1
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
2
|
Kazimierczyk M, Fedoruk-Wyszomirska A, Gurda-Woźna D, Wyszko E, Swiatkowska A, Wrzesinski J. The expression profiles of piRNAs and their interacting Piwi proteins in cellular model of renal development: Focus on Piwil1 in mitosis. Eur J Cell Biol 2024; 103:151444. [PMID: 39024988 DOI: 10.1016/j.ejcb.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.
Collapse
Affiliation(s)
- Marek Kazimierczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | | | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| |
Collapse
|
3
|
Kunnummal M, Raveendran PS, Basu B, Rani SV, Paul RA, Kuppusamy K, Angelin M, Issac J, James J, Das AV. HPV16 E6/E7-mediated regulation of PiwiL1 expression induces tumorigenesis in cervical cancer cells. Cell Oncol (Dordr) 2024; 47:917-937. [PMID: 38036929 DOI: 10.1007/s13402-023-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE PiwiL1 has been reported to be over-expressed in many cancers. However, the molecular mechanism by which these proteins contribute to tumorigenesis and their regulation in cancer cells is still unclear. We intend to understand the role of PiwiL1 in tumorigenesis and also its regulation in cervical cells. METHODS We studied the effect of loss of PiwiL1 function on tumor properties of cervical cancer cells in vitro and in vivo. Also we have looked into the effect of PiwiL1 overexpression in the malignant transformation of normal cells both in vitro and in vivo. Further RNA-seq and RIP-seq analyses were done to get insight of the direct and indirect targets of PiwiL1 in the cervical cancer cells. RESULTS Here, we report that PiwiL1 is not only over-expressed, but also play a major role in tumor induction and progression. Abolition of PiwiL1 in CaSki cells led to a decrease in the tumor-associated properties, whereas, its upregulation conferred malignant transformation of normal HaCaT cells. Our study delineates a new link between HPV oncogenes, E6 and E7 with PiwiL1. p53 and E2F1 directly bind and differentially regulate PiwiL1 promoter in a context-dependant manner. Further, RNA-seq together with RIP-RNA-seq suggested a strong and direct role for PiwiL1 in promoting metastasis in cervical cancer cells. CONCLUSION Our study demonstrates that PiwiL1 act as an oncogene in cervical cancer by inducing tumor-associated properties and EMT pathway. The finding that HPV oncogenes, E6/E7 can positively regulate PiwiL1 suggests a possible mechanism behind HPV-mediated tumorigenesis in cervical cancer.
Collapse
Affiliation(s)
- Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Pooja Sherly Raveendran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
- Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana, 121001, India
| | - Sheri Vidya Rani
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Riya Ann Paul
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, 695011, Kerala, India
| | - Krithiga Kuppusamy
- Bioscience Research and Training Centre, Kerala Veterinary and Animal Science University, Thonnakkal, Thiruvananthapuram, 695317, Kerala, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Joby Issac
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India.
| |
Collapse
|
4
|
Bustos F, Mathur S, Espejo-Serrano C, Toth R, Hastie CJ, Virdee S, Findlay GM. Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome. Life Sci Alliance 2022; 5:e202101248. [PMID: 35764390 PMCID: PMC9240097 DOI: 10.26508/lsa.202101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Ubiquitylation enzymes are involved in all aspects of eukaryotic biology and are frequently disrupted in disease. One example is the E3 ubiquitin ligase RNF12/RLIM, which is mutated in the developmental disorder Tønne-Kalscheuer syndrome (TOKAS). RNF12 TOKAS variants largely disrupt catalytic E3 ubiquitin ligase activity, which presents a pressing need to develop approaches to assess the impact of variants on RNF12 activity in patients. Here, we use photocrosslinking activity-based probes (photoABPs) to monitor RNF12 RING E3 ubiquitin ligase activity in normal and pathogenic contexts. We demonstrate that photoABPs undergo UV-induced labelling of RNF12 that is consistent with its RING E3 ligase activity. Furthermore, photoABPs robustly report the impact of RNF12 TOKAS variants on E3 activity, including variants within the RING domain and distal non-RING regulatory elements. Finally, we show that this technology can be rapidly deployed in human pluripotent stem cells. In summary, photoABPs are versatile tools that can directly identify disruptions to RING E3 ubiquitin ligase activity in human disease, thereby providing new insight into pathogenic mechanisms.
Collapse
Affiliation(s)
- Francisco Bustos
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Sunil Mathur
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Carmen Espejo-Serrano
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Rachel Toth
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - C James Hastie
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Satpal Virdee
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Greg M Findlay
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Fan K, Ni X, Shen S, Gong Z, Wang J, Xin Y, Zheng B, Sun W, Liu H, Suo T, Ni X, Liu H. Acetylation stabilizes stathmin1 and promotes its activity contributing to gallbladder cancer metastasis. Cell Death Discov 2022; 8:265. [PMID: 35581193 PMCID: PMC9114396 DOI: 10.1038/s41420-022-01051-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
Gallbladder cancer is the most common biliary tract malignant tumor with highly metastatic characters and poor prognosis. However, the underlying mechanism remains unclear. Stathmin1 is ubiquitous phosphoprotein, regulating microtubule stabilization. We identified the acetylation of stahtmin1 at lysine 9 (K9) in gallbladder cancer. K9 acetylation of stathmin1 was reversely regulated by the acetyltransferase PCAF and the deacetylases sirt2. K9 acetylation of stathmin1 inhibited the combining of stathmin1 to E3 ubiquitin ligase RLIM, thereby inhibiting its ubiquitination degradation. Moreover, K9 acetylation also promoted the activity of stahtmin1 interacting and destabilizing microtubule through the inhibition of stathmin1 phosphorylation. K9 acetylated stathmin1 significantly promoted gallbladder cancer cell migration and invasion viability in vitro and lung metastasis in vivo, and indicated poor prognosis of nude mice. IHC assay suggested the positive correlation of high levels of K9 acetylation and stathmin1 expression in gallbladder cancer. Our study revealed that K9 acetylation up-regulated stathmin1 protein stability and microtubule-destabilizing activity to promoted gallbladder cancer metastasis, which provides a potential target for gallbladder cancer therapy.
Collapse
Affiliation(s)
- Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Wentao Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China.
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
8
|
Kunnummal M, Angelin M, Das AV. PIWI proteins and piRNAs in cervical cancer: a propitious dart in cancer stem cell-targeted therapy. Hum Cell 2021; 34:1629-1641. [PMID: 34374035 DOI: 10.1007/s13577-021-00590-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Any form of cancer is a result of uncontrolled cell growth caused by mutations and/or epigenetic alterations, implying that a balance of chromatin remodeling activities and epigenetic regulators is crucial to prevent the transformation of a normal cell to a cancer cell. Many of the chromatin remodelers do not recognize any specific sites on their targets and require guiding molecules to reach the respective targets. PIWI proteins and their interacting small non-coding RNAs (piRNAs) have proved to act as a guiding signal for such molecules. While epigenetic alterations lead to tumorigenesis, the stemness of cancer cells contributes to recurrence and metastasis of cancer. Various studies have propounded that the PIWI-piRNA complex also promotes stemness of cancer cells, providing new doors for target-mediated anti-cancer therapies. Despite the progress in diagnosis and development of vaccines, cervical cancer remains to be the second most prevalent cancer among women, due to the lack of cost-effective and accessible diagnostic and prevention methods. With the emergence of liquid biopsy, there is a significant demand for the ideal biomarker in the diagnosis of cancer. PIWI and piRNAs have been recommended to serve as prognostic and diagnostic markers, to differentiate early and later stages of cancer, including cervical cancer. This review discusses how PIWIs and piRNAs are involved in disease progression as well as their potential role in diagnostics and therapeutics in cervical cancer.
Collapse
Affiliation(s)
- Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India.
| |
Collapse
|
9
|
Wang J, Ni X, Shen S, Zhang D, Ni X, Suo T, Lu P, Fan K, Liu H, Liu H. Phosphorylation at Ser10 triggered p27 degradation and promoted gallbladder carcinoma cell migration and invasion by regulating stathmin1 under glucose deficiency. Cell Signal 2021; 80:109923. [PMID: 33444777 DOI: 10.1016/j.cellsig.2021.109923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Gallbladder carcinoma (GBC) is a considerable challenge because of its high metastatic potential. The tumor microenvironment is characterized by nutrient starvation, which promotes tumor metastasis. Stathmin1, an important microtubuleregulating protein, is overexpressed and promotes metastasis in GBC. It remains unclear how the harsh tumor microenvironment regulates stathmin1 expression to affect GBC metastasis. We employed glucose deficiency to mimic nutrient starvation and found that glucose deficiency upregulated stathmin1 transcription. However, glucose deficiency also promoted p27 degradation. There was a significant negative correlation between stathmin1 and p27 protein levels under glucose deficiency. Further study revealed that, under glucose deficiency, human kinase interacting with stathmin (hKIS) induced phosphorylation at Ser10 of p27 and its translocation to the cytoplasm for degradation, which upregulated the transcription factor E2F1 to promote stathmin1 transcription. hKIS knockdown significantly inhibited p27 cytoplasmic translocation and its consequent degradation. Stathmin1 knockdown significantly inhibited GBC cell migration and invasion in vitro. Our study revealed the role of the hKIS/p27/E2F1 axis in upregulating stathmin1 transcription to promote GBC cell migration and invasion under glucose deficiency conditions.
Collapse
Affiliation(s)
- Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Dexiang Zhang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai 200031, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Pinxiang Lu
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai 200031, China
| | - Kun Fan
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China; General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai 200031, China.
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Dong P, Xiong Y, Konno Y, Ihira K, Xu D, Kobayashi N, Yue J, Watari H. Critical Roles of PIWIL1 in Human Tumors: Expression, Functions, Mechanisms, and Potential Clinical Implications. Front Cell Dev Biol 2021; 9:656993. [PMID: 33718392 PMCID: PMC7952444 DOI: 10.3389/fcell.2021.656993] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a class of small non-coding RNA molecules that are 24-31 nucleotides in length. PiRNAs are thought to bind to PIWI proteins (PIWL1-4, a subfamily of Argonaute proteins), forming piRNA/PIWI complexes that influence gene expression at the transcriptional or post-transcriptional levels. However, it has been recently reported that the interaction of PIWI proteins with piRNAs does not encompass the entire function of PIWI proteins in human tumor cells. PIWIL1 (also called HIWI) is specifically expressed in the testis but not in other normal tissues. In tumor tissues, PIWIL1 is frequently overexpressed in tumor tissues compared with normal tissues. Its high expression is closely correlated with adverse clinicopathological features and shorter patient survival. Upregulation of PIWIL1 drastically induces tumor cell proliferation, epithelial-mesenchymal transition (EMT), invasion, cancer stem-like properties, tumorigenesis, metastasis and chemoresistance, probably via piRNA-independent mechanisms. In this article, we summarize the current existing literature on PIWIL1 in human tumors, including its expression, biological functions and regulatory mechanisms, providing new insights into how the dysregulation of PIWIL1 contributes to tumor initiation, development and chemoresistance through diverse signaling pathways. We also discuss the most recent findings on the potential clinical applications of PIWIL1 in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Department of Gynecology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Lee E, Lokman NA, Oehler MK, Ricciardelli C, Grutzner F. A Comprehensive Molecular and Clinical Analysis of the piRNA Pathway Genes in Ovarian Cancer. Cancers (Basel) 2020; 13:cancers13010004. [PMID: 33374923 PMCID: PMC7792616 DOI: 10.3390/cancers13010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Although ovarian cancer (OC) is one of the most lethal gynecological cancers, its development and progression remain poorly understood. The piRNA pathway is important for transposon defense and genome stability. piRNA maturation and function involve a number of genes known as the piRNA pathway genes. These genes have recently been implicated in cancer development and progression but information about their role in OC is limited. Our work aimed to provide a better understanding of the roles of piRNA pathway genes in OC. Through analyzing changes in the abundance of 10 piRNA pathway genes, we discovered gene expression differences in benign vs. cancer, chemosensitive vs. chemoresistant and post hormone treatment in OC samples and cells. Furthermore, we observed the differential effects of these genes on patient survival and OC cell invasion. Overall, this work supports a role of the piRNA pathway genes in OC progression and encourages further study of their clinical relevance. Abstract Ovarian cancer (OC) is one of the most lethal gynecological malignancies, yet molecular mechanisms underlying its origin and progression remain poorly understood. With increasing reports of piRNA pathway deregulation in various cancers, we aimed to better understand its role in OC through a comprehensive analysis of key genes: PIWIL1-4, DDX4, HENMT1, MAEL, PLD6, TDRD1,9 and mutants of PIWIL1 (P1∆17) and PIWIL2 (PL2L60). High-throughput qRT-PCR (n = 45) and CSIOVDB (n = 3431) showed differential gene expression when comparing benign ovarian tumors, low grade OC and high grade serous OC (HGSOC). Significant correlation of disparate piRNA pathway gene expression levels with better progression free, post-progression free and overall survival suggests a complex role of this pathway in OC. We discovered PIWIL3 expression in chemosensitive but not chemoresistant primary HGSOC cells, providing a potential target against chemoresistant disease. As a first, we revealed that follicle stimulating hormone increased PIWIL2 expression in OV-90 cells. PIWIL1, P1∆17, PIWIL2, PL2L60 and MAEL overexpression in vitro and in vivo decreased motility and invasion of OVCAR-3 and OV-90 cells. Interestingly, P1∆17 and PL2L60, induced increased motility and invasion compared to PIWIL1 and PIWIL2. Our results in HGSOC highlight the intricate role piRNA pathway genes play in the development of malignant neoplasms.
Collapse
Affiliation(s)
- Eunice Lee
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Noor A. Lokman
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| | - Frank Grutzner
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| |
Collapse
|
12
|
Santo-Domingo J, Galindo AN, Cominetti O, De Marchi U, Cutillas P, Dayon L, Wiederkehr A. Glucose-dependent phosphorylation signaling pathways and crosstalk to mitochondrial respiration in insulin secreting cells. Cell Commun Signal 2019; 17:14. [PMID: 30786936 PMCID: PMC6381748 DOI: 10.1186/s12964-019-0326-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background Glucose is the main secretagogue of pancreatic beta-cells. Uptake and metabolism of the nutrient stimulates the beta-cell to release the blood glucose lowering hormone insulin. This metabolic activation is associated with a pronounced increase in mitochondrial respiration. Glucose stimulation also initiates a number of signal transduction pathways for the coordinated regulation of multiple biological processes required for insulin secretion. Methods Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on lysates from glucose-stimulated INS-1E cells was used to identify glucose regulated phosphorylated proteins and signal transduction pathways. Kinase substrate enrichment analysis (KSEA) was applied to identify key regulated kinases and phosphatases. Glucose-induced oxygen consumption was measured using a XF96 Seahorse instrument to reveal cross talk between glucose-regulated kinases and mitochondrial activation. Results Our kinetic analysis of substrate phosphorylation reveal the molecular mechanism leading to rapid activation of insulin biogenesis, vesicle trafficking, insulin granule exocytosis and cytoskeleton remodeling. Kinase-substrate enrichment identified upstream kinases and phosphatases and time-dependent activity changes during glucose stimulation. Activity trajectories of well-known glucose-regulated kinases and phosphatases are described. In addition, we predict activity changes in a number of kinases including NUAK1, not or only poorly studied in the context of the pancreatic beta-cell. Furthermore, we pharmacologically tested whether signaling pathways predicted by kinase-substrate enrichment analysis affected glucose-dependent acceleration of mitochondrial respiration. We find that phosphoinositide 3-kinase, Ca2+/calmodulin dependent protein kinase and protein kinase C contribute to short-term regulation of energy metabolism. Conclusions Our results provide a global view into the regulation of kinases and phosphatases in insulin secreting cells and suggest cross talk between glucose-induced signal transduction and mitochondrial activation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0326-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park Bâtiment G, 1015, Lausanne, Switzerland.
| | - Antonio Núñez Galindo
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park Bâtiment G, 1015, Lausanne, Switzerland
| | - Ornella Cominetti
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park Bâtiment G, 1015, Lausanne, Switzerland
| | - Umberto De Marchi
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park Bâtiment G, 1015, Lausanne, Switzerland
| | - Pedro Cutillas
- Analytical Signalling Group, Centre for Cell Signalling, Queen Mary University of London, London, UK
| | - Loïc Dayon
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park Bâtiment G, 1015, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park Bâtiment G, 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
14
|
Araújo T, Khayat A, Quintana L, Calcagno D, Mourão R, Modesto A, Paiva J, Lima A, Moreira F, Oliveira E, Souza M, Othman M, Liehr T, Abdelhay E, Gomes R, Santos S, Assumpção P. Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer. World J Gastroenterol 2018; 24:5338-5350. [PMID: 30598579 PMCID: PMC6305533 DOI: 10.3748/wjg.v24.i47.5338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a permanent piwi like RNA-mediated gene silencing 1 (PIWIL1) gene knockout in AGP01 gastric cancer cell line using CRISPR-Cas9 system and analyze phenotypic modifications as well as gene expression alterations.
METHODS CRISPR-Cas9 system used was purchased from Dharmacon GE Life Sciences (Lafayette, CO, United States) and permanent knockout was performed according to manufacturer’s recommendations. Wound-healing assay was performed to investigate the effect of PIWIL1 knockout on migration capability of cells and Boyden chamber invasion assay was performed to investigate the effect on invasion capability. For the gene expression analysis, a one-color microarray-based gene expression analysis kit (Agilent Technologies, Santa Clara, CA, United States) was used according to the protocol provided by the manufacturer.
RESULTS PIWIL1 gene knockout caused a significant decrease in AGP01 migration capacity as well as a significant decrease in cell invasiveness. Moreover, functional analysis based on grouping of all differentially expressed mRNAs identified a total of 35 genes (5 up-regulated and 30 down-regulated) encoding proteins involved in cellular invasion and migration. According to current literature, 9 of these 35 genes (DOCK2, ZNF503, PDE4D, ABL1, ABL2, LPAR1, SMAD2, WASF3 and DACH1) are possibly related to the mechanisms used by PIWIL1 to promote carcinogenic effects related to migration and invasion, since their functions are consistent with the changes observed (being up- or down-regulated after knockout).
CONCLUSION Taken together, these data reinforce the idea that PIWIL1 plays a crucial role in the signaling pathway of gastric cancer, regulating several genes involved in migration and invasion processes; therefore, its use as a therapeutic target may generate promising results in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Taíssa Araújo
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - André Khayat
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Luciana Quintana
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Danielle Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Ronald Mourão
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Antônio Modesto
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Juliana Paiva
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Adhara Lima
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Fabiano Moreira
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Edivaldo Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, Instituto Evandro Chagas, Belém 66087-082, Brazil
| | - Michel Souza
- Laboratório de Cultura de Tecidos e Citogenética, Instituto Evandro Chagas, Belém 66087-082, Brazil
| | - Moneeb Othman
- Institute of Human Genetics, Universitätsklinikum Jena, Jena 07747, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Universitätsklinikum Jena, Jena 07747, Germany
| | - Eliana Abdelhay
- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Renata Gomes
- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Sidney Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Paulo Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| |
Collapse
|
15
|
PIWI family emerging as a decisive factor of cell fate: An overview. Eur J Cell Biol 2017; 96:746-757. [DOI: 10.1016/j.ejcb.2017.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
|
16
|
Wang X, Sun S, Tong X, Ma Q, Di H, Fu T, Sun Z, Cai Y, Fan W, Wu Q, Li Y, Wang Q, Wang J. MiRNA-154-5p inhibits cell proliferation and metastasis by targeting PIWIL1 in glioblastoma. Brain Res 2017; 1676:69-76. [PMID: 28842123 DOI: 10.1016/j.brainres.2017.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) play a critical role in glioblastoma initiation and progression. PIWIL1, a human homolog of the PIWI family, has a critical effect on glioblastoma progression. In present study, we found that the expression of miR-154-5p was significantly lower in glioblastoma. Our results suggested that the overexpression of miR-154-5p suppressed proliferation and metastasis, induced apoptosis, whereas inhibiting the expression of miR-154-5p significantly promoted proliferation and metastasis of glioblastoma. We further proved that miR-154-5p directly integrated with the 3'-UTR of PIWIL1 and reintroduction of PIWIL1 can rescue the phenotype changes induced by miR-154-5p. Taken together, our study reveals that miR-154-5p can counteract the malignant phenotypes of glioblastoma by targeting PIWIL1, which might be beneficial to reveal new therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Xiuyu Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China; The Graduate School, Tianjin Medical University, Tianjin 300070, China.
| | - Shupeng Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Xiaoguang Tong
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Quanfeng Ma
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China; The Graduate School, Tianjin Medical University, Tianjin 300070, China.
| | - Hui Di
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Tao Fu
- The Graduate School, Tianjin Medical University, Tianjin 300070, China.
| | - Zhen Sun
- The Graduate School, Tianjin Medical University, Tianjin 300070, China.
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Yidi Li
- Department of laboratory, Tianjin Medical University, Tianjin 300070, China.
| | - Qiong Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jinhuan Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|