1
|
Zhang J, Jiang Y, Zhang Z, Li S, Fan H, Gu J, Mao R, Xu X. Repulsive guidance molecules b (RGMb): molecular mechanism, function and role in diseases. Expert Rev Mol Med 2024; 26:e24. [PMID: 39375839 PMCID: PMC11488336 DOI: 10.1017/erm.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 06/11/2024] [Indexed: 10/09/2024]
Abstract
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb-neogenin-Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)-RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2-RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zijian Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shilin Li
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Haowen Fan
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Guo H, Zhang C, Shen YK, Zhang JD, Yang FY, Liang F, Wang W, Liu YT, Wang GZ, Zhou GB. PD-L2 mediates tobacco smoking-induced recruitment of regulatory T cells via the RGMB/NFκB/CCL20 cascade. Cell Biol Toxicol 2024; 40:56. [PMID: 39042313 PMCID: PMC11266262 DOI: 10.1007/s10565-024-09892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Programmed cell death ligand 2 (PD-L2), a ligand for the receptor programmed cell death 1 (PD-1), has an identity of 34% with its twin ligand PD-L1 and exhibits higher binding affinity with PD-1 than PD-L1. However, the role of PD-L2 in non-small cell lung cancer (NSCLC) progression, especially tobacco-induced cancer progression, has not been fully understood. Here, we found that PD-L2 promoted tumor growth in murine models with recruitment of regulatory T cells (Tregs). In patients with NSCLC, PD-L2 expression level in tumor samples was higher than in counterpart normal controls and was positively associated with patients' response to anti-PD-1 treatment. Mechanismly, PD-L2 bound its receptor Repulsive guidance molecule B (RGMB) on cancer cells and activated extracellular signal-regulated kinase (Erk) and nuclear factor κB (NFκB), leading to increased production of chemokine CCL20, which recruited Tregs and contributed to NSCLC progression. Consistently, knockdown of RGMB or NFκB p65 inhibited PD-L2-induced CCL20 production, and silencing of PD-L2 repressed Treg recruitment by NSCLC cells. Furthermore, cigarette smoke and carcinogen benzo(a)pyrene (BaP) upregulated PD-L2 in lung epithelial cells via aryl hydrocarbon receptor (AhR)-mediated transcription activation, whose deficiency markedly suppressed BaP-induced PD-L2 upregulation. These results suggest that PD-L2 mediates tobacco-induced recruitment of Tregs via the RGMB/NFκB/CCL20 cascade, and targeting this pathway might have therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Hua Guo
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Zhang
- School of Life Sciences and Engineering, Handan University, Handan, Hebei Province, 056005, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Ke Shen
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian-Dong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Shanxi Bethune Hospital Affiliated with Shanxi Academy of Medical Sciences, Taiyuan, Shanxi Province, 030032, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fan Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medicine, Weifang Medical University, Shandong, 261000, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Meira M, Frey A, Chekkat N, Rybczynska M, Sellam Z, Park JS, Gazzaniga FS, Parmentier A, Le Gall M, Freeman GJ, Kasper DL, Sharpe AH, Rambeaux E, Shamshiev A. Targeting RGMb interactions: Discovery and preclinical characterization of potent anti-RGMb antibodies blocking multiple ligand bindings. MAbs 2024; 16:2432403. [PMID: 39588913 PMCID: PMC11601088 DOI: 10.1080/19420862.2024.2432403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Therapeutic efficacy with durable responses has been demonstrated with several antibody drugs that block key immune checkpoint receptors, including PD-1, PD-L1, and CTLA-4. Despite the success of these drugs, a substantial proportion of patients do not benefit. Targeting multiple inhibitory pathways simultaneously to augment anti-tumor immunity has proven to be a promising approach. The emergence of Repulsive Guidance Molecule b (RGMb), a ligand for PD-L2, as a novel co-inhibitory pathway in T cells, together with its regulation by the gut microbiome, encouraged the discovery and development of fully human anti-RGMb antibodies. Here, we describe phage display-derived monoclonal antibodies (mAbs) 2C11 and 5C10 that bind human RGMb with high affinities of 1.4 nM and 0.72 nM, respectively. Both mAbs 2C11 and 5C10 potently inhibited RGMb interaction with PD-L2. MAb 2C11 effectively inhibited RGMb interaction with bone morphogenetic proteins 2 and 4 (BMP2-4), while leaving RGMb interaction with Neogenin 1 (Neo1) unaffected. Conversely, mAb 5C10 disrupted RGMb interaction with Neo1 while maintaining RGMb binding to BMP2-4. These findings map the 2C11 epitope at the membrane-distal N-terminal region of RGMb, which coincides with both PD-L2- and BMP2-4-binding sites. The PD-L2 binding interface is likely positioned between RGMb's N-terminal BMP-binding and C-terminal Neo1-binding regions. The in vivo activity of mAb 2C11 in combination with anti-PD-1 or anti-PD-L1 was tested in MC38 and B16-OVA cancer models and demonstrated synergistic effects by significantly enhancing anti-tumor responses. These properties make mAb 2C11 a promising candidate for therapeutic use to overcome immune checkpoint inhibitor resistances, warranting further exploration in clinical settings.
