1
|
Inoue C, Miki Y, Suzuki T. New Perspectives on Sex Steroid Hormones Signaling in Cancer-Associated Fibroblasts of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3620. [PMID: 37509283 PMCID: PMC10377312 DOI: 10.3390/cancers15143620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The importance of sex hormones, especially estrogen, in the pathogenesis of non-small-cell lung cancer (NSCLC) has attracted attention due to its high incidence among young adults and nonsmokers, especially those who are female. Cancer-associated fibroblasts (CAFs) reside in the cancer stroma and influence cancer growth, invasion, metastasis, and acquisition of drug resistance through interactions with cancer cells and other microenvironmental components. Hormone-mediated cell-cell interactions are classic cell-cell interactions and well-known phenomena in breast cancer and prostate cancer CAFs. In cancers of other organs, including NSCLC, the effects of CAFs on hormone-receptor expression and hormone production in cancer tissues have been reported; however, there are few such studies. Many more studies have been performed on breast and prostate cancers. Recent advances in technology, particularly single-cell analysis techniques, have led to significant advances in the classification and function of CAFs. However, the importance of sex hormones in cell-cell interactions of CAFs in NSCLC remains unclear. This review summarizes reports on CAFs in NSCLC and sex hormones in cancer and immune cells surrounding CAFs. Furthermore, we discuss the prospects of sex-hormone research involving CAFs in NSCLC.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
2
|
Castellanos MR, Fanous E, Thaker R, Flory MJ, Seetharamu N, Dhar M, Starr A, Strange TJ. Expression patterns and clinical significance of estrogen receptor in non-small cell lung cancer. Pathol Res Pract 2023; 241:154298. [PMID: 36608623 DOI: 10.1016/j.prp.2022.154298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Lung cancer death remains the highest among all malignancies. Gender differences show women have an increased cancer incidence while men have worse outcomes. These observations identified that some lung carcinomas express estrogen receptors (ER). This is a promising target as antiestrogen drugs can reduce tumors and improve survival. However, there is a limited understanding of ER distribution and its clinical significance to properly design antiestrogen drug clinical trials. Thus, we comprehensively analyzed ERα and ERβ expression patterns by gender, cancer cell type, and receptor location in lung cancer. METHODS We conducted a systematic review using the PubMed database from all-time through October 2022, using MeSH terms with the keywords "lung cancer," "estrogen receptor," and "immunohistochemistry." We identified 120 studies with 21 reports being evaluated based on our inclusion criteria. RESULTS We examined 4874 lung cancers from 5011 patients. ERβ is the predominant form of ER expressed, mainly found in the nucleus. The ERβ positivity rate is 51.5% in males versus 55.5% in females and was not statistically different. In contrast, ERα is predominately extranuclear in location, and ERα expression varies by gender. Males had a positivity rate of 31% versus 26.6% in females, which is statistically different. ERα is associated with a worse prognosis in some studies, while it had no effect in others. Overall, ERβ was associated with a better prognosis. CONCLUSION We characterized ER expression patterns in 4874 lung cancers. Over 50% expressed ERβ with equal rates in both sexes and was associated with a better prognosis. ERα expression was slightly higher in males (31%) than females (26.6%) and was associated with a poor prognosis. Our findings suggest estrogen signaling may be a promising drug target in lung cancer.
Collapse
Affiliation(s)
- Mario R Castellanos
- Division of Research, Department of Medicine, Staten Island University Hospital - Northwell Health, 475 Seaview Ave, Staten Island, NY 10305, USA; Department of Medicine, Staten Island University Hospital, Northwell Health, Staten Island, NY 10305, USA.
| | - Ereeny Fanous
- Division of Research, Department of Medicine, Staten Island University Hospital - Northwell Health, 475 Seaview Ave, Staten Island, NY 10305, USA.
| | - Rina Thaker
- Touro College of Osteopathic Medicine, Middletown, NY, United States.
| | - Michael J Flory
- Biostatistics & Research Design, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Nagashree Seetharamu
- Division of Medical Oncology & Hematology, Northwell Health Cancer Institute, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY 11042, USA.
| | - Meekoo Dhar
- Division of Hematology/Oncology, Florina Cancer Center, Staten Island University Hospital, Northwell Health, Staten Island, NY 10305, USA.
| | - Adam Starr
- Division of Hematology/Oncology, Florina Cancer Center, Staten Island University Hospital, Northwell Health, Staten Island, NY 10305, USA.
| | - Theodore J Strange
- Department of Medicine, Staten Island University Hospital, Northwell Health, Staten Island, NY 10305, USA.
