduce esophageal cancer risk in type 2 diabetes mellitus patients. However, a significant reduction in esophageal cancer risk in Asian populations remains to be clarified.
Collapse
Affiliation(s)
- H-D Wu
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Heping Western Road No.215, Shijiazhuang, 050000, Hebei, China
| | - J-J Zhang
- Department of General Practice, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - B-J Zhou
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Heping Western Road No.215, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
21
|
Zhao LL, Huang H, Wang Y, Wang TB, Zhou H, Ma FH, Ren H, Niu PH, Zhao DB, Chen YT. Lifestyle factors and long-term survival of gastric cancer patients: A large bidirectional cohort study from China. World J Gastroenterol 2020; 26:1613-1627. [PMID: 32327910 PMCID: PMC7167420 DOI: 10.3748/wjg.v26.i14.1613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lifestyle factors such as body mass index (BMI), alcohol drinking, and cigarette smoking, are likely to impact the prognosis of gastric cancer, but the evidence has been inconsistent.
AIM To investigate the association of lifestyle factors and long-term prognosis of gastric cancer patients in the China National Cancer Center.
METHODS Patients with gastric cancer were identified from the China National Cancer Center Gastric Cancer Database 1998-2018. Survival analysis was performed via Kaplan-Meier estimates and Cox proportional hazards models.
RESULTS In this study, we reviewed 18441 cases of gastric cancer. Individuals who were overweight or obese were associated with a positive smoking and drinking history (P = 0.002 and P < 0.001, respectively). Current smokers were more likely to be current alcohol drinkers (61.3% vs 10.1% vs 43.2% for current, never, and former smokers, respectively, P < 0.001). Multivariable results indicated that BMI at diagnosis had no significant effect on prognosis. In gastrectomy patients, factors independently associated with poor survival included older age (HR = 1.20, 95%CI: 1.05-1.38, P = 0.001), any weight loss (P < 0.001), smoking history of more than 30 years (HR = 1.14, 95%CI: 1.04-1.24, P = 0.004), and increasing pTNM stage (P < 0.001).
CONCLUSION In conclusion, our results contribute to a better understanding of lifestyle factors on the overall burden of gastric cancer and long-term prognosis. In these patients, weight loss (both in the 0 to 10% and > 10% groups) but not BMI at diagnosis was related to survival outcomes. With regard to other factors, smoking history of more than 30 years conferred a worse prognosis only in patients who underwent gastrectomy. Extensive efforts are needed to elucidate mechanisms targeting the complex effects of lifestyle factors.
Collapse
Affiliation(s)
- Lu-Lu Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huang Huang
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT 06520, United States
| | - Yang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of General Surgery, Beijing Di Tan Hospital, Capital Medical University, Beijing 100015, China
| | - Tong-Bo Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fu-Hai Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hu Ren
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peng-Hui Niu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Bing Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying-Tai Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
22
|
Turato C, Scarpa M, Kotsafti A, Cappon A, Quarta S, Biasiolo A, Cavallin F, Trevellin E, Guzzardo V, Fassan M, Chiarion‐Sileni V, Castoro C, Rugge M, Vettor R, Scarpa M, Pontisso P. Squamous cell carcinoma antigen 1 is associated to poor prognosis in esophageal cancer through immune surveillance impairment and reduced chemosensitivity. Cancer Sci 2019; 110:1552-1563. [PMID: 30825353 PMCID: PMC6501024 DOI: 10.1111/cas.13986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma antigen-1 (SCCA1) overexpression is associated with poor prognosis and chemoresistance in several tumor types, however, the underlying mechanisms remain elusive. Here, we report SCCA1 in relation to the immune and peritumoral adipose tissue microenvironment in early and advanced esophageal adenocarcinoma (EAC). In our series of patients with EAC, free SCCA1 serum levels were associated with significantly worse overall survival, and SCCA1-IgM serum levels showed a trend to a worse overall survival. Serum SCCA1 and intratumoral SCCA1 were inversely correlated with immune activation markers. In agreement with these findings, SCCA1 induced the expression of the immune checkpoint molecule programmed death ligand-1 on monocytes and a direct correlation of these 2 molecules was observed in sequential tumor sections. Furthermore, SCCA1 mRNA expression within the tumor was inversely correlated with stem cell marker expression both within the tumor and in the peritumoral adipose tissue. In vitro, in EAC cell lines treated with different chemotherapeutic drugs, cell viability was significantly modified by SCCA1 presence, as cells overexpressing SCCA1 were significantly more resistant to cell death. In conclusion, poor prognosis in EAC overexpressing SCCA1 is due to reduced tumor chemosensitivity as well as intratumoral immunity impairment, likely induced by this molecule.
