1
|
Gancedo SN, Sahores A, Gómez N, Di Siervi N, May M, Yaneff A, de Sousa Serro MG, Fraunhoffer N, Dusetti N, Iovanna J, Shayo C, Davio CA, González B. The xenobiotic transporter ABCC4/MRP4 promotes epithelial mesenchymal transition in pancreatic cancer. Front Pharmacol 2024; 15:1432851. [PMID: 39114357 PMCID: PMC11303182 DOI: 10.3389/fphar.2024.1432851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.
Collapse
Affiliation(s)
- S. N. Gancedo
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Sahores
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - N. Gómez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Di Siervi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - M. May
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Yaneff
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - M. G. de Sousa Serro
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Fraunhoffer
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - N. Dusetti
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - J. Iovanna
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
- Hospital de Alta Complejidad El Cruce, Argentina. Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - C. Shayo
- Instituto de Biología y Medicina Experimental (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C. A. Davio
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - B. González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| |
Collapse
|
2
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
3
|
Zhang X, Wu T, Zhou J, Chen X, Dong C, Guo Z, Yang R, Liang R, Feng Q, Hu R, Li Y, Ding R. Establishment and verification of prognostic model and ceRNA network analysis for colorectal cancer liver metastasis. BMC Med Genomics 2023; 16:99. [PMID: 37161577 PMCID: PMC10169504 DOI: 10.1186/s12920-023-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTS Colorectal cancer (CRC) is one of the most common cancers in the world. Approximately two-thirds of patients with CRC will develop colorectal cancer liver metastases (CRLM) at some point in time. In this study, we aimed to construct a prognostic model of CRLM and its competing endogenous RNA (ceRNA) network. METHODS RNA-seq of CRC, CRLM and normal samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Limma was used to obtain differential expression genes (DEGs) between CRLM and CRC from sequencing data and GSE22834, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses were performed, respectively. Univariate Cox regression analysis and lasso Cox regression models were performed to screen prognostic gene features and construct prognostic models. Functional enrichment, estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, single-sample gene set enrichment analysis, and ceRNA network construction were applied to explore potential mechanisms. RESULTS An 8-gene prognostic model was constructed by screening 112 DEGs from TCGA and GSE22834. CRC patients in the TCGA and GSE29621 cohorts were stratified into either a high-risk group or a low-risk group. Patients with CRC in the high-risk group had a significantly poorer prognosis compared to in the low-risk group. The risk score was identified as an independent predictor of prognosis. Functional analysis revealed that the risk score was closly correlated with various immune cells and immune-related signaling pathways. And a prognostic gene-associated ceRNA network was constructed that obtained 3 prognosis gene, 14 microRNAs (miRNAs) and 7 long noncoding RNAs (lncRNAs). CONCLUSIONS In conclusion, a prognostic model for CRLM identification was proposed, which could independently identify high-risk patients with low survival, suggesting a relationship between local immune status and prognosis of CRLM. Moreover, the key prognostic genes-related ceRNA network were established for the CRC investigation. Based on the differentially expressed genes between CRLM and CRC, the prognosis model of CRC patients was constructed.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Wu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinmei Zhou
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China
| | - Xiaoqiong Chen
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Dong
- Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhangyou Guo
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China
| | - Renfang Yang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Liang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Feng
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruixi Hu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Rong Ding
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
4
|
Sodir NM, Pellegrinet L, Kortlever RM, Campos T, Kwon YW, Kim S, Garcia D, Perfetto A, Anastasiou P, Swigart LB, Arends MJ, Littlewood TD, Evan GI. Reversible Myc hypomorphism identifies a key Myc-dependency in early cancer evolution. Nat Commun 2022; 13:6782. [PMID: 36351945 PMCID: PMC9646778 DOI: 10.1038/s41467-022-34079-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Germ-line hypomorphism of the pleiotropic transcription factor Myc in mice, either through Myc gene haploinsufficiency or deletion of Myc enhancers, delays onset of various cancers while mice remain viable and exhibit only relatively mild pathologies. Using a genetically engineered mouse model in which Myc expression may be systemically and reversibly hypomorphed at will, we asked whether this resistance to tumour progression is also emplaced when Myc hypomorphism is acutely imposed in adult mice. Indeed, adult Myc hypomorphism profoundly blocked KRasG12D-driven lung and pancreatic cancers, arresting their evolution at the early transition from indolent pre-tumour to invasive cancer. We show that such arrest is due to the incapacity of hypomorphic levels of Myc to drive release of signals that instruct the microenvironmental remodelling necessary to support invasive cancer. The cancer protection afforded by long-term adult imposition of Myc hypomorphism is accompanied by only mild collateral side effects, principally in haematopoiesis, but even these are circumvented if Myc hypomorphism is imposed metronomically whereas potent cancer protection is retained.