| |
Collapse
|
3
|
Estrogens, Cancer and Immunity. Cancers (Basel) 2022; 14:cancers14092265. [PMID: 35565393 PMCID: PMC9101338 DOI: 10.3390/cancers14092265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sex hormones are included in many physiological and pathological pathways. Estrogens belong to steroid hormones active in female sex. Estradiol (E2) is the strongest female sex hormone and, with its receptors, contributes to oncogenesis, cancer progression and response to treatment. In recent years, a role of immunosurveillance and suppression of immune response in malignancy has been well defined, forming the basis for cancer immunotherapy. The interplay of sex hormones with cancer immunity, as well as the response to immune checkpoint inhibitors, is of interest. In this review, we investigate the impact of sex hormones on natural immune response with respect to main active elements in anticancer immune surveillance: dendritic cells, macrophages, lymphocytes and checkpoint molecules. We describe the main sex-dependent tumors and the contribution of estrogen in their progression, response to treatment and especially modulation of anticancer immune response.
Collapse
|
4
|
Abstract
Lung cancer represents the world's leading cause of cancer deaths. Sex differences in the incidence and mortality rates for various types of lung cancers have been identified, but the biological and endocrine mechanisms implicated in these disparities have not yet been determined. While some cancers such as lung adenocarcinoma are more commonly found among women than men, others like squamous cell carcinoma display the opposite pattern or show no sex differences. Associations of tobacco product use rates, susceptibility to carcinogens, occupational exposures, and indoor and outdoor air pollution have also been linked to differential rates of lung cancer occurrence and mortality between sexes. While roles for sex hormones in other types of cancers affecting women or men have been identified and described, little is known about the influence of sex hormones in lung cancer. One potential mechanism identified to date is the synergism between estrogen and some tobacco compounds, and oncogene mutations, in inducing the expression of metabolic enzymes, leading to enhanced formation of reactive oxygen species and DNA adducts, and subsequent lung carcinogenesis. In this review, we present the literature available regarding sex differences in cancer rates, associations of male and female sex hormones with lung cancer, the influence of exogenous hormone therapy in women, and potential mechanisms mediated by male and female sex hormone receptors in lung carcinogenesis. The influence of biological sex on lung disease has recently been established, thus new research incorporating this variable will shed light on the mechanisms behind the observed disparities in lung cancer rates, and potentially lead to the development of new therapeutics to treat this devastating disease.
Collapse
Affiliation(s)
- Nathalie Fuentes
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20852, USA
| | - Miguel Silva Rodriguez
- Department of Environmental and Occupational Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Yang X, Jin X, Xu R, Yu Z, An N. ER expression associates with poor prognosis in male lung squamous carcinoma after radical resection. BMC Cancer 2021; 21:1043. [PMID: 34548052 PMCID: PMC8456567 DOI: 10.1186/s12885-021-08777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Clinical options for lung squamous carcinoma (LUSC) are still quite limited. Carcinogenesis is an exceedingly complicated process involving multi-level dysregulations. Therefore, only looking into one layer of genomic dysregulation is far from sufficient. Methods We identified differentially expressed genes with consistent upstream genetic or epigenetic dysregulations in LUSC. Random walk was adopted to identify genes significantly affected by upstream abnormalities. Expression differentiation and survival analysis were conducted for these significant genes, respectively. Prognostic power of selected gene was also tested in 102 male LUSC samples through immunohistochemistry assay. Results Twelve genes were successfully retrieved from biological network, including ERα (ESRS1), EGFR, AR, ATXN1, MAPK3, PRKACA, PRKCA, SMAD4, TP53, TRAF2, UBQLN4 and YWHAG, which were closely related to sex hormone signaling pathway. Survival analysis in public datasets indicated ERα was significantly associated with a poor overall survival (OS) in male LUSC. The result of our immunohistochemistry assay also demonstrated this correlation using R0 resected tumors (n = 102, HR: 2.152, 95% CI: 1.089–4.255, p = 0.024). Although disease-free survival (DFS) difference was non-significant (n = 102, p = 0.12), the tendency of distinction was straight-forward. Cox analysis indicated ERα was the only independent prognostic factor for male patients’ OS after R0 resection (HR = 2.152, p = 0.037). Conclusion ERα was significantly related to a poor prognosis in LUSC, especially for male patients after radical surgery, confirmed by our immunohistochemistry data. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08777-6.