Collapse
Affiliation(s)
| | - Melania Scarpa
- Laboratory of Advanced Translational ResearchVeneto Institute of OncologyIOV‐IRCCSPaduaItaly
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational ResearchVeneto Institute of OncologyIOV‐IRCCSPaduaItaly
| | - Andrea Cappon
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
| | - Santina Quarta
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
| | | | | | | | | | - Matteo Fassan
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
| | | | - Carlo Castoro
- Department of Upper GI SurgeryHumanitas Research Hospital–Humanitas UniversityRozzanoItaly
| | - Massimo Rugge
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
| | - Roberto Vettor
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
| | | | | |
Collapse
|
23
|
Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr) 2019; 42:243-260. [PMID: 30877623 DOI: 10.1007/s13402-019-00428-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that obesity is associated with tumor development and progression. Leptin is an adipocyte-related hormone with a key role in energy metabolism and whose circulating levels are elevated in obesity. The effect of leptin on cancer progression and metastasis and its underlying mechanisms are still unclear. Leptin can impact various steps in tumor metastasis, including epithelial-mesenchymal transition, cell adhesion to the extracellular matrix (ECM), and proteolysis of ECM components. To do so, leptin binds to its receptor (OB-Rb) to activate signaling pathways and downstream effectors that participate in tumor cell invasion as well as distant metastasis. CONCLUSIONS In this review, we describe metastasis steps in detail and characterize metastasis-related molecules activated by leptin, which may help to develop a roadmap that guides future work. In addition, we conclude that a profound understanding of the fundamental molecular processes that contribute to leptin-induced metastasis may pave the way for the development of new prognostic molecules and appropriate approaches to the treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Azimi-Nejad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Genetic, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Moskalenko RA, Korneva YS. [Role of adipose tissue in the development and progression of colorectal cancer]. Arkh Patol 2019; 81:52-56. [PMID: 30830106 DOI: 10.17116/patol20198101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper gives the current data available in the literature on the relationship and pathogenetic mechanisms of influence of adipose tissue on colorectal carcinogenesis. It considers the aspects of changes in adipose tissue and microenvironment of the tumor itself, including those under the influence of biologically active substances secreted by adipocytes; differences in subcutaneous and visceral fat and their importance in the development and progression of colorectal cancer (CRC), as well as the role of adipose tissue-derived stem cells. Understanding these mechanisms for adipose tissue influence on CRC will assist not only in preventing this disease, but also in searching for new therapeutic targets.
Collapse
Affiliation(s)
- R A Moskalenko
- Medical Institute, Sumy State University, Ministry of Education and Science of Ukraine, Sumy, Ukraine
| | - Yu S Korneva
- Smolensk State Medical University, Ministry of Health of Russia, Smolensk, Russia; Smolensk Regional Institute of Pathology, Smolensk, Russia
| |
Collapse
|
25
|
Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 2018; 15:699-714. [PMID: 30323319 DOI: 10.1038/s41575-018-0069-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.
Collapse
|
26
|
Tzanavari T, Tasoulas J, Vakaki C, Mihailidou C, Tsourouflis G, Theocharis S. The Role of Adipokines in the Establishment and Progression of Head and Neck Neoplasms. Curr Med Chem 2018; 26:4726-4748. [PMID: 30009699 DOI: 10.2174/0929867325666180713154505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Adipokines constitute a family of protein factors secreted by white adipose tissue (WAT), that regulate the functions of WAT and other sites. Leptin, adiponectin and resistin, are the main adipokines present in serum and saliva, targeting several tissues and organs, including vessels, muscles, liver and pancreas. Besides body mass regulation, adipokines affect glucose homeostasis, inflammation, angiogenesis, cell proliferation and apoptosis, and other crucial cell procedures. Their involvement in tumor formation and growth is well established and deregulation of adipokine and adipokine receptors' expression is observed in several malignancies including those located in the head and neck region. Intracellular effects of adipokines are mediated by a plethora of receptors that activate several signaling cascades including Janus kinase/ Signal transducer and activator of transcription (JAK/ STAT pathway), Phospatidylinositol kinase (PI3/ Akt/ mTOR) and Peroxisome proliferator-activated receptor (PPAR). The present review summarizes the current knowledge on the role of adipokines family members in carcinogenesis of the head and neck region. The diagnostic and prognostic significance of adipokines and their potential role as serum and saliva biomarkers are also discussed.