Collapse
Affiliation(s)
- Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
- Genentech, Department of Translational Oncology, South San Francisco, CA, 94080, USA.
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | | | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | | | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Daniel Garcia
- Oncogenesis Thematic Research Center at Bristol Myers Squibb, San Diego, CA, 92121, USA
| | | | | | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94115, USA
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
- The Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
5
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Medina JR, Tian X, Li WH, Suarez D, Mack JF, LaFrance L, Martyr C, Brackley J, Di Marco C, Rivero R, Heerding DA, McHugh C, Minthorn E, Bhaskar A, Rubin J, Butticello M, Carpenter C, Nartey EN, Berrodin TJ, Kallal LA, Mangatt B. Cell-Based Drug Discovery: Identification and Optimization of Small Molecules that Reduce c-MYC Protein Levels in Cells. J Med Chem 2021; 64:16056-16087. [PMID: 34669409 DOI: 10.1021/acs.jmedchem.1c01416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated expression of the c-MYC oncogene is one of the most common abnormalities in human cancers. Unfortunately, efforts to identify pharmacological inhibitors that directly target MYC have not yet yielded a drug-like molecule due to the lack of any known small molecule binding pocket in the protein, which could be exploited to disrupt MYC function. We have recently described a strategy to target MYC indirectly, where a screening effort designed to identify compounds that can rapidly decrease endogenous c-MYC protein levels in a MYC-amplified cell line led to the discovery of a compound series that phenocopies c-MYC knockdown by siRNA. Herein, we describe our medicinal chemistry program that led to the discovery of potent, orally bioavailable c-MYC-reducing compounds. The development of a minimum pharmacophore model based on empirical structure activity relationship as well as the property-based approach used to modulate pharmacokinetics properties will be highlighted.
Collapse
Affiliation(s)
- Jesús R Medina
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Xinrong Tian
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - William H Li
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Dominic Suarez
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - James F Mack
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Louis LaFrance
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Cuthbert Martyr
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - James Brackley
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Christina Di Marco
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Ralph Rivero
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Dirk A Heerding
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Charles McHugh
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Elisabeth Minthorn
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Aishwarya Bhaskar
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Jacob Rubin
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Michael Butticello
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | | | - Eldridge N Nartey
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Thomas J Berrodin
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Lorena A Kallal
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Biju Mangatt
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
7
|
Sodir NM, Kortlever RM, Barthet VJA, Campos T, Pellegrinet L, Kupczak S, Anastasiou P, Swigart LB, Soucek L, Arends MJ, Littlewood TD, Evan GI. MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. Cancer Discov 2020; 10:588-607. [PMID: 31941709 DOI: 10.1158/2159-8290.cd-19-0435] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.
Collapse
Affiliation(s)
- Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Roderik M Kortlever
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven Kupczak
- Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Filip D, Mraz M. The role of MYC in the transformation and aggressiveness of ‘indolent’ B-cell malignancies. Leuk Lymphoma 2019; 61:510-524. [DOI: 10.1080/10428194.2019.1675877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Sammak S, Hamdani N, Gorrec F, Allen MD, Freund SMV, Bycroft M, Zinzalla G. Crystal Structures and Nuclear Magnetic Resonance Studies of the Apo Form of the c-MYC:MAX bHLHZip Complex Reveal a Helical Basic Region in the Absence of DNA. Biochemistry 2019; 58:3144-3154. [PMID: 31260268 PMCID: PMC6791285 DOI: 10.1021/acs.biochem.9b00296] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The c-MYC transcription
factor is a master regulator of cell growth
and proliferation and is an established target for cancer therapy.
This basic helix–loop–helix Zip protein forms a heterodimer
with its obligatory partner MAX, which binds to DNA via the basic
region. Considerable research efforts are focused on targeting the
heterodimerization interface and the interaction of the complex with
DNA. The only available crystal structure is that of a c-MYC:MAX complex
artificially tethered by an engineered disulfide linker and prebound
to DNA. We have carried out a detailed structural analysis of the
apo form of the c-MYC:MAX complex, with no artificial linker, both
in solution using nuclear magnetic resonance (NMR) spectroscopy and
by X-ray crystallography. We have obtained crystal structures in three
different crystal forms, with resolutions between 1.35 and 2.2 Å,
that show extensive helical structure in the basic region. Determination
of the α-helical propensity using NMR chemical shift analysis
shows that the basic region of c-MYC and, to a lesser extent, that
of MAX populate helical conformations. We have also assigned the NMR
spectra of the c-MYC basic helix–loop–helix Zip motif
in the absence of MAX and showed that the basic region has an intrinsic
helical propensity even in the absence of its dimerization partner.