Collapse
Affiliation(s)
- Xue Yang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xiangfeng Jin
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Rongjian Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Zhuang Yu
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ning An
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
6
|
Zeng H, Yang Z, Li J, Wen Y, Wu Z, Zheng Y, Yu Y, Xu Y, Gao S, Tan F, Li N, Xue Q, He J. Associations between female lung cancer risk and sex steroid hormones: a systematic review and meta-analysis of the worldwide epidemiological evidence on endogenous and exogenous sex steroid hormones. BMC Cancer 2021; 21:690. [PMID: 34112140 PMCID: PMC8194027 DOI: 10.1186/s12885-021-08437-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Published findings suggest sex differences in lung cancer risk and a potential role for sex steroid hormones. Our aim was to perform a meta-analysis to investigate the effects of sex steroid hormone exposure specifically on the risk of lung cancer in women. Methods The PubMed, MEDLINE, Web of Science, and EMBASE databases were searched. The pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for female lung cancer risk associated with sex steroid hormones were calculated overall and by study design, publication year, population, and smoking status. Sensitivity analysis, publication bias, and subgroup analysis were performed. Results Forty-eight studies published between 1987 and 2019 were included in the study with a total of 31,592 female lung cancer cases and 1,416,320 subjects without lung cancer. Overall, higher levels of sex steroid hormones, both endogenous (OR: 0.92, 95% CI: 0.87–0.98) and exogenous (OR: 0.86, 95% CI: 0.80–0.93), significantly decreased the risk of female lung cancer by 10% (OR: 0.90, 95% CI: 0.86–0.95). The risk of lung cancer decreased more significantly with a higher level of sex steroid hormones in non-smoking women (OR: 0.88, 95% CI: 0.78–0.99) than in smoking women (OR: 0.98, 95% CI: 0.77–1.03), especially in Asia women (OR: 0.84, 95% CI: 0.74–0.96). Conclusions Our meta-analysis reveals an association between higher levels of sex steroid hormone exposure and the decreased risk of female lung cancer. Surveillance of sex steroid hormones might be used for identifying populations at high risk for lung cancer, especially among non-smoking women. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08437-9.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhuoyu Yang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiang Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Wen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Wu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yadi Zheng
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yiwen Yu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.,Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
7
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
8
|
Pinton G, Manzotti B, Balzano C, Moro L. Expression and clinical implications of estrogen receptors in thoracic malignancies: a narrative review. J Thorac Dis 2021; 13:1851-1863. [PMID: 33841973 PMCID: PMC8024832 DOI: 10.21037/jtd-20-2277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thoracic malignancies represent a significant global health burden with incidence and mortality increasing year by year. Thoracic cancer prognosis and treatment options depend on several factors, including the type and size of the tumor, its location, and the overall health status of patients. Gender represents an important prognostic variable in thoracic malignancies. One of the greatest biological differences between women and men is the presence of female sex hormones, and an increasing number of studies suggest that estrogens may play either a causative or a protective role in thoracic malignancies. Over the past 60 years since the discovery of the first nuclear estrogen receptor (ER) isoform α and the almost 20 years since the discovery of the second estrogen receptor, ERβ, different mechanisms governing estrogen action have been identified and characterized. This literature review reports the published data regarding the expression and function of ERs in different thoracic malignancies and discuss sex disparity in clinical outcomes. From this analysis emerges that further efforts are warranted to better elucidate the role of sex hormones in thoracic malignancies, and to reduce disparities in care between genders. Understanding the mechanisms by which gender-related differences can affect and interfere with the onset and evolution of thoracic malignancies and impact on response to therapies could help to improve the knowledge needed to develop increasingly personalized and targeted treatments.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Beatrice Manzotti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cecilia Balzano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Wu Y, Zhang W, Zhang L, Wang D, Zhao S, Zhu M. Characterization of immune pleiotropy of ESR1 gene in pigs. Immunogenetics 2020; 72:413-422. [PMID: 33063129 DOI: 10.1007/s00251-020-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
It is well known that the estrogen receptor alpha gene (ESR1) affects the reproductive traits of pigs; however, the immune role of ESR1 gene has not yet been resolved. Here, we characterized the pleiotropic aspects of ESR1 gene in immunity using the pig model. Tissue expression profile showed that the ESR1 gene had a broad ectopic expression in multiple reproductive and immune-related tissues/organs, which provided the tissue-level spatial fundamental of ESR1 gene that might function as a pleiotropic immune regulator. Using the peripheral blood cell model, a coupling transcriptome analytical strategy was proposed and verified that there existed strong positive or negative correlations of ESR1 gene with hundreds of differentially expressed genes that were involved in the immune regulation, indicating that the ESR1 gene might affect or be affected by, directly or indirectly, dozens of immune-related genes in the peripheral blood cells. Furthermore, the results of genetic association analysis showed that the SmaI-polymorphism of ESR1 gene had significant or highly significant associations with multiple immune traits, including platelet (PLT), hematocrit (HCT), the number of CD4-CD8-CD3- cells, plateletcrit (PCT), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC). Multiple evidences supported the immune pleiotropic roles of ESR1 gene in pigs. The study advances our understanding of the cross-species immune pleiotropic landscape of ESR1 gene and also provides a potential pleiotropic molecular marker for disease-resistant breeding in pigs.
Collapse
Affiliation(s)
- Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingni Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Somasundaram A, Rothenberger NJ, Stabile LP. The Impact of Estrogen in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:33-52. [PMID: 33119863 DOI: 10.1007/978-3-030-50224-9_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor immune escape is now a hallmark of cancer development, and therapies targeting these pathways have emerged as standard of care. Specifically, immune checkpoint signal blockade offers durable responses and increased overall survival. However, the majority of cancer patients still do not respond to checkpoint blockade immune therapy leading to an unmet need in tumor immunology research. Sex-based differences have been noted in the use of cancer immunotherapy suggesting that sex hormones such as estrogen may play an important role in tumor immune regulation. Estrogen signaling already has a known role in autoimmunity, and the estrogen receptor can be expressed across multiple immune cell populations and effect their regulation. While it has been well established that tumor cells such as ovarian carcinoma, breast carcinoma, and even lung carcinoma can be regulated by estrogen, research into the role of estrogen in the regulation of tumor-associated immune cells is still emerging. In this chapter, we discuss the role of estrogen in the tumor immune microenvironment and the possible immunotherapeutic implications of targeting estrogen in cancer patients.
Collapse
Affiliation(s)
- Ashwin Somasundaram
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natalie J Rothenberger
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA.,Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Laura P Stabile
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Lee JH, Kim HK, Shin BK. Expression of female sex hormone receptors and its relation to clinicopathological characteristics and prognosis of lung adenocarcinoma. J Pathol Transl Med 2020; 54:103-111. [PMID: 31718122 PMCID: PMC6986970 DOI: 10.4132/jptm.2019.10.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/22/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Adenocarcinoma (ADC) of the lung exhibits different clinicopathological characteristics in men and women. Recent studies have suggested that these differences originate from the expression of female sex hormone receptors in tumor cells. The aim of the present study was to evaluate the immunohistochemical expression of female sex hormone receptors in lung ADC and determine the expression patterns in patients with different clinicopathological characteristics. METHODS A total of 84 patients with lung ADC who underwent surgical resection and/or core biopsy were recruited for the present study. Immunohistochemical staining was performed for estrogen receptor α (ERα), estrogen receptor β (ERβ), progesterone receptor (PR), epidermal growth factor receptor (EGFR), EGFR E746- A750 del, and EGFR L858R using tissue microarray. RESULTS A total of 39 (46.4%) ERα-positive, 71 (84.5%) ERβ-positive, and 46 (54.8%) PR-positive lung ADCs were identified. In addition, there were 81 (96.4%) EGFR-positive, 14 (16.7%) EGFR E746-A750 del-positive, and 34 (40.5%) EGFR L858R-positive cases. The expression of female sex hormone receptors was not significantly different in clinicopathologically different subsets of lung ADC. CONCLUSIONS Expression of female sex hormone receptors is not associated with the prognosis and clinicopathological characteristics of patients with lung ADC.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Han Kyeom Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Bong Kyung Shin
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Velez MA, Burns TF, Stabile LP. The estrogen pathway as a modulator of response to immunotherapy. Immunotherapy 2019; 11:1161-1176. [PMID: 31361169 DOI: 10.2217/imt-2019-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with a 5-year survival rate of about 18%. Thus, there is a great need for novel therapeutic approaches to treat non-small-cell lung cancer (NSCLC). Immune checkpoint inhibitors (ICIs) have improved outcomes for a subset of patients, especially those with high programmed death-ligand 1 expression and/or high tumor mutational burden, but have failed in the majority of patients. Increasing evidence suggests that the estrogen signaling pathway may be a therapeutic target in metastatic NSCLC and that the estrogen pathway may play a role in sex-based responses to ICIs. This report will review the epidemiologic, preclinical and clinical data on the estrogen pathway in NSCLC, its implications in sex-based responses to ICIs and the potential use of antiestrogen therapy in combination with ICIs.
Collapse
Affiliation(s)
- Maria A Velez
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Timothy F Burns
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Hernandez-Martinez JM, Vergara E, Montes-Servín E, Arrieta O. Interplay between immune cells in lung cancer: beyond T lymphocytes. Transl Lung Cancer Res 2019; 7:S336-S340. [PMID: 30705849 DOI: 10.21037/tlcr.2018.11.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico.,CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Edgar Vergara
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| | - Edgar Montes-Servín
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan), Mexico City, Mexico
| |
Collapse
|
14
|
The Role of the Estrogen Pathway in the Tumor Microenvironment. Int J Mol Sci 2018; 19:ijms19020611. [PMID: 29463044 PMCID: PMC5855833 DOI: 10.3390/ijms19020611] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Estrogen receptors are broadly expressed in many cell types involved in the innate and adaptive immune responses, and differentially regulate the production of cytokines. While both genomic and non-genomic tumor cell promoting mechanisms of estrogen signaling are well characterized in multiple carcinomas including breast, ovarian, and lung, recent investigations have identified a potential immune regulatory role of estrogens in the tumor microenvironment. Tumor immune tolerance is a well-established mediator of oncogenesis, with increasing evidence indicating the importance of the immune response in tumor progression. Immune-based therapies such as antibodies that block checkpoint signals have emerged as exciting therapeutic approaches for cancer treatment, offering durable remissions and prolonged survival. However, only a subset of patients demonstrate clinical response to these agents, prompting efforts to elucidate additional immunosuppressive mechanisms within the tumor microenvironment. Evidence drawn from multiple cancer types, including carcinomas traditionally classified as non-immunogenic, implicate estrogen as a potential mediator of immunosuppression through modulation of protumor responses independent of direct activity on tumor cells. Herein, we review the interplay between estrogen and the tumor microenvironment and the clinical implications of endocrine therapy as a novel treatment strategy within immuno-oncology.
Collapse
|
15
|
Cell cycle progression score is a marker for five-year lung cancer-specific mortality risk in patients with resected stage I lung adenocarcinoma. Oncotarget 2018; 7:35241-56. [PMID: 27153551 PMCID: PMC5085225 DOI: 10.18632/oncotarget.9129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/16/2016] [Indexed: 01/15/2023] Open
Abstract
Purpose The goals of our study were (a) to validate a molecular expression signature (cell cycle progression [CCP] score and molecular prognostic score [mPS; combination of CCP and pathological stage {IA or IB}]) that identifies stage I lung adenocarcinoma (ADC) patients with a higher risk of cancer-specific death following curative-intent surgical resection, and (b) to determine whether mPS stratifies prognosis within stage I lung ADC histological subtypes. Methods Formalin-fixed, paraffin-embedded stage I lung ADC tumor samples from 1200 patients were analyzed for 31 proliferation genes by quantitative RT-PCR. Prognostic discrimination of CCP score and mPS was assessed by Cox proportional hazards regression, using 5-year lung cancer–specific mortality as the primary outcome. Results In multivariable analysis, CCP score was a prognostic marker for 5-year lung cancer–specific mortality (HR=1.6 per interquartile range; 95% CI, 1.14–2.24; P=0.006). In a multivariable model that included mPS instead of CCP, mPS was a significant prognostic marker for 5-year lung cancer–specific mortality (HR=1.77; 95% CI, 1.18–2.66; P=0.006). Five-year lung cancer–specific survival differed between low-risk and high-risk mPS groups (96% vs 81%; P<0.001). In patients with intermediate-grade lung ADC of acinar and papillary subtypes, high mPS was associated with worse 5-year lung cancer–specific survival (P<0.001 and 0.015, respectively), compared with low mPS. Conclusion This study validates CCP score and mPS as independent prognostic markers for lung cancer–specific mortality and provides quantitative risk assessment, independent of known high-risk features, for stage I lung ADC patients treated with surgery alone.
Collapse
|
16
|
Amin EM, Liu Y, Deng S, Tan KS, Chudgar N, Mayo MW, Sanchez-Vega F, Adusumilli PS, Schultz N, Jones DR. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK. Sci Signal 2017; 10:eaah3941. [PMID: 28928239 PMCID: PMC5771642 DOI: 10.1126/scisignal.aah3941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Large-scale, genome-wide studies report that RNA binding proteins are altered in cancers, but it is unclear how these proteins control tumor progression. We found that the RNA-editing protein ADAR (adenosine deaminase acting on double-stranded RNA) acted as a facilitator of lung adenocarcinoma (LUAD) progression through its ability to stabilize transcripts encoding focal adhesion kinase (FAK). In samples from 802 stage I LUAD patients, increased abundance of ADAR at both the mRNA and protein level correlated with tumor recurrence. Knocking down ADAR in LUAD cells suppressed their mesenchymal properties, migration, and invasion in culture. Analysis of gene expression patterns in LUAD cells identified ADAR-associated enrichment of a subset of genes