Collapse
Affiliation(s)
- Theodora Tzanavari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Jason Tasoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysoula Vakaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysovalantou Mihailidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propaedeutic Surgery, Medical School, National and Kapodistrian, University of Athens, Athens, 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
27
|
Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the Adipose Microenvironment and the Obesity-Cancer Link-A Systematic Review. Cancer Prev Res (Phila) 2018; 10:494-506. [PMID: 28864539 DOI: 10.1158/1940-6207.capr-16-0322] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
Obesity and its associated metabolic dysregulation are established risk factors for many cancers. However, the biologic mechanisms underlying this relationship remain incompletely understood. Given the rising rates of both obesity and cancer worldwide, and the challenges for many people to lose excess adipose tissue, a systematic approach to identify potential molecular and metabolic targets is needed to develop effective mechanism-based strategies for the prevention and control of obesity-driven cancer. Epidemiologic, clinical, and preclinical data suggest that within the growth-promoting, proinflammatory microenvironment accompanying obesity, crosstalk between adipose tissue (comprised of adipocytes, macrophages and other cells) and cancer-prone cells may occur via obesity-associated hormones, cytokines, and other mediators that have been linked to increased cancer risk and/or progression. We report here a systematic review on the direct "crosstalk" between adipose tissue and carcinomas in humans. We identified 4,641 articles with n = 20 human clinical studies, which are summarized as: (i) breast (n = 7); (ii) colorectal (n = 4); (iii) esophageal (n = 2); (iv) esophageal/colorectal (n = 1); (v) endometrial (n = 1); (vi) prostate (n = 4); and (vii) ear-nose-throat (ENT) cancer (n = 1). Findings from these clinical studies reinforce preclinical data and suggest organ-dependent crosstalk between adipose tissue and carcinomas via VEGF, IL6, TNFα, and other mechanisms. Moreover, visceral white adipose tissue plays a more central role, as it is more bioenergetically active and is associated with a more procancer secretome than subcutaneous adipose tissue. Efforts to eavesdrop and ultimately interfere with this cancer-enhancing crosstalk may lead to new targets and strategies for decreasing the burden of obesity-related cancers. Cancer Prev Res; 10(9); 494-506. ©2017 AACR.
Collapse
Affiliation(s)
- Caroline Himbert
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah.,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Mahmoud Delphan
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah.,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah.,Exercise Immunology, Physical Education and Sport Sciences Department, Tarbiat Modares University, Tehran, Iran
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah. .,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
28
|
Guaita-Esteruelas S, Gumà J, Masana L, Borràs J. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol 2018; 462:107-118. [PMID: 28163102 DOI: 10.1016/j.mce.2017.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
Abstract
The adipose tissue microenvironment plays a key role in tumour initiation and progression because it provides fatty acids and adipokines to tumour cells. The fatty acid-binding protein (FABP) family is a group of small proteins that act as intracellular fatty acid transporters. Adipose-derived FABPs include FABP4 and FABP5. Both have an important role in lipid-related metabolic processes and overexpressed in many cancers, such as breast, prostate, colorectal and ovarian. Moreover, their expression in peritumoural adipose tissue is deregulated, and their circulating levels are upregulated in some tumours. In this review, we discuss the role of the peritumoural adipose tissue and the related adipokines FABP4 and FABP5 in cancer initiation and progression and the possible pathways implicated in these processes.
Collapse
Affiliation(s)
- S Guaita-Esteruelas
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut, Avda. de la Universitat, 43204 Reus, Spain; Research Unit on Lipids and Atherosclerosis, Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universitat Rovira i Virgili, Sant Llorenç, 21 43201 Reus, Spain; Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain.
| | - J Gumà
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L Masana
- Research Unit on Lipids and Atherosclerosis, Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universitat Rovira i Virgili, Sant Llorenç, 21 43201 Reus, Spain
| | - J Borràs
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| |
Collapse
|
29
|
Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: Comparison with leptin. Oncotarget 2018; 7:27641-54. [PMID: 27050378 PMCID: PMC5053677 DOI: 10.18632/oncotarget.8505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
Obesity results in increased secretion of cytokines from adipose tissue and is a risk factor for various cancers. Leptin is largely produced by adipose tissue and cancer cells. It induces cell proliferation and may serve to induce various cancers. OB3-leptin peptide (OB3) is a new class of functional leptin peptide. However, its mitogenic effect has not been determined. In the present study, because of a close link between leptin and the hypothalamic-pituitary-thyroid axis, OB3 was compared with leptin in different thyroid cancer cells for gene expression, proliferation and invasion. Neither agent stimulated cell proliferation. Leptin stimulated cell invasion, but reduced adhesion in anaplastic thyroid cancer cells. Activated ERK1/2 and STAT3 contributed to leptin-induced invasion. In contrast, OB3 did not affect expression of genes involved in proliferation and invasion. In vivo studies in the mouse showed that leptin, but not OB3, significantly increased circulating levels of thyrotropin (TSH), a growth factor for thyroid cancer. In summary, OB3 is a derivative of leptin that importantly lacks the mitogenic effects of leptin on thyroid cancer cells.