The presence of helical structure in the basic regions in the absence
of DNA suggests that the molecular recognition occurs via a conformational
selection rather than an induced fit. Our work provides both insight
into the mechanism of DNA binding and structural information to aid
in the development of MYC inhibitors.
Collapse
Affiliation(s)
- Susan Sammak
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Najoua Hamdani
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Fabrice Gorrec
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Mark D Allen
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Mark Bycroft
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Giovanna Zinzalla
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| |
Collapse
|
10
|
Buicko JL, Finnerty BM, Zhang T, Kim BJ, Fahey TJ, Nancy Du YC. Insights into the biology and treatment strategies of pancreatic neuroendocrine tumors. ACTA ACUST UNITED AC 2019; 2. [PMID: 31535089 DOI: 10.21037/apc.2019.06.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are the second most common primary pancreatic neoplasms after pancreatic ductal adenocarcinoma. PNETs present with widely various clinical manifestation and unfavorable survival rate. The recent advances in next generation sequencing have significantly increased our understanding of the molecular landscape of PNETs and help guide the development of targeted therapies. This review intends to outline a holistic picture of the tumors by discussing current understanding of clinical presentations, up-to-date treatment strategies, novel mouse models, and molecular biology of PNETs. Furthermore, we will provide insight into the future development of more effective targeted therapies that are necessary to manage PNETs.
Collapse
Affiliation(s)
- Jessica L Buicko
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Tiantian Zhang
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bu Jung Kim
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
11
|
Dysregulated Transcriptional Control in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122883. [PMID: 31200487 PMCID: PMC6627928 DOI: 10.3390/ijms20122883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.
Collapse
|
12
|
Castell A, Yan Q, Fawkner K, Hydbring P, Zhang F, Verschut V, Franco M, Zakaria SM, Bazzar W, Goodwin J, Zinzalla G, Larsson LG. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep 2018; 8:10064. [PMID: 29968736 PMCID: PMC6030159 DOI: 10.1038/s41598-018-28107-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
MYC is a key player in tumor development, but unfortunately no specific MYC-targeting drugs are clinically available. MYC is strictly dependent on heterodimerization with MAX for transcription activation. Aiming at targeting this interaction, we identified MYCMI-6 in a cell-based protein interaction screen for small inhibitory molecules. MYCMI-6 exhibits strong selective inhibition of MYC:MAX interaction in cells and in vitro at single-digit micromolar concentrations, as validated by split Gaussia luciferase, in situ proximity ligation, microscale thermophoresis and surface plasmon resonance (SPR) assays. Further, MYCMI-6 blocks MYC-driven transcription and binds selectively to the MYC bHLHZip domain with a KD of 1.6 ± 0.5 μM as demonstrated by SPR. MYCMI-6 inhibits tumor cell growth in a MYC-dependent manner with IC50 concentrations as low as 0.5 μM, while sparing normal cells. The response to MYCMI-6 correlates with MYC expression based on data from 60 human tumor cell lines and is abrogated by MYC depletion. Further, it inhibits MYC:MAX interaction, reduces proliferation and induces massive apoptosis in tumor tissue from a MYC-driven xenograft tumor model without severe side effects. Since MYCMI-6 does not affect MYC expression, it is a unique molecular tool to specifically target MYC:MAX pharmacologically and it has good potential for drug development.