Collapse
Affiliation(s)
- Maria Meira
- R&D Department, IOME Bio SA, Strasbourg, France
| | - Aurore Frey
- R&D Department, IOME Bio SA, Strasbourg, France
| | | | | | - Zaki Sellam
- R&D Department, IOME Bio SA, Strasbourg, France
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Gordon James Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dennis Lee Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arlene Helen Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
4
|
Koga K, Tasaka Y, Nawa H. Cross-Cancer Type Evaluation of Potential Interstitial Lung Disease Complications of Immune Checkpoint Inhibitors Using JADER. Biol Pharm Bull 2024; 47:1296-1300. [PMID: 39010215 DOI: 10.1248/bpb.b24-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Interstitial lung disease (ILD) is a serious adverse event caused by the administration of immune checkpoint inhibitors (ICIs). However, only few large-scale studies have explored the association among ICI use, underlying cancer type, and ILD complications. This study aimed to analyze the association between the primary cancer type and ICI-induced ILD in a cross-sectional manner using the Japanese Adverse Drug Event Report (JADER) database. Nivolumab and pembrolizumab (anti-programmed cell death 1 (PD-1) antibodies) and durvalumab, avelumab, and atezolizumab (anti-programmed cell death ligand 1 (PD-L1) antibodies) were included as ICIs in this study. Adverse events were identified based on the preferred terms of Medical Dictionary for Regulatory Activities (MedDRA) version 27.0/J listed in the Standardized MedDRA Queries (SMQ) "interstitial lung disease." The reporting odds ratio was calculated to detect the association between ICI use and ILD complications, and a signal was detected if the lower limit of the 95% confidence interval exceeded 1. In the analysis of all cancer types, a signal was detected for all ICIs except avelumab. An association between ICI and ILD was detected for all cancer types with nivolumab. However, pembrolizumab exhibited a signal only in colorectal cancer. In contrast, anti-PD-L1 antibodies displayed signals in five cancer types, excluding head and neck cancer, which was not reported in JADER. Among these cancer types, atezolizumab exhibited a signal only in breast cancer. The results of this study will help guide the safe use of ICIs based on the underlying cancer type in terms of ILD complications.
Collapse
Affiliation(s)
- Kazuma Koga
- Graduate School of Clinical Pharmacy, Shujitsu University
- Department of Pharmacy, NHO Okayama Medical Center
| | - Yuichi Tasaka
- Graduate School of Clinical Pharmacy, Shujitsu University
| | - Hideki Nawa
- Graduate School of Clinical Pharmacy, Shujitsu University
| |
Collapse
|
5
|
Yang F, Xu F, Zhang H, Gill D, Larsson SC, Li X, Cui H, Yuan S. Proteomic insights into the associations between obesity, lifestyle factors, and coronary artery disease. BMC Med 2023; 21:485. [PMID: 38049831 PMCID: PMC10696760 DOI: 10.1186/s12916-023-03197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the protein pathways linking obesity and lifestyle factors to coronary artery disease (CAD). METHODS Summary-level genome-wide association statistics of CAD were obtained from the CARDIoGRAMplusC4D consortium (60,801 cases and 123,504 controls) and the FinnGen study (R8, 39,036 cases and 303,463 controls). Proteome-wide Mendelian randomization (MR) analysis was conducted to identify CAD-associated blood proteins, supplemented by colocalization analysis to minimize potential bias caused by linkage disequilibrium. Two-sample MR analyses were performed to assess the associations of genetically predicted four obesity measures and 13 lifestyle factors with CAD risk and CAD-associated proteins' levels. A two-step network MR analysis was conducted to explore the mediating effects of proteins in the associations between these modifiable factors and CAD. RESULTS Genetically predicted levels of 41 circulating proteins were associated with CAD, and 17 of them were supported by medium to high colocalization evidence. PTK7 (protein tyrosine kinase-7), RGMB (repulsive guidance molecule BMP co-receptor B), TAGLN2 (transgelin-2), TIMP3 (tissue inhibitor of metalloproteinases 3), and VIM (vimentin) were identified as promising therapeutic targets. Several proteins were found to mediate the associations between some modifiable factors and CAD, with PCSK9, C1S, AGER (advanced glycosylation end product-specific receptor), and MST1 (mammalian Ste20-like kinase 1) exhibiting highest frequency among the mediating networks. CONCLUSIONS This study suggests pathways explaining the associations of obesity and lifestyle factors with CAD from alterations in blood protein levels. These insights may be used to prioritize therapeutic intervention for further study.
Collapse
Affiliation(s)
- Fangkun Yang
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, 59 Liuting Road, Ningbo, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Han Zhang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hanbin Cui
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, 59 Liuting Road, Ningbo, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China.
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang, China.
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Xue Y, Pei X, Xia Y, Chen H, Yu H, Wang W, Mao D. RGMb expression in goat uterine tissues: possible role of RGMb in the proliferation and apoptosis of endometrial epithelial cells. Reprod Fertil Dev 2023; 35:723-732. [PMID: 37967584 DOI: 10.1071/rd23121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Context Bone morphogenetic proteins (BMPs) play an important role in the uteri. Repulsive guidance molecule b (RGMb; a.k.a. Dragon) has been confirmed as the coreceptor of BMPs to function through drosophila mothers against decapentaplegic protein (Smads) and mitogen-activated protein kinases (MAPK) pathways. We hypothesise that RGMb regulates the uterine function through the Smads and MAPK pathways. Aims This study aimed to investigate the expression of RGMb in goat uteri and the potential role of RGMb in the endometrial epithelial cells (EECs). Methods The localisation of RGMb in goat uterine tissues was detected by immunohistochemistry (IHC), EECs were isolated and transfected with siRNA to investigate the role of RGMb in proliferation, and apoptosis. The expression levels of Smads and MAPK members was measured by western blot (WB) and real-time PCR (RT-PCR). Key results IHC showed that RGMb was localised in goat endometrial luminal cells, glandular epithelial cells, and circular muscle fibres, but not in stromal cells. RT-PCR results showed that treatment with RGMb siRNA suppressed the expressions of proliferation-related genes cyclin D1 (CCND1 , P =0.0291), cyclin-dependent kinase 2 (CDK2 P =0.0107), and proliferating cell nuclear antigen (PCNA, P =0.0508), leading to the reduced viability of EECs (P =0.0010). WB results showed that the expression ratio of cleaved-caspase 3/caspase 3 (P =0.0013) was markedly increased after RGMb siRNA transfection. Likewise, the level of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2, P =0.0068) and p-Smad1/5/8 (P =0.0011) decreased significantly, while there were no appreciable differences in the level of p-P38 MAPK expression (P >0.05). Conclusions RGMb might participate in the regulation of cell proliferation and apoptosis through Smads and ERK signalling pathways in goat EECs. Implications RGMb is involved in regulating the proliferation and apoptosis in goat endometrial epithelial cells.