Collapse
|
30
|
Wei T, Ye P, Peng X, Wu LL, Yu GY. Circulating adiponectin levels in various malignancies: an updated meta-analysis of 107 studies. Oncotarget 2018; 7:48671-48691. [PMID: 27119501 PMCID: PMC5217047 DOI: 10.18632/oncotarget.8932] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/16/2016] [Indexed: 01/11/2023] Open
Abstract
Early detection of cancers is challenging for lack of specific biomarkers. Adiponectin is an adipokine predominantly derived from adipocytes and hypoadiponectinemia has been reported to associate with risk of many types of cancers. However, available evidence is controversial. Some studies show that increased adiponectin levels correlate with cancer risk. Therefore, we performed a meta-analysis of the association between circulating adiponectin levels and cancer development. A systematic search of PubMed, EMBASE, Wiley Online Library and Cochrane Library was conducted for eligible studies involving circulating adiponectin and malignancies from inception to August 8, 2015. Standard mean differences (SMDs) with 95% confidence intervals (95% CIs) were calculated by use of a random-effect model. Funnel plot and Egger's linear regression test were conducted to examine the risk of publication bias. 107 studies were included with 19,319 cases and 25,675 controls. The pooled analysis indicated that circulating adiponectin levels were lower in patients with various cancers than in controls, with a pooled SMD of −0.334 μg/ml (95% CI, −0.465 to −0.203, P = 0.000). No evidence of publication bias was observed. Circulating high molecular weight adiponectin levels were also lower in cancer patients than in controls, with a pooled SMD of −0.502 μg/ml (95% CI, −0.957 to −0.047, P = 0.000). This meta-analysis provides further evidence that decreased adiponectin levels is associated with risk of various cancers. Hypoadiponectinemia may represent a useful biomarker for early detection of cancers.
Collapse
Affiliation(s)
- Tai Wei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Peng Ye
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
31
|
Implication of visceral obesity in patients with esophageal squamous cell carcinoma. Langenbecks Arch Surg 2017; 403:245-253. [PMID: 29196841 DOI: 10.1007/s00423-017-1643-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Visceral obesity is considered to be associated not only with chronic systemic inflammation but also with aggressive cancer behavior. However, the implication of visceral obesity in patients with esophageal squamous cell carcinoma (ESCC) is unclear. METHODS Computed tomography volumetry was performed in 364 patients who underwent esophagectomy for ESCC. We calculated the ratio of the visceral fat area to the subcutaneous fat area (VS ratio), which is a valuable parameter of visceral obesity. Then, the clinicopathological characteristics were compared between patients with low VS ratio and those with high VS ratio. RESULTS Overall and disease-specific survivals of patients with high VS ratio were significantly worse than those with low VS ratio (P < 0.001 in both). Patients with high VS ratio had considerably more advanced pN factor, higher prevalence of lymphatic invasion, and more number of metastatic lymph nodes than those with low VS ratio (P = 0.044, < 0.001, and 0.006, respectively). Among patients who received preoperative treatment, high VS ratio correlated with poor response to preoperative treatment (P = 0.040). CONCLUSIONS Visceral obesity was associated with lymphatic invasiveness and poor response to preoperative treatment in patients with ESCC, which may negatively influence their prognosis.
Collapse
|
32
|
Carraro A, Trevellin E, Fassan M, Kotsafti A, Lunardi F, Porzionato A, Dall'Olmo L, Cagol M, Alfieri R, Macchi V, Tedeschi U, Calabrese F, Rugge M, Castoro C, Vettor R, Scarpa M. Esophageal adenocarcinoma microenvironment: Peritumoral adipose tissue effects associated with chemoresistance. Cancer Sci 2017; 108:2393-2404. [PMID: 28985034 PMCID: PMC5715298 DOI: 10.1111/cas.13415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Peritumoral microenvironment affects cancer development and chemoresistance, and visceral adipose tissue may play a critical role. We aimed to identify depot-specific adipose characteristics associated with carcinogenesis and resistance to neoadjuvant therapy in esophageal adenocarcinoma (EAC). We analyzed: (i) the peritumoral adipose tissue of rats following the induction of esophageal carcinogenesis; (ii) the peritumoral and distal (omental) adipose tissue of patients affected by EAC; (iii) adipose-derived stem cells (ADSC) isolated from healthy patients and treated with conditioned medium (CM), collected from tumoral and adipose tissue of patients with EAC. In peritumoral adipose tissue of rats, CD34, CD31 and vascular endothelial growth factor (VEGF) expression increased progressively during EAC development. In patients with EAC, expression of CD34, CD45, CD90 and nucleostemin (NSTM) was higher in peritumoral than in distal adipose tissue and decreased in the presence of neoadjuvant therapy. Moreover, expression of NSTM, octamer-binding transcription factor 4 (OCT-4) and VEGF was higher in peritumoral (but not in distal) adipose tissue of chemoresistant patients. In ADSC, treatment with peritumoral adipose tissue CM increased the adipogenic potential and the expression of CD34, CD90, NSTM and OCT-4. These effects were similar to those induced by cancer-derived CM, but were not observed in ADSC treated with distal adipose tissue CM and were partially reduced by a leptin antagonist. Last, ADSC treated with peritumoral CM of chemoresistant patients displayed increased expression of NSTM, OCT-4, leptin, leptin receptor, alpha-smooth muscle actin (α-SMA), CD34 and VEGF. These results suggest that peritumoral adipose tissue may promote, by paracrine signaling, the expression of depot-specific factors associated with therapeutic resistance.