Collapse
Affiliation(s)
- Alina Castell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qinzi Yan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Karin Fawkner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- TLV, Box 225 20, 104 22, Stockholm, Sweden
| | - Per Hydbring
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Fan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Vasiliki Verschut
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marcela Franco
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Siti Mariam Zakaria
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Jacob Goodwin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Giovanna Zinzalla
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
13
|
Affiliation(s)
- Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
14
|
Evan GI, Hah N, Littlewood TD, Sodir NM, Campos T, Downes M, Evans RM. Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked. Clin Cancer Res 2017; 23:1647-1655. [PMID: 28373363 PMCID: PMC5381729 DOI: 10.1158/1078-0432.ccr-16-3275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
The "hallmarks" of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive, and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix, and immune cells. The oncogenically activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immunosuppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue-specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity, and maintenance. Hence, interfering with such super enhancer-driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extraterminal motif proteins, have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanisms suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. Clin Cancer Res; 23(7); 1647-55. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
15
|
Holien T, Misund K, Olsen OE, Baranowska KA, Buene G, Børset M, Waage A, Sundan A. MYC amplifications in myeloma cell lines: correlation with MYC-inhibitor efficacy. Oncotarget 2016; 6:22698-705. [PMID: 26087190 PMCID: PMC4673192 DOI: 10.18632/oncotarget.4245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 12/29/2022] Open
Abstract
In multiple myeloma, elevated MYC expression is related to disease initiation and progression. We found that in myeloma cell lines, MYC gene amplifications were common and correlated with MYC mRNA and protein. In primary cell samples MYC mRNA levels were also relatively high; however gene copy number alterations were uncommon. Elevated levels of MYC in primary myeloma cells have been reported to arise from complex genetic aberrations and are more common than previously thought. Thus, elevated MYC expression is achieved differently in myeloma cell lines and primary cells. Sensitivity of myeloma cell lines to the MYC inhibitor 10058-F4 correlated with MYC expression, supporting that the activity of 10058-F4 was through specific inhibition of MYC.
Collapse
Affiliation(s)
- Toril Holien
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oddrun Elise Olsen
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katarzyna Anna Baranowska
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Glenn Buene
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magne Børset
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Anders Waage
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, Trondheim, Norway
| | - Anders Sundan
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,CEMIR (Centre of Molecular Inflammation Research), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Asymmetric Cancer Hallmarks in Breast Tumors on Different Sides of the Body. PLoS One 2016; 11:e0157416. [PMID: 27383829 PMCID: PMC4934783 DOI: 10.1371/journal.pone.0157416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
During the last decades it has been established that breast cancer arises through the accumulation of genetic and epigenetic alterations in different cancer related genes. These alterations confer the tumor oncogenic abilities, which can be resumed as cancer hallmarks (CH). The purpose of this study was to establish the methylation profile of CpG sites located in cancer genes in breast tumors so as to infer their potential impact on 6 CH: i.e. sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, genome instability and invasion and metastasis. For 51 breast carcinomas, MS-MLPA derived-methylation profiles of 81 CpG sites were converted into 6 CH profiles. CH profiles distribution was tested by different statistical methods and correlated with clinical-pathological data. Unsupervised Hierarchical Cluster Analysis revealed that CH profiles segregate in two main groups (bootstrapping 90–100%), which correlate with breast laterality (p = 0.05). For validating these observations, gene expression data was obtained by RealTime-PCR in a different cohort of 25 tumors and converted into CH profiles. This analyses confirmed the same clustering and a tendency of association with breast laterality (p = 0.15). In silico analyses on gene expression data from TCGA Breast dataset from left and right breast tumors showed that they differed significantly when data was previously converted into CH profiles (p = 0.033). We show here for the first time, that breast carcinomas arising on different sides of the body present differential cancer traits inferred from methylation and expression profiles. Our results indicate that by converting methylation or expression profiles in terms of Cancer Hallmarks, it would allow to uncover veiled associations with clinical features. These results contribute with a new finding to the better understanding of breast tumor behavior, and can moreover serve as proof of principle for other bilateral cancers like lung, testes or kidney.
Collapse
|
17
|
Evageliou NF, Haber M, Vu A, Laetsch TW, Murray J, Gamble LD, Cheng NC, Liu K, Reese M, Corrigan KA, Ziegler DS, Webber H, Hayes CS, Pawel B, Marshall GM, Zhao H, Gilmour SK, Norris MD, Hogarty MD. Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression. Clin Cancer Res 2016; 22:4391-404. [PMID: 27012811 DOI: 10.1158/1078-0432.ccr-15-2539] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. EXPERIMENTAL DESIGN We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. RESULTS An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. CONCLUSIONS Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.
Collapse
Affiliation(s)
- Nicholas F Evageliou
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Annette Vu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jayne Murray
- Children's Cancer Institute Australia, Sydney, Australia
| | - Laura D Gamble
- Children's Cancer Institute Australia, Sydney, Australia
| | | | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Megan Reese
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Corrigan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David S Ziegler
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia. School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, Sydney, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Candice S Hayes
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Huaqing Zhao
- Department of Biostatistics, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Murray D Norris
- Children's Cancer Institute Australia, Sydney, Australia. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Zinzalla G. A New Way Forward in Cancer Drug Discovery: Inhibiting the SWI/SNF Chromatin Remodelling Complex. Chembiochem 2016; 17:677-82. [PMID: 26684344 DOI: 10.1002/cbic.201500565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/24/2022]
Abstract
Mutations in subunits of the SWI/SNF chromatin remodelling complex are found in 20 % of human cancers. At face value, this would appear to indicate that this multiprotein complex is a potent tumour suppressor. However, it has recently emerged that some mutations in the SWI/SNF complex can have a gain-of-function effect and that in other tumours, such as pancreatic cancer, leukaemia, and breast cancer, the wild-type complex is used to drive cancer. Thus, paradoxically, this "tumour suppressor" has become an attractive target for developing anticancer agents. The SWI/SNF complex makes several protein-protein interactions both within the complex and with a wide range of transcription factors, and targeting these protein-protein interactions is emerging as the best approach to modulating the activity of the complex selectively.
Collapse
Affiliation(s)
- Giovanna Zinzalla
- Microbiology, Tumour and Cell Biology (MTC), and Science for Life Laboratory (SciLifeLab), Karolinska Institutet, Tomtebodavägen 23A, Stockholm, 171 65, Sweden.
| |
Collapse
|
19
|
Abstract
Drugs that target intracellular signalling pathways have markedly improved progression-free survival of patients with cancers who were previously regarded as untreatable. However, the rapid emergence of therapeutic resistance, as a result of bypass signalling or downstream mutation within kinase-mediated signalling cascades, has curtailed the benefit gained from these therapies. Such resistance mechanisms are facilitated by the linearity and redundancy of kinase signalling pathways. We argue that, in each cancer, the dysregulation of key transcriptional regulators not only defines the cancer phenotype but is essential for its development and maintenance. Furthermore, we propose that, as therapeutic targets, these transcriptional regulators are less prone to bypass by alternative mutational events or clonal heterogeneity, and therefore we must rekindle our efforts to directly target transcriptional regulation across a broad range of cancers.
Collapse
Affiliation(s)
- Thomas J Gonda
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence (PACE), 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Oncology Department and the Pathology Department, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
|
21
|
Edmunds LR, Sharma L, Wang H, Kang A, d’Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS One 2015; 10:e0134049. [PMID: 26230505 PMCID: PMC4521957 DOI: 10.1371/journal.pone.0134049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022] Open
Abstract
The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.
Collapse
Affiliation(s)
- Lia R. Edmunds
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Lokendra Sharma
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Huabo Wang
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Audry Kang
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sonia d’Souza
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Jie Lu
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Michael McLaughlin
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - James M. Dolezal
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Susan T. Weintraub
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Ying Ding
- Department of Biostatistics, The University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xuemei Zeng
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nathan Yates
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- The Hillman Cancer Center, The University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Topham C, Tighe A, Ly P, Bennett A, Sloss O, Nelson L, Ridgway RA, Huels D, Littler S, Schandl C, Sun Y, Bechi B, Procter DJ, Sansom OJ, Cleveland DW, Taylor SS. MYC Is a Major Determinant of Mitotic Cell Fate. Cancer Cell 2015; 28:129-40. [PMID: 26175417 PMCID: PMC4518499 DOI: 10.1016/j.ccell.2015.06.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/04/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022]
Abstract
Taxol and other antimitotic agents are frontline chemotherapy agents but the mechanisms responsible for patient benefit remain unclear. Following a genome-wide siRNA screen, we identified the oncogenic transcription factor Myc as a taxol sensitizer. Using time-lapse imaging to correlate mitotic behavior with cell fate, we show that Myc sensitizes cells to mitotic blockers and agents that accelerate mitotic progression. Myc achieves this by upregulating a cluster of redundant pro-apoptotic BH3-only proteins and suppressing pro-survival Bcl-xL. Gene expression analysis of breast cancers indicates that taxane responses correlate positively with Myc and negatively with Bcl-xL. Accordingly, pharmacological inhibition of Bcl-xL restores apoptosis in Myc-deficient cells. These results open up opportunities for biomarkers and combination therapies that could enhance traditional and second-generation antimitotic agents.