Collapse
Affiliation(s)
- Yang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuting Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hengguang Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Dorset SR, Daugaard TF, Larsen TV, Nielsen AL. RGMb impacts partial epithelial-mesenchymal transition and BMP2-Induced ID mRNA expression independent of PD-L2 in nonsmall cell lung cancer cells. Cell Biol Int 2023; 47:1799-1812. [PMID: 37434531 DOI: 10.1002/cbin.12071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
PD-1/PD-ligand-axis immunotherapy-mediated activation of T-cells for cancer cell elimination is a promising treatment of nonsmall cell lung cancer (NSCLC). However, the effect of immunotherapy on intracellular signaling pathways in cancer cells still needs further delineation. Repulsive Guidance Molecule b (RGMb), a regulator of Bone Morphogenetic Proteins (BMPs) signaling, interacts with the PD-ligand, PD-L2, at cancer cell membranes. Accordingly, a clarification of the functions of RGMb and its relation to PD-L2 might provide insight into NSCLC cell signaling responses to PD-1/PD-ligand-axis immunotherapy. In this study, the functions of RGMb and PD-L2 were examined using the two NSCLC cell lines HCC827 and A549. CRISPR/Cas9 was used to decrease the expression of RGMb and PD-L2, while lentiviral vectors were used to increase their expression. Downstream effects were examined by RT-qPCR and immunoassays. Ectopic expression of RGMb impacted BMP2-induced expression of ID1 and ID2 messenger RNA (mRNA) independently of PD-L2, while RGMb depletion by CRISPR/Cas9 did not affect the BMP2-mediated induction of ID1, ID2, and ID3 mRNA. However, depletion of RGMb resulted in a partial epithelial-mesenchymal transition (EMT) gene expression profile in HCC827 cells, which was not mimicked by PD-L2 depletion. The results show that RGMb is a coregulator of BMP signaling and hence, ID mRNA expression and that RGMb can control the EMT balance in NSCLC cells. However, RGMb appears to exert these functions independently of PD-L2, and accordingly, the PD-1/PD-ligand axis for immune surveillance in NSCLC cells.
Collapse
|
8
|
Lu J, Zhou Y, Chen Z, Jiang H, Li J, Dou G. Circ_0000419 acts as a tumor suppressor in gastric cancer development via regulating miR-300/RGMB axis. Int J Clin Oncol 2023; 28:1475-1485. [PMID: 37470948 DOI: 10.1007/s10147-023-02379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Dysregulated circular RNAs (circRNAs) have been verified to function in the development of gastric cancer (GC). The current study was designed to investigate the role of circ_0000419 in GC progression, and the potential mechanistic pathway. METHODS Relative expression of circ_0000419, microRNA-300 (miR-300) and Repulsive Guidance Molecule B (RGMB) was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay. Cell metastasis, including migration and invasion, was assessed by wound healing and Transwell assays. Glucose consumption and lactate production were examined using kits. The association between miR-300 and circ_0000419 or RGMB was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assays. Role of circ_0000419 in vivo was determined by xenograft experiment. RESULTS Circ_0000419 and RGMB were downregulated, while miR-300 was upregulated in GC tissues and cells. Gain of circ_0000419 inhibited migration, invasion and glycolysis in GC cells, which was attenuated by introduction of miR-300 or silencing of RGMB. Circ_0000419 sponged miR-300, and RGMB was direct target of miR-300. Circ_0000419 overexpression could block GC tumor growth in vivo. CONCLUSION Circ_0000419 inhibited GC cell migration, invasion and glycolysis through regulation of miR-300/RGMB axis, at least in part, affording a molecular target for GC treatment.
Collapse
Affiliation(s)
- Jiajun Lu
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing, Zhejiang, China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing, Zhejiang, China
| | - Zhiheng Chen
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing, Zhejiang, China
| | - Honggang Jiang
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing, Zhejiang, China
| | - Jin Li
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing, Zhejiang, China
| | - Guangjian Dou
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, No. 1882 Zhonghuan South Road, Jiaxing, Zhejiang, China.