Collapse
Affiliation(s)
- Amedeo Carraro
- Department of General Surgery and OdontoiatricsUniversity Hospital of VeronaVeronaItaly
| | - Elisabetta Trevellin
- Department of Medicine, Endocrine‐Metabolic LaboratoryUniversity of PadovaPadovaItaly
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology UnitUniversity of PadovaPadovaItaly
| | - Andromachi Kotsafti
- Esophageal and Digestive Tract Surgical UnitVeneto Institute of Oncology (IOV‐IRCCS)PadovaItaly
| | - Francesca Lunardi
- Department of Cardiothoracic and Vascular SciencesUniversity of PadovaPadovaItaly
| | - Andrea Porzionato
- Department of Molecular MedicineNormal Anatomy UnitUniversity of PadovaPadovaItaly
| | - Luigi Dall'Olmo
- Department of Emergency Medicine“Santi Giovanni e Paolo” HospitalVeniceItaly
| | - Matteo Cagol
- Esophageal and Digestive Tract Surgical UnitVeneto Institute of Oncology (IOV‐IRCCS)PadovaItaly
| | - Rita Alfieri
- Esophageal and Digestive Tract Surgical UnitVeneto Institute of Oncology (IOV‐IRCCS)PadovaItaly
| | - Veronica Macchi
- Department of Molecular MedicineNormal Anatomy UnitUniversity of PadovaPadovaItaly
| | - Umberto Tedeschi
- Department of General Surgery and OdontoiatricsUniversity Hospital of VeronaVeronaItaly
| | - Fiorella Calabrese
- Department of Cardiothoracic and Vascular SciencesUniversity of PadovaPadovaItaly
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology UnitUniversity of PadovaPadovaItaly
| | - Carlo Castoro
- Esophageal and Digestive Tract Surgical UnitVeneto Institute of Oncology (IOV‐IRCCS)PadovaItaly
| | - Roberto Vettor
- Department of Medicine, Endocrine‐Metabolic LaboratoryUniversity of PadovaPadovaItaly
| | - Marco Scarpa
- Esophageal and Digestive Tract Surgical UnitVeneto Institute of Oncology (IOV‐IRCCS)PadovaItaly
| |
Collapse
|
33
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
34
|
Zoico E, Darra E, Rizzatti V, Tebon M, Franceschetti G, Mazzali G, Rossi AP, Fantin F, Zamboni M. Role of adipose tissue in melanoma cancer microenvironment and progression. Int J Obes (Lond) 2017; 42:344-352. [PMID: 28883539 DOI: 10.1038/ijo.2017.218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND An epidemiological association between excess weight and increased risk of cancer has been described in melanoma, for which the physiopathological mechanisms are still unknown. The study of tumor microenvironment and of the role of adipocytes in cancer development, progression and metastasis has recently received great interest. However, the role of peritumoral adipocytes has been characterized only in a few types of cancer, and in melanoma it still remains to be defined. METHODS We investigated the interactions between adipocytes and melanoma cells using an in vitro co-culture system. We studied the morphological and functional properties of 3T3-L1 adipocytes before and after co-culture with A375 melanoma cells, in order to assess the role of adipocytes on melanoma migration. RESULTS Morphological analysis showed that after 6 days of co-culture 3T3-L1 adipocytes were reduced in number and size. Moreover, we observed the appearance of dedifferentiated cells with a fibroblast-like phenotype that were not present in controls and that had lost the expression of some adipocyte-specific genes, and increased the expression of collagen, metalloproteinases and genes typical of dedifferentiation processes. Through the Matrigel Invasion Test, as well the Scratch Test, it was possible to observe that co-culture with adipocytes induced in melanoma cells increased migratory capacity, as compared with controls. In particular, the increase in migration observed in co-culture was suppressed after adding the protein SFRP-5 in the medium, supporting the involvement of the Wnt5a pathway. The activation of this pathway was further characterized by immunofluorescence and western blot analysis, showing in melanocytes in co-culture the activation of β-catenin and LEF-1, two transcription factors involved in migration processes, neo-angiogenesis and metastasis. CONCLUSIONS These data allow us to hypothesize a dedifferentiation process of adipocytes toward fibroblast-like cells, which can promote migration of melanoma cells through activation of Wnt5a and the intracellular pathways of β-catenin and LEF-1.