Collapse
Affiliation(s)
- Caroline Topham
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Anthony Tighe
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Peter Ly
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ailsa Bennett
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Olivia Sloss
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Louisa Nelson
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61BD, UK
| | - David Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61BD, UK
| | - Samantha Littler
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Claudia Schandl
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ying Sun
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Beatrice Bechi
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - David J Procter
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61BD, UK
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Stephen S Taylor
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
23
|
Ross SJ, Critchlow SE. Emerging approaches to target tumor metabolism. Curr Opin Pharmacol 2014; 17:22-9. [PMID: 25048629 DOI: 10.1016/j.coph.2014.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 12/21/2022]
Abstract
Therapeutic exploitation of the next generation of drugs targeting the genetic basis of cancer will require an understanding of how cancer genes regulate tumor biology. Reprogramming of tumor metabolism has been linked with activation of oncogenes and inactivation of tumor suppressors. Well established and emerging cancer genes such as MYC, IDH1/2 and KEAP1 regulate tumor metabolism opening up opportunities to evaluate metabolic pathway inhibition as a therapeutic strategy in these tumors.
Collapse
Affiliation(s)
- Sarah J Ross
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Susan E Critchlow
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| |
Collapse
|
24
|
Martino T, Magalhães FCJ, Justo GA, Coelho MGP, Netto CD, Costa PRR, Sabino KCC. The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression. Bioorg Med Chem 2014; 22:3115-22. [PMID: 24794748 DOI: 10.1016/j.bmc.2014.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/06/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
Abstract
The incidence of cancer grows annually worldwide and in Brazil it is the second cause of death. The search for anti-cancer drugs has then become urgent. It depends on the studies of natural and chemical synthesis products. The antitumor action of LQB-118, a pterocarpanquinone structurally related to lapachol, has been demonstrated to induce mechanisms linked to leukemia cell apoptosis. This work investigated some mechanisms of the in vitro antitumor action of LQB-118 on prostate cancer cells. LQB-118 reduced the expression of the c-Myc transcription factor, downregulated the cyclin D1 and cyclin B1 mRNA levels and upregulated the p21 cell cycle inhibitor. These effects resulted in cell cycle arrest in the S and G2/M phases and inhibition of tumor cell proliferation. LQB-118 also induced programmed cell death of the prostate cancer cells, as evidenced by internucleosomal DNA fragmentation and annexin-V positive cells. Except the cell cycle arrest in the S phase and enhanced c-Myc expression, all the mechanisms observed here for the in vitro antitumor action of LQB-118 were also found for Paclitaxel, a traditional antineoplastic drug. These findings suggest new molecular mechanisms for the LQB-118 in vitro antitumor action.
Collapse
Affiliation(s)
- Thiago Martino
- Department of Biochemistry, Biomedical Center, Rio de Janeiro State University, Boulevard 28 de Setembro, 87, fundos, 4° andar, PAPC, Rio de Janeiro, RJ CEP 20551-030, Brazil
| | - Fernanda C J Magalhães
- Department of Biochemistry, Biomedical Center, Rio de Janeiro State University, Boulevard 28 de Setembro, 87, fundos, 4° andar, PAPC, Rio de Janeiro, RJ CEP 20551-030, Brazil
| | - Graça A Justo
- Department of Biochemistry, Biomedical Center, Rio de Janeiro State University, Boulevard 28 de Setembro, 87, fundos, 4° andar, PAPC, Rio de Janeiro, RJ CEP 20551-030, Brazil
| | - Marsen G P Coelho
- Department of Biochemistry, Biomedical Center, Rio de Janeiro State University, Boulevard 28 de Setembro, 87, fundos, 4° andar, PAPC, Rio de Janeiro, RJ CEP 20551-030, Brazil
| | - Chaquip D Netto
- Laboratory of Bioorganic Chemistry, Research Nucleous of Natural Products, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Research Nucleous of Natural Products, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Kátia C C Sabino
- Department of Biochemistry, Biomedical Center, Rio de Janeiro State University, Boulevard 28 de Setembro, 87, fundos, 4° andar, PAPC, Rio de Janeiro, RJ CEP 20551-030, Brazil.
| |
Collapse
|
25
|
The Myc world within reach. Methods Mol Biol 2014; 1012:1-6. [PMID: 24006054 DOI: 10.1007/978-1-62703-429-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Myc is a transcriptional coordinator of a wide range of intracellular and extracellular processes required for cell proliferation. These processes are tightly regulated in physiological conditions but hijacked when Myc is oncogenically activated. In fact, aberrantly elevated and/or deregulated activity of Myc is associated with the majority of human cancers. Several switchable mouse transgenic models have been developed and provided insights on the role of Myc in maintaining multiple aspects of the tumor phenotype, indicating that Myc inhibition would constitute an effective and broadly applicable anticancer therapeutic strategy. This issue of "The Myc gene: Methods and Protocols" provides a rich collection of techniques developed or routinely used by Myc investigators and serves as an invaluable resource for exploring the pleiotropic and still puzzling Myc biological functions.
Collapse
|
26
|
Abstract
The MYC family of proteins is a group of basic-helix-loop-helix-leucine zipper transcription factors that feature prominently in cancer. Overexpression of MYC is observed in the vast majority of human malignancies and promotes an extraordinary set of changes that impact cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion, differentiation, and metastasis. The purpose of this review is to introduce the reader to the mammalian family of MYC proteins, highlight important functional properties that endow them with their potent oncogenic potential, describe their mechanisms of action and of deregulation in cancer cells, and discuss efforts to target the unique properties of MYC, and of MYC-driven tumors, to treat cancer.
Collapse
|
27
|
Tao J, Zhao X, Tao J. c-MYC-miRNA circuitry: a central regulator of aggressive B-cell malignancies. Cell Cycle 2014; 13:191-8. [PMID: 24394940 DOI: 10.4161/cc.27646] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MYC (c-Myc) deregulation has been frequently associated with aggressive lymphomas and adverse clinical outcome in B-cell malignancies. MYC has been implicated in controlling the expression of miRNAs, and MYC-regulated miRNAs affect virtually all aspects of the hallmarks of MYC-driven lymphomas. Increasing evidence has indicated that there is significant cross-talk between MYC and miRNAs, with MYC regulating expression of a number of miRNAs, resulting in widespread repression of miRNA and, at the same time, MYC being subjected to regulation by miRNAs, leading to sustained MYC activity and the corresponding MYC downstream pathways. Thus, these combined effects of MYC overexpression and downregulation of miRNAs play a central regulatory role in the MYC oncogenic pathways and MYC-driven lymphomagenesis. Here, we provide biological insight on the function of MYC-regulated miRNAs, the mechanisms of MYC-induced miRNA repression, and the complicated feedback circuitry underlying lymphoma progression, as well as potential therapeutic targets in aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Departments of Hematopathology and Laboratory Medicine; H Lee Moffitt Cancer Center and Research Institute at the University of South Florida; Tampa, FL USA
| | - Xiaohong Zhao
- Departments of Hematopathology and Laboratory Medicine; H Lee Moffitt Cancer Center and Research Institute at the University of South Florida; Tampa, FL USA
| | - Jianguo Tao
- Departments of Hematopathology and Laboratory Medicine; H Lee Moffitt Cancer Center and Research Institute at the University of South Florida; Tampa, FL USA
| |
Collapse
|
28
|
Benetatos L, Vartholomatos G, Hatzimichael E. Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci 2014; 71:257-69. [PMID: 23897499 PMCID: PMC11113285 DOI: 10.1007/s00018-013-1426-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers. Although the interaction of PcG and MYC in cancer was described years ago, new findings are reported every day to explain the exact mechanisms and results of such interactions. In this review, we summarize recent data on the PcG and MYC interactions in cancer, and the putative involvement of microRNAs in the equation.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, General Hospital of Preveza, Selefkias 2, 48100, Preveza, Greece,
| | | | | |
Collapse
|
29
|
Abstract
Over-expression of the proto-oncogene c-MYC is frequently observed in a variety of tumors and is a hallmark of Burkitt´s lymphoma. The fact that many tumors are oncogene-addicted to c-MYC, renders c-MYC a powerful target for anti-tumor therapy. Using a xenogenic vaccination strategy by immunizing C57BL/6 mice with human c-MYC protein or non-homologous peptides, we show that the human c-MYC protein, despite its high homology between mouse and man, contains several immunogenic epitopes presented in the context of murine H2b haplotype. We identified an MHC class II-restricted CD4+ T-cell epitope and therein an MHC class I-restricted CD8+ T-cell epitope (SSPQGSPEPL) that, after prime/boost immunization, protected up to 25% of mice against a lethal lymphoma challenge. Lymphoma-rejecting animals contained MHC multimer-binding CD8+ cell within the peripheral blood and displayed in vivo cytolytic activity with specificity for SSPQGSPEPL. Taken together these data suggest that oncogenic c-MYC can be targeted with specific T-cells.
Collapse
|
30
|
Mahani A, Henriksson J, Wright APH. Origins of Myc proteins--using intrinsic protein disorder to trace distant relatives. PLoS One 2013; 8:e75057. [PMID: 24086436 PMCID: PMC3782479 DOI: 10.1371/journal.pone.0075057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/09/2013] [Indexed: 01/10/2023] Open
Abstract
Mammalian Myc proteins are important determinants of cell proliferation as well as the undifferentiated state of stem cells and their activity is frequently deregulated in cancer. Based mainly on conservation in the C-terminal DNA-binding and dimerization domain, Myc-like proteins have been reported in many simpler organisms within and outside the Metazoa but they have not been found in fungi or plants. Several important signature motifs defining mammalian Myc proteins are found in the N-terminal domain but the extent to which these are found in the Myc-like proteins from simpler organisms is not well established. The extent of N-terminal signature sequence conservation would give important insights about the evolution of Myc proteins and their current function in mammalian physiology and disease. In a systematic study of Myc-like proteins we show that N-terminal signature motifs are not readily detectable in individual Myc-like proteins from invertebrates but that weak similarities to Myc boxes 1 and 2 can be found in the N-termini of the simplest Metazoa as well as the unicellular choanoflagellate, Monosiga brevicollis, using multiple protein alignments. Phylogenetic support for the connections of these proteins to established Myc proteins is however poor. We show that the pattern of predicted protein disorder along the length of Myc proteins can be used as a complementary approach to making dendrograms of Myc proteins that aids the classification of Myc proteins. This suggests that the pattern of disorder within Myc proteins is more conserved through evolution than their amino acid sequence. In the disorder-based dendrograms the Myc-like proteins from simpler organisms, including M. brevicollis, are connected to established Myc proteins with a higher degree of certainty. Our results suggest that protein disorder based dendrograms may be of general significance for studying distant relationships between proteins, such as transcription factors, that have high levels of intrinsic disorder.
Collapse
Affiliation(s)
- Amir Mahani
- Department of Laboratory Medicine and Center for Biosciences, Karolinska Institute, Huddinge, Sweden
| | - Johan Henriksson
- Department of Laboratory Medicine and Center for Biosciences, Karolinska Institute, Huddinge, Sweden
| | - Anthony P. H. Wright
- Department of Laboratory Medicine and Center for Biosciences, Karolinska Institute, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
31
|
MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A 2013; 110:10258-63. [PMID: 23733953 DOI: 10.1073/pnas.1222404110] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.
Collapse
|
32
|
Eißmann M, Schwamb B, Melzer IM, Moser J, Siele D, Köhl U, Rieker RJ, Wachter DL, Agaimy A, Herpel E, Baumgarten P, Mittelbronn M, Rakel S, Kögel D, Böhm S, Gutschner T, Diederichs S, Zörnig M. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes. PLoS One 2013; 8:e64873. [PMID: 23717670 PMCID: PMC3661464 DOI: 10.1371/journal.pone.0064873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.
Collapse
Affiliation(s)
- Moritz Eißmann
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bettina Schwamb
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Inga Maria Melzer
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Julia Moser
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Dagmar Siele
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany
| | | | | | - Abbas Agaimy
- Institute for Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Baumgarten
- Institute of Neurology (Edinger Institute), Frankfurt/Main, Germany
| | | | - Stefanie Rakel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefanie Böhm
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Tony Gutschner
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Zörnig
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
33
|
Abstract
The first joint meeting of the International Society for Cellular Oncology (ISCO) and the European Workshop on Cytogenetics and Molecular Genetics of Solid Tumors (EWCMST), organized by Bauke Ylstra, Juan Cigudosa and Nick Gilbert, was held from 4 to 8 March, 2012 in Palma de Mallorca, Spain. This meeting provided a novel and unique opportunity to jointly present the latest updates on the genetics of cancer and its implications for diagnosis, prognosis and therapy, now and in the future. Various aspects were highlighted, including the identification of effective therapeutic targets, the role of cellular senescence in tumor development and therapy, chromosome translocations in leukemias and solid tumors, mechanisms underlying fragile sites and chromosome instability, tumor-associated ‘omics’ landscapes, genetic and epidemiologic risk factors, the role of tissue and cancer stem cells, angiogenesis and the tumor micro-environment, and the epigenetics of cancer. In this report, new insights and clinical advancements related to these various topics are provided, based on information presented at the meeting.
Collapse
Affiliation(s)
- Ad Geurts van Kessel
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Affiliation(s)
- Annabelle Lewis
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | |
Collapse
|