| |
Collapse
|
9
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [PMID: 37169182 DOI: 10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND & AIMS Immune checkpoint blockade therapy benefits only a small subset of patients with colorectal cancer (CRC), and identification of CRC-intrinsic events modulating immune checkpoint blockade efficacy is an unmet need. We found that AlkB homolog 5 (ALKBH5), an RNA N6-methyladenosine eraser, drives immunosuppression and is a molecular target to boost immune checkpoint blockade therapy in CRC. METHODS Clinical significance of ALKBH5 was evaluated in human samples (n = 205). Function of ALKBH5 was investigated in allografts, CD34+ humanized mice, and Alkbh5 knockin mice. Immunity change was determined by means of flow cytometry, immunofluorescence, and functional investigation. Methylated RNA immunoprecipitation sequencing and RNA sequencing were used to identify ALKBH5 targets. Vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA was constructed for targeting ALKBH5 in vivo. RESULTS High ALKBH5 expression predicts poor prognosis in CRC. ALKBH5 induced myeloid-derived suppressor cell accumulation but reduced natural killer cells and cytotoxic CD8+ T cells to induce colorectal tumorigenesis in allografts, CD34+ humanized mice, and intestine-specific Alkbh5 knockin mice. Mechanistically, AXIN2, a Wnt suppressor, was identified as a target of ALKBH5. ALKBH5 binds and demethylates AXIN2 messenger RNA, which caused its dissociation from N6-methyladenosine reader IGF2BP1 and degradation, resulting in hyperactivated Wnt/β-catenin. Subsequently, Wnt/β-catenin targets, including Dickkopf-related protein 1 (DKK1) were induced by ALKBH5. ALKBH5-induced DKK1 recruited myeloid-derived suppressor cells to drive immunosuppression in CRC, and this effect was abolished by anti-DKK1 in vitro and in vivo. Finally, vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA, or anti-DKK1 potentiated anti-PD1 treatment in suppressing CRC growth by enhancing antitumor immunity. CONCLUSIONS This study identified an ALKBH5-N6-methyladenosine-AXIN2-Wnt-DKK1 axis in CRC, which drives immune suppression to facilitate tumorigenesis. Targeting of ALKBH5 is a promising strategy for sensitizing CRC to immunotherapy.
Collapse
Affiliation(s)
- Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yao Peng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jingwan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Shiyan Wang
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [DOI: https:/doi.org/10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
|
11
|
Novak R, Ahmad YA, Timaner M, Bitman-Lotan E, Oknin-Vaisman A, Horwitz R, Hartmann O, Reissland M, Buck V, Rosenfeldt M, Nikomarov D, Diefenbacher ME, Shaked Y, Orian A. RNF4~RGMb~BMP6 axis required for osteogenic differentiation and cancer cell survival. Cell Death Dis 2022; 13:820. [PMID: 36153321 PMCID: PMC9509360 DOI: 10.1038/s41419-022-05262-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD. Transcriptional analysis of RNF4-dependent gene signatures identified two secreted factors that act downstream of RNF4 promoting OD: (1) BMP6 and (2) the BMP6 co-receptor, RGMb (Dragon). Indeed, knockdown of either RGMb or BMP6 in hBMSCs halted OD, while only the combined co-addition of purified RGMb and BMP6 proteins to RNF4-deficient hBMSCs fully restored OD. Moreover, we found that the RNF4-RGMb-BMP6 axis is essential for survival and tumorigenicity of osteosarcoma and therapy-resistant melanoma cells. Importantly, patient-derived sarcomas such as osteosarcoma, Ewing sarcoma, liposarcomas, and leiomyosarcomas exhibit high levels of RNF4 and BMP6, which are associated with reduced patient survival. Overall, we discovered that the RNF4~BMP6~RGMb axis is required for both OD and tumorigenesis.
Collapse
Affiliation(s)
- Rostislav Novak
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel ,Rambam Health Campus Center, Haifa, 3109610 Israel
| | - Yamen Abu Ahmad
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Michael Timaner
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Eliya Bitman-Lotan
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Avital Oknin-Vaisman
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Roi Horwitz
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Oliver Hartmann
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Michaela Reissland
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Viktoria Buck
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Mathias Rosenfeldt
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Markus Elmar Diefenbacher
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Yuval Shaked
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Amir Orian
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| |
Collapse
|
12
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
13
|
Chen F, Xie Y, Lv Q, Zou W, Xiong L. Curcumin mediates repulsive guidance molecule B (RGMb) in the treatment mechanism of renal fibrosis induced by unilateral ureteral obstruction. Ren Fail 2021; 43:1496-1505. [PMID: 34751624 PMCID: PMC8583759 DOI: 10.1080/0886022x.2021.1997764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this study, we explored the role and mechanism of repulsive guidance molecule B (RGMb, also known as Dragon) in the protective effects of curcumin against renal fibrosis and verified Dragon's effect on renal tubular epithelial cell apoptosis and cell programmability. Unilateral ureteral obstruction (UUO) was surgically induced in rats to establish a model of renal interstitial fibrosis (RIF). The rats were then treated with curcumin. Curcumin prominently decreased the serum creatinine (SCr) and blood urea nitrogen (BUN) levels, and also improved the tubular injury in the UUO-induced rats. Curcumin significantly downregulated the TGF-β1, P-Smad2/3, cleaved caspase-3, cleaved caspase-8 and Dragon levels. Dragon knockdown also markedly reduced the TGF-β1, P-Smad2/3, Smad2/3, cleaved caspase-3, cleaved caspase-8, fibronectin, collagen I, collagen IV, vimentin, and α-SMA expression levels. Conversely, Dragon overexpression caused higher expression levels of these proteins, and curcumin reversed this effect. Furthermore, Dragon knockdown increased the E-cadherin levels, whereas Dragon overexpression decreased these levels. Overexpressing Dragon significantly decreased the cell viability, and curcumin reversed this effect. In conclusion, curcumin acted on Dragon and attenuated RIF in UUO rat models. Curcumin downregulated the TGF-β1/Smad signaling pathway and inhibited Dragon and fibrogenic molecules in both rats and HK-2 cells.
Collapse
Affiliation(s)
- Fei Chen
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yu Xie
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qin Lv
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Zou
- Nanchang University, Nanchang, China
| | - Liyan Xiong
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Jing X, Ren M, Fan Y, Fu Y, Wang C. Circular RNA_0001073 ( circ_0001073) Suppresses The Progression of Non-Small Cell Lung Cancer via miR-582-3p/RGMB Axis. CELL JOURNAL 2021; 23:684-691. [PMID: 34939762 PMCID: PMC8665977 DOI: 10.22074/cellj.2021.7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Reportedly, circular RNAs (circRNAs) exert a crucial regulatory role in cancer. Circ_0001073 is derived from exons 3-5 of ACVR2A gene, which inhibits cancer progression. However, the role and mechanism of circ_0001073 in non-small cell lung cancer (NSCLC) are unclear. This study aimed to explore the role and mechanism of circ_0001073 in the development of NSCLC. MATERIALS AND METHODS In this experimental study, microarray analysis was employed to filter differential expressed circRNAs in NSCLC tissues. Also, circ_0001073, microRNA-582-3p (miR-582-3p), and repulsive guidance molecule B (RGMB) mRNA expressions were examined by quantitative real-time polymerase chain reaction (qRT-PCR). NSCLC cell multiplication was measured by the cell counting kit-8 (CCK-8) assay. Scratch healing experiment and Transwell experiment were performed to assess cell migration and invasion, respectively. Flow cytometry was applied to analyze the apoptosis of NSCLC cells. Western blot was employed to assess RGMB protein expression. Additionally, dualluciferase reporter gene experiment and RNA immunoprecipitation (RIP) experiment were applied to probe the binding sites between miR-582-3p and circ_0001073 or RGMB. RESULTS circ_0001073 was remarkably under-expressed in NSCLC tissues and cells. circ_0001073 overexpression impeded the multiplication, migration, and invasion and enhanced the apoptosis of NSCLC cells in vitro. circ_0001073 directly bound to miR-582-3p and acted as a miRNA sponge to regulate RGMB expression. Besides, miR-582-3p overexpression or knockdown of RGMB remarkably reversed the malignant phenotypes of NSCLC cells induced by the up-regulation of circ_0001073 expression. CONCLUSION Circ_0001073 up-regulates RGMB expression through adsorbing miR-582-3p to inhibit NSCLC progression, suggesting its potential as a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Xuefen Jing
- The First Affiliated Hospital of Baotou Medical College, Baotou, The Inner Mongolia Autonomous Region, China
| | - Meiying Ren
- The First Affiliated Hospital of Baotou Medical College, Baotou, The Inner Mongolia Autonomous Region, China
| | - Yongshun Fan
- Hohhot Kingmed Center for Clinical Laboratory, Hohhot, The Inner Mongolia Autonomous Region, China
| | - Yuhua Fu
- The First Affiliated Hospital of Baotou Medical College, Baotou, The Inner Mongolia Autonomous Region, China
| | - Cuifeng Wang
- The First Affiliated Hospital of Baotou Medical College, Baotou, The Inner Mongolia Autonomous Region, China,The First Affiliated Hospital of Baotou Medical CollegeBaotouThe Inner Mongolia Autonomous RegionChina
| |
Collapse
|
15
|
Genetic risk factors for colorectal cancer in multiethnic Indonesians. Sci Rep 2021; 11:9988. [PMID: 33976257 PMCID: PMC8113452 DOI: 10.1038/s41598-021-88805-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is a common cancer in Indonesia, yet it has been understudied in this resource-constrained setting. We conducted a genome-wide association study focused on evaluation and preliminary discovery of colorectal cancer risk factors in Indonesians. We administered detailed questionnaires and collecting blood samples from 162 colorectal cancer cases throughout Makassar, Indonesia. We also established a control set of 193 healthy individuals frequency matched by age, sex, and ethnicity. A genome-wide association analysis was performed on 84 cases and 89 controls passing quality control. We evaluated known colorectal cancer genetic variants using logistic regression and established a genome-wide polygenic risk model using a Bayesian variable selection technique. We replicate associations for rs9497673, rs6936461 and rs7758229 on chromosome 6; rs11255841 on chromosome 10; and rs4779584, rs11632715, and rs73376930 on chromosome 15. Polygenic modeling identified 10 SNP associated with colorectal cancer risk. This work helps characterize the relationship between variants in the SCL22A3, SCG5, GREM1, and STXBP5-AS1 genes and colorectal cancer in a diverse Indonesian population. With further biobanking and international research collaborations, variants specific to colorectal cancer risk in Indonesians will be identified.