Collapse
Affiliation(s)
- E Zoico
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - E Darra
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - V Rizzatti
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - M Tebon
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - G Franceschetti
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - G Mazzali
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - A P Rossi
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - F Fantin
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - M Zamboni
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| |
Collapse
|
35
|
Tseng CH. Metformin and esophageal cancer risk in Taiwanese patients with type 2 diabetes mellitus. Oncotarget 2017; 8:18802-18810. [PMID: 27861146 PMCID: PMC5386648 DOI: 10.18632/oncotarget.13390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
This study evaluated whether metformin might reduce esophageal cancer risk. Patients with type 2 diabetes mellitus diagnosed during 1999-2005 were recruited from the reimbursement database of Taiwan's National Health Insurance. Those newly treated with metformin (n = 288013, "ever users of metformin") or other antidiabetic drugs (n = 16216, "never users of metformin") were followed until December 31, 2011. Sensitivity analyses were conducted in a matched-pair sample of 16216 never users and 16216 ever users. Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. The risk associated with infection of Helicobacter pylori, Epstein-Barr virus, hepatitis B virus and hepatitis C virus was also evaluated. Results showed that the incidence of esophageal cancer in ever and never users was 25.03 and 50.87 per 100,000 person-years, respectively. The overall hazard ratio (95% confidence intervals) of 0.487 (0.347-0.684) suggested a significantly lower risk among metformin users. Hazard ratios comparing the first (< 21.47 months), second (21.47-46.00 months) and third (> 46.00 months) tertile of cumulative duration of metformin use to never users was 1.184 (0.834-1.680), 0.403 (0.276-0.588) and 0.113 (0.071-0.179), respectively. Infection of Helicobacter pylori (but not the other viral infections) significantly increased the risk, which could be ameliorated by metformin. Analyses in the matched sample consistently supported a protective role of metformin. In conclusion, metformin reduces esophageal cancer risk when the cumulative duration is more than approximately 2 years.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
36
|
Tseng CH. Sitagliptin may reduce prostate cancer risk in male patients with type 2 diabetes. Oncotarget 2017; 8:19057-19064. [PMID: 27661113 PMCID: PMC5386669 DOI: 10.18632/oncotarget.12137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
This retrospective cohort study evaluated the risk of prostate cancer associated with sitagliptin use in Taiwanese male patients with type 2 diabetes mellitus by using the reimbursement databases of the National Health Insurance. Male patients with newly diagnosed type 2 diabetes mellitus at an age ≥25 years between 1999 and 2010 were recruited. A total of 37,924 ever users of sitagliptin and 426,276 never users were followed until December 31, 2011. The treatment effect of sitagliptin (for ever versus never users, and for tertiles of cumulative duration of therapy) was estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. Analyses were also conducted in a 1:1 matched pair cohort based on 8 digits of propensity score. Results showed that during follow-up, 84 ever users and 2,549 never users were diagnosed of prostate cancer, representing an incidence of 140.74 and 240.17 per 100,000 person-years, respectively. The hazard ratio (95% confidence intervals) for ever users versus never users was 0.613 (0.493-0.763). The respective hazard ratio for the first, second, and third tertile of cumulative duration of sitagliptin use <5.9, 5.9-12.7 and >12.7 months was 0.853 (0.601-1.210), 0.840 (0.598-1.179) and 0.304 (0.191-0.483), respectively; and was 0.856 (0.603-1.214), 0.695 (0.475-1.016) and 0.410 (0.277-0.608) for cumulative dose <15,000, 15,000-33,600 and >33,600 mg, respectively. Findings were supported by analyses in the matched cohort. In conclusion, sitagliptin significantly reduces the risk of prostate cancer, especially when the cumulative duration is >12.7 months or the cumulative dose >33,600 mg.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
37
|
Wu D, Chen X, Xu Y, Wang H, Yu G, Jiang L, Hong Q, Duan S. Prognostic value of MLH1 promoter methylation in male patients with esophageal squamous cell carcinoma. Oncol Lett 2017; 13:2745-2750. [PMID: 28454461 DOI: 10.3892/ol.2017.5759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/06/2017] [Indexed: 10/20/2022] Open
Abstract
The DNA mismatch repair (MMR) gene MutL homolog 1 (MLH1) is critical for the maintenance of genomic integrity. Methylation of the MLH1 gene promoter was identified as a prognostic marker for numerous types of cancer including glioblastoma, colorectal, ovarian and gastric cancer. The present study aimed to determine whether MLH1 promoter methylation was associated with survival in male patients with esophageal squamous cell carcinoma (ESCC). Formalin-fixed, paraffin-embedded ESCC tissues were collected from 87 male patients. MLH1 promoter methylation was assessed using the methylation-specific polymerase chain reaction approach. Kaplan-Meier survival curves and log-rank tests were used to evaluate the association between MLH1 promoter methylation and overall survival (OS) in patients with ESCC. Cox regression analysis was used to obtain crude and multivariate hazard ratios (HR), and 95% confidence intervals (CI). The present study revealed that MLH1 promoter methylation was observed in 53/87 (60.9%) of male patients with ESCC. Kaplan-Meier survival analysis demonstrated that MLH1 promoter hypermethylation was significantly associated with poorer prognosis in patients with ESCC (P=0.048). Multivariate survival analysis revealed that MLH1 promoter hypermethylation was an independent predictor of poor OS in male patients with ESCC (HR=1.716; 95% CI=1.008-2.921). Therefore, MLH1 promoter hypermethylation may be a predictor of prognosis in male patients with ESCC.
Collapse
Affiliation(s)
- Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, P.R. China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yan Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haiyong Wang
- Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000. P.R. China
| | - Guangmao Yu
- Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000. P.R. China
| | - Luping Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qingxiao Hong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
38
|
Chen C, Peng H, Huang X, Zhao M, Li Z, Yin N, Wang X, Yu F, Yin B, Yuan Y, Lu Q. Genome-wide profiling of DNA methylation and gene expression in esophageal squamous cell carcinoma. Oncotarget 2016; 7:4507-21. [PMID: 26683359 PMCID: PMC4826222 DOI: 10.18632/oncotarget.6607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/26/2015] [Indexed: 01/02/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide. Previous studies have suggested that DNA methylation involved in the development of ESCC. However, the precise mechanisms underlying the regulation and maintenance of the methylome as well as their relationship with ESCC remain poorly understood. Herein, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and RNA-Seq to investigate whole-genome DNA methylation patterns and the genome expression profiles in ESCC samples. The results of MeDIP-Seq analyses identified differentially methylated regions (DMRs) covering almost the entire genome with sufficient depth and high resolution. The gene ontology (GO) analysis showed that the DMRs related genes belonged to several different ontological domains, such as cell cycle, adhesion, proliferation and apoptosis. The RNA-Seq analysis identified a total of 6150 differentially expressed genes (3423 up-regulated and 2727 down-regulated). The significant GO terms showed that these genes belonged to several molecular functions and biological pathways. Moreover, the bisulfite-sequencing of genes MLH1, CDH5, TWIST1 and CDX1 confirmed the methylation status identified by MeDIP-Seq. And the mRNA expression levels of MLH1, TWIST1 and CDX1 were consistent with their DNA methylation profiles. The DMR region of MLH1 was found to correlate with survival. The identification of whole-genome DNA methylation patterns and gene expression profiles in ESCC provides new insight into the carcinogenesis of ESCC and represents a promising avenue through which to investigate novel therapeutic targets.
Collapse
Affiliation(s)
- Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hao Peng
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaojie Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhi Li
- Beijing Genomics Institute at Shenzhen, Shenzhen, P.R. China
| | - Ni Yin
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bangliang Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
39
|
Gregson EM, Bornschein J, Fitzgerald RC. Genetic progression of Barrett's oesophagus to oesophageal adenocarcinoma. Br J Cancer 2016; 115:403-10. [PMID: 27441494 PMCID: PMC4985359 DOI: 10.1038/bjc.2016.219] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
Barrett's oesophagus (BE) is the premalignant condition associated with the development of oesophageal adenocarcinoma (OAC). Diagnostically, p53 immunohistochemistry remains the only biomarker recommended clinically to aid histopathological diagnosis. The emerging mutational profile of BE is one of highly heterogeneous lesions at the genomic level with many mutations already occurring in non-dysplastic tissue. As well as point mutations, larger scale copy-number changes appear to have a key role in the progression to OAC and clinically applicable assays for the reliable detection of aneuploidy will be important to incorporate into future clinical management of patients. For some patients, the transition to malignancy may occur rapidly through a genome-doubling event or chromosomal catastrophe, termed chromothripsis, and detecting these patients may prove especially difficult. Given the heterogeneous nature of this disease, sampling methods to overcome inherent bias from endoscopic biopsies coupled with the development of more objective biomarkers than the current reliance on histopathology will be required for risk stratification. The aim of this approach will be to spare low-risk patients unnecessary procedures, as well as to provide endoscopic therapy to the patients at highest risk, thereby avoiding the burden of incurable metastatic disease.
Collapse
Affiliation(s)
- Eleanor M Gregson
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Jan Bornschein
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Cambridge CB2 0XZ, UK
| |
Collapse
|
40
|
Kaakoush NO, Morris MJ. The oesophageal microbiome: an unexplored link in obesity-associated oesophageal adenocarcinoma. FEMS Microbiol Ecol 2016; 92:fiw161. [PMID: 27465078 DOI: 10.1093/femsec/fiw161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
The influence of diets rich in saturated fats and simple sugars on the intestinal microbiota plays a central role in obesity. Being overweight or obese predisposes individuals to several diseases including oesophageal adenocarcinoma (OAC), which develops through a cascade of events starting with gastro-oesophageal reflux disease, progressing to Barrett's oesophagus (BO), and then OAC. A range of mechanisms for the increased risk of OAC in obese individuals have been proposed; however, a role for the oesophageal microbiota has been largely ignored. This is despite the fact that it is clear that the composition of the oesophageal microbiota shifts with the development of OAC. Given the well-established impact that unhealthy diets have on the intestinal microbiota, it is plausible that exposure to unhealthy foods, and the ensuing obesity, would result in an imbalance in the oesophageal microbiota. It is also likely that these changes may mimic the changes observed in the intestinal microbiota (i.e. increase in short-chain fatty acid (SCFA) producers and bile acid biosynthesis). The modulation of SCFAs and bile acids in the oesophagus by diet could promote the transdifferentiation from squamous to intestinal-like columnar cells observed in BO, given that intestinal cells proliferate in the presence of SCFAs.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Margaret J Morris
- School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Bullwinkle EM, Parker MD, Bonan NF, Falkenberg LG, Davison SP, DeCicco-Skinner KL. Adipocytes contribute to the growth and progression of multiple myeloma: Unraveling obesity related differences in adipocyte signaling. Cancer Lett 2016; 380:114-21. [PMID: 27317873 DOI: 10.1016/j.canlet.2016.06.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity over the last several decades in the United States has tripled among children and doubled among adults. Obesity increases the incidence and progression of multiple myeloma (MM), yet the molecular mechanisms by which adipocytes contribute to cancer development and patient prognosis have yet to be fully elucidated. Here, we obtained human adipose-derived stem cells (ASCs) from twenty-nine normal (BMI = 20-25 kg/m(2)), overweight (25-30 kg/m(2)), obese (30-35 kg/m(2)), or super obese (35-40 kg/m(2)) patients undergoing elective liposuction. Upon differentiation, adipocytes were co-cultured with RPMI-8226 and NCI-H929 MM cell lines. Adipocytes from overweight, obese and super obese patients displayed increased PPAR-gamma, cytochrome C, interleukin-6, and leptin protein levels, and decreased fatty acid synthase protein. 8226 MM cells proliferated faster and displayed increased pSTAT-3/STAT-3 signaling when cultured in adipocyte conditioned media. Further, adipocyte conditioned media from obese and super obese patients significantly increased MM cell adhesion, and conditioned media from overweight, obese and super obese patients enhanced tube formation and expression of matrix metalloproteinase-2. In summary, our data suggest that adipocytes in the MM microenvironment contribute to MM growth and progression and should be further evaluated as a possible therapeutic target.
Collapse
Affiliation(s)
| | - Melissa D Parker
- Department of Biology, American University, Washington, DC 20016, USA
| | - Nicole F Bonan
- Department of Biology, American University, Washington, DC 20016, USA
| | | | | | | |
Collapse
|
42
|
Zoico E, Darra E, Rizzatti V, Budui S, Franceschetti G, Mazzali G, Rossi AP, Fantin F, Menegazzi M, Cinti S, Zamboni M. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget 2016; 7:20223-20235. [PMID: 26958939 PMCID: PMC4991449 DOI: 10.18632/oncotarget.7936] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/06/2016] [Indexed: 12/14/2022] Open
Abstract
A significant epidemiological association between obesity and pancreatic ductal adenocarcinoma (PDAC) has previously been described, as well as a correlation between the degree of pancreatic steatosis, PDAC risk and prognosis. The underlying mechanisms are still not completely known.After co-culture of 3T3-L1 adipocytes and MiaPaCa2 with an in vitro transwell system we observed the appearance of fibroblast-like cells, along with a decrease in number and size of remaining adipocytes. RT-PCR analyses of 3T3-L1 adipocytes in co-culture showed a decrease in gene expression of typical markers of mature adipocytes, in parallel with an increased expression of fibroblast-specific and reprogramming genes. We found an increased WNT5a gene and protein expression early in MiaPaCa2 cells in co-culture. Additionally, EMSA of c-Jun and AP1 in 3T3-L1 demonstrated an increased activation in adipocytes after co-culture. Treatment with WNT5a neutralizing antibody completely reverted the activation of c-Jun and AP1 observed in co-cultured adipocytes.Increasing doses of recombinant SFRP-5, a competitive inhibitor for WNT5a receptor, added to the co-culture medium, were able to block the dedifferentiation of adipocytes in co-culture.These data support a WNT5a-mediated dedifferentiation process with adipocytes reprogramming toward fibroblast-like cells that might profoundly influence cancer microenvironment.
Collapse
Affiliation(s)
- Elena Zoico
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Elena Darra
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Vanni Rizzatti
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Simona Budui
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Guido Franceschetti
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Gloria Mazzali
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Andrea P Rossi
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Francesco Fantin
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity-University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - Mauro Zamboni
- Department of Medicine, Geriatrics Section, University of Verona, Verona, Italy
| |
Collapse
|