Collapse
|
16
|
Shi Y, Zhong L, Li Y, Chen Y, Feng S, Wang M, Xia Y, Tang S. Repulsive Guidance Molecule b Deficiency Induces Gut Microbiota Dysbiosis and Increases the Susceptibility to Intestinal Inflammation in Mice. Front Microbiol 2021; 12:648915. [PMID: 33995306 PMCID: PMC8113641 DOI: 10.3389/fmicb.2021.648915] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Imbalance of gut microbiota can induce or aggravate intestinal inflammation. To enhance our understanding of the molecular mechanisms of gut microbiota and inflammatory bowel disease (IBD), we studied the role of repulsive guidance molecule b (RGMb) in gut microbiota and colitis in mice. We generated Rgmb knockout mice and inducible Rgmb knockout mice and induced colitis using dextran sulfate sodium (DSS) in these mice. 16S ribosomal RNA (rRNA) high-throughput sequencing was performed to acquire the gut microbiota composition and abundance. We found that Rgmb deficiency significantly altered the diversity of gut microbiota and also induced dysbiosis. In sharp contrast to the balanced distribution of various bacteria in control mice, Prevotellaceae was almost exhausted in Rgmb-deficient mice under both basal and inflammatory conditions. Correlation analysis indicated that Prevotellaceae was negatively associated with inflammation in Rgmb-deficient mice with colitis. Similar results were obtained at the early inflammatory stage of colitis associated colon cancer (CAC). Taken together, our results reveal that Rgmb deficiency leads to dysbiosis of predominant gut microbiota under basal and inflammatory conditions. Rgmb-deficiency-mediated Prevotellaceae loss may render mice more susceptible to intestinal inflammation. Therefore, RGMb may be a novel potential target for reconstruction of the gut microbiota for the treatment of IBD.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Lu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuting Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shufen Feng
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Min Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Yasin H, Stowe R, Wong CK, Jithesh PV, Zahir FR. First Whole Transcriptome RNAseq on CHD8 Haploinsufficient Patient and Meta-Analyses Across Cellular Models Uncovers Likely Key Pathophysiological Target Genes. Cureus 2020; 12:e11571. [PMID: 33282601 PMCID: PMC7710346 DOI: 10.7759/cureus.11571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In 2019, we confirmed that the haploinsufficiency of CHD8 does indeed cause the novel syndromic neurodevelopmental disease we first discovered a dozen years before. Here, we report the first whole transcriptome RNAseq gene expression profiling for a patient with this new syndrome, as a preliminary exploration of potential pathophysiological mechanisms. We compared our patient transcriptome profile with that of all publicly available RNAseq datasets from human cellular models including neuronal progenitor cells, neurons and organoids. We compared differential gene expression profiles overall and conducted phenotype-informed data filtration based on the characteristic syndrome presentation. We found that concordance among differential gene expression profiles was poor across all datasets. Nevertheless, remarkably, we show that the patient blood differential gene expression profile most resembled that of the neuronal cell model, a finding that encourages further transcriptome profiling using patient blood samples. In addition, our custom phenotype-informed analyses yielded important, differentially expressed syndrome pathophysiology target genes. Finally, we note that genes dysregulated due to CHD8 heterozygous deletion are linked to known neurological as well as oncological pathways.
Collapse
Affiliation(s)
- Heba Yasin
- Life Science, Hamad Bin Khalifa University, Doha, QAT
| | - Robert Stowe
- Psychiatry and Neurology, University of British Columbia, Vancouver, CAN
| | - Chi Kin Wong
- Medical Genetics, University of British Columbia, Vancouver, CAN
| | | | - Farah R Zahir
- Medical Genetics, University of British Columbia, Vancouver, CAN
| |
Collapse
|
18
|
Yu H, Cheng Y, Li W, Li Z, Wu P, Qiu S, Zeng B, Huang B. A novel lncRNA-miRNA-mRNA competitive endogenous RNA network for uveal melanoma prognosis constructed by weighted gene co-expression network analysis. Life Sci 2020; 260:118409. [PMID: 32926921 DOI: 10.1016/j.lfs.2020.118409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
AIMS Uveal melanoma (UM) is the most common and aggressive intraocular tumor in adults, and long-term survival of UM patients remains poor. Abnormal competitive endogenous RNA (ceRNA) networks promote the initiation and progression of many tumors and may thus serve as useful prognostic indicators. Here, we do a comprehensive analysis of long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA ceRNA networks as prognostic markers for UM. MATERIALS AND METHODS The Cancer Genome Atlas UM dataset was used to identify survival-related mRNA and lncRNA modules through weighted gene co-expression network analysis (WGCNA). Prognostic miRNAs were identified using univariate Cox proportional hazard regression. We then used Cox and least absolute shrinkage and selection operator regression to screen for prognostic hub mRNAs and establish a hub ceRNA network. A nomogram of five hub mRNAs was constructed and Kaplan-Meier survival analysis performed. KEY FINDINGS Six mRNA modules were constructed, two of which involved 1490 mRNAs that significantly correlated with survival. Among the three lncRNA modules constructed, one involved 199 survival-related lncRNAs. Five hub prognostic mRNAs were identified and a hub ceRNA network constructed, consisting of six lncRNAs, four miRNAs, and five mRNAs, with high prognostic value. SIGNIFICANCE We describe a hub ceRNA network of survival-associated lncRNAs, miRNAs, and mRNA that may underlie a critical post-translational regulatory mechanism determining UM aggression. These hub RNAs may be valuable prognostic markers and therapeutic targets in UM.
Collapse
Affiliation(s)
- Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Peixin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Sujuan Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.
| |
Collapse
|
19
|
Zhang S, He Y, Liu C, Li G, Lu S, Jing Q, Chen X, Ma H, Zhang D, Wang Y, Huang D, Tan P, Chen J, Zhang X, Liu Y, Qiu Y. miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck. J Cancer 2020; 11:3871-3881. [PMID: 32328191 PMCID: PMC7171485 DOI: 10.7150/jca.43854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with squamous cell carcinoma of the head and neck (SCCHN). Therefore, disease prediction and inhibition of invasion and metastasis are critical for enhancing the survival of patients with SCCHN. Our previous study revealed that increased expression of miR-93-5p is associated with poor prognosis in SCCHN; however, the mechanism underlying the oncogenic functions of miR-93-5p in SCCHN migration and invasion remains unclear. Using qPCR analyses, transwell assays, and scratch tests, we demonstrated that expression of ectopic miR-93-5p induced the migration and invasion of SCCHN, and this was accompanied by corresponding alterations in biomarkers and transcription factors specific for epithelial-mesenchymal transition (EMT). Luciferase reporter assays were used to demonstrate that miR-93-5p directly targeted the 3' UTR of RGMB, and we further found that the tumor-promoting functions of miR-93-5p were partly mediated by targeting RGMB, whose downregulation also promoted the migration and invasion of SCCHN. Overall, our results indicate that miR-93-5p acts as an oncogene in the regulation of migration and invasion by suppressing RGMB in SCCHN. These findings provide novel evidence that miR-93-5p may serve as a valuable predictive biomarker and potential intervention target in patients with SCCHN.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Qiancheng Jing
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Changsha Central Hospital,161 Shaoshan Road, University of South China, Changsha, Hunan 410004, People's Republic of China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Pingqing Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Jie Chen
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
20
|
Joyner C, McMahan C, Baurley J, Pardamean B. A two-phase Bayesian methodology for the analysis of binary phenotypes in genome-wide association studies. Biom J 2019; 62:191-201. [PMID: 31482590 DOI: 10.1002/bimj.201900050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/10/2019] [Accepted: 07/11/2019] [Indexed: 11/06/2022]
Abstract
Recent advances in sequencing and genotyping technologies are contributing to a data revolution in genome-wide association studies that is characterized by the challenging large p small n problem in statistics. That is, given these advances, many such studies now consider evaluating an extremely large number of genetic markers (p) genotyped on a small number of subjects (n). Given the dimension of the data, a joint analysis of the markers is often fraught with many challenges, while a marginal analysis is not sufficient. To overcome these obstacles, herein, we propose a Bayesian two-phase methodology that can be used to jointly relate genetic markers to binary traits while controlling for confounding. The first phase of our approach makes use of a marginal scan to identify a reduced set of candidate markers that are then evaluated jointly via a hierarchical model in the second phase. Final marker selection is accomplished through identifying a sparse estimator via a novel and computationally efficient maximum a posteriori estimation technique. We evaluate the performance of the proposed approach through extensive numerical studies, and consider a genome-wide application involving colorectal cancer.
Collapse
Affiliation(s)
- Chase Joyner
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA.,Bioinformatics and Data Science Research Center, Bina Nusantara University, Kebon Jeruk, Indonesia
| | - James Baurley
- BioRealm LLC, Walnut, CA, USA.,Bioinformatics and Data Science Research Center, Bina Nusantara University, Kebon Jeruk, Indonesia
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Kebon Jeruk, Indonesia
| |
Collapse
|
21
|
Ren T, Zheng B, Huang Y, Wang S, Bao X, Liu K, Guo W. Osteosarcoma cell intrinsic PD-L2 signals promote invasion and metastasis via the RhoA-ROCK-LIMK2 and autophagy pathways. Cell Death Dis 2019; 10:261. [PMID: 30886151 PMCID: PMC6423010 DOI: 10.1038/s41419-019-1497-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
Known as co-stimulatory molecule, programmed death ligand-2 (PD-L2) contributes to T-cell exhaustion by interaction with programmed death-1 (PD-1) receptor, but its tumor cell-intrinsic signal effects have been little investigated. PD-L2 expression was detected by immunohistochemistry in 18 pairs of primary osteosarcoma tissues and matching lung metastasis tissues. We also investigated the effects of PD-L2 knockdown on osteosarcoma both in vitro and in vivo. In our study, PD-L2 expression was elevated in lung metastases compared with primary osteosarcoma according to an immunohistochemistry assay. Wound-healing and transwell assays revealed that PD-L2 knockdown leaded to inhibition of migration and invasion of human osteosarcoma cells in vitro. Mechanistically, we demonstrated that PD-L2 knockdown attenuated migration and invasion by inactivating RhoA-ROCK-LIMK2 signaling, suppressing epithelial–mesenchymal transition (EMT), and inhibiting autophagy by decreasing beclin-1 expression. In support of these observations, beclin-1 knockdown also inhibited activation of the RhoA-ROCK-LIMK2 pathway, leading to autophagy inhibition-induced blockade of migration and invasion. Depletion of PD-L2 in KHOS cells markedly weakens pulmonary metastatic potential in vivo by orthotopic transplantation of nude mice. Our study reveals a pro-metastatic functional mechanism for PD-L2 in osteosarcoma. Furthermore, we demonstrate a regulatory role for PD-L2 on autophagy, as well as a relationship between autophagy and metastasis in osteosarcoma, which may represent a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.,Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Rotwein P. Variation in the repulsive guidance molecule family in human populations. Physiol Rep 2019; 7:e13959. [PMID: 30746893 PMCID: PMC6370684 DOI: 10.14814/phy2.13959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023] Open
Abstract
Repulsive guidance molecules, RGMA, RGMB, and RGMC, are related proteins discovered independently through different experimental paradigms. They are encoded by single copy genes in mammalian and other vertebrate genomes, and are ~50% identical in amino acid sequence. The importance of RGM actions in human physiology has not been realized, as most research has focused on non-human models, although mutations in RGMC are the cause of the severe iron storage disorder, juvenile hemochromatosis. Here I show that repositories of human genomic and population genetic data can be used as starting points for discovery and for developing new testable hypotheses about each of these paralogs in human biology and disease susceptibility. Information was extracted, aggregated, and analyzed from the Ensembl and UCSC Genome Browsers, the Exome Aggregation Consortium, the Genotype-Tissue Expression project portal, the cBio portal for Cancer Genomics, and the National Cancer Institute Genomic Data Commons data site. Results identify extensive variation in gene expression patterns, substantial alternative RNA splicing, and possible missense alterations and other modifications in the coding regions of each of the three genes, with many putative mutations being detected in individuals with different types of cancers. Moreover, selected amino acid substitutions are highly prevalent in the world population, with minor allele frequencies of up to 37% for RGMA and up to 8% for RGMB. These results indicate that protein sequence variation is common in the human RGM family, and raises the possibility that individual variants will have a significant population impact on human physiology and/or disease predisposition.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical SciencesPaul L. Foster School of MedicineTexas Tech Health University Health Sciences CenterEl PasoTexas
| |
Collapse
|
23
|
Houghton MJ, Kerimi A, Tumova S, Boyle JP, Williamson G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic Biol Med 2018; 129:296-309. [PMID: 30266680 DOI: 10.1016/j.freeradbiomed.2018.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 01/15/2023]
Abstract
Hyperglycemia augments formation of intracellular reactive oxygen species (ROS) with associated mitochondrial damage and increased risk of insulin resistance in type 2 diabetes. We examined whether quercetin could reverse chronic high glucose-induced oxidative stress and mitochondrial dysfunction. Following long-term high glucose treatment, complex I activity was significantly decreased in isolated mitochondria from HepG2 cells. Quercetin dose-dependently recovered complex I activity and lowered cellular ROS generation under both high and normal glucose conditions. Respirometry studies showed that quercetin could counteract the detrimental increase in inner mitochondrial membrane proton leakage resulting from high glucose while it increased oxidative respiration, despite a decrease in electron transfer system (ETS) capacity, and lower non-ETS oxygen consumption. A quercetin-stimulated increase in cellular NAD+/NADH was evident within 2 h and a two-fold increase in PGC-1α mRNA within 6 h, in both normal and high glucose conditions. A similar pattern was also found for the mRNA expression of the repulsive guidance molecule b (RGMB) and its long non-coding RNA (lncRNA) RGMB-AS1 with quercetin, indicating a potential change of the glycolytic phenotype and suppression of aberrant cellular growth which is characteristic of the HepG2 cells. Direct effects of quercetin on PGC-1α activity were minimal, as quercetin only weakly enhanced PGC-1α binding to PPARα in vitro at higher concentrations. Our results suggest that quercetin may protect mitochondrial function from high glucose-induced stress by increasing cellular NAD+/NADH and activation of PGC-1α-mediated pathways. Lower ROS in combination with improved complex I activity and ETS coupling efficiency under conditions of amplified oxidative stress could reinforce mitochondrial integrity and improve redox status, beneficial in certain metabolic diseases.
Collapse
Affiliation(s)
- Michael J Houghton
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John P Boyle
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
Szaryńska M, Olejniczak A, Kobiela J, Spychalski P, Kmieć Z. Therapeutic strategies against cancer stem cells in human colorectal cancer. Oncol Lett 2017; 14:7653-7668. [PMID: 29250169 PMCID: PMC5727596 DOI: 10.3892/ol.2017.7261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy and represents the fourth most common cause of cancer-associated mortalities in the world. Despite many advances in the treatment of CRC, the 5-year survival rate of patients with CRC remains unsatisfactory due to tumor recurrence and metastases. Recently, cancer stem cells (CSCs), have been suggested to be responsible for the initiation and relapse of the disease, and have been identified in CRC. Due to their basic biological features, which include self-renewal and pluripotency, CSCs may be novel therapeutic targets for CRC and other cancer types. Conventional therapeutics only act on proliferating and mature cancer cells, while quiescent CSCs survive and often become resistant to chemotherapy. In this review, markers of CRC-CSCs are evaluated and the recently introduced experimental therapies that specifically target these cells by inducing CSC proliferation, differentiation and sensitization to apoptotic signals via molecules including Dickkopf-1, bone morphogenetic protein 4, Kindlin-1, tankyrases, and p21-activated kinase 1, are discussed. In addition, novel strategies aimed at inhibiting some crucial processes engaged in cancer progression regulated by the Wnt, transforming growth factor β and Notch signaling pathways (pyrvinium pamoate, silibinin, PRI-724, P17, and P144 peptides) are also evaluated. Although the metabolic alterations in cancer were first described decades ago, it is only recently that the concept of targeting key regulatory molecules of cell metabolism, such as sirtuin 1 (miR-34a) and AMPK (metformin), has emerged. In conclusion, the discovery of CSCs has resulted in the definition of novel therapeutic targets and the development of novel experimental therapies for CRC. However, further investigations are required in order to apply these novel drugs in human CRC.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Agata Olejniczak
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Piotr Spychalski
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| |
Collapse
|
25
|
Liu J, Wang W, Liu M, Su L, Zhou H, Xia Y, Ran J, Lin HY, Yang B. Repulsive guidance molecule b inhibits renal cyst development through the bone morphogenetic protein signaling pathway. Cell Signal 2016; 28:1842-1851. [DOI: 10.1016/j.cellsig.2016.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
|
26
|
Meng C, Liu W, Huang H, Wang Y, Chen B, Freeman GJ, Schneyer A, Lin HY, Xia Y. Repulsive Guidance Molecule b (RGMb) Is Dispensable for Normal Gonadal Function in Mice. Biol Reprod 2016; 94:78. [PMID: 26911425 DOI: 10.1095/biolreprod.115.135921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays an important role in spermatogenesis and follicle development. Our previous studies have shown that repulsive guidance molecule b (RGMb, also known as Dragon) is a coreceptor that enhances BMP2 and BMP4 signaling in several cell types and that RGMb is expressed in spermatocytes and spermatids in the testis and in oocytes of the secondary follicles in the ovary. Here, we demonstrated that specific deletion of Rgmb in germ cells in the testis and ovary did not alter Smad1/5/8 phosphorylation, gonadal structures, and fertility. In addition, ovaries from postnatal global Rgmb knockout mice showed similar structures to the wild-type ovaries. Our results suggest that RGMb is not essential for normal gonadal function.
Collapse
Affiliation(s)
- Chenling Meng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjing Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huihui Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Binbin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan Schneyer
- Pioneer Valley Life Science Institute and Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Herbert Y Lin
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin Xia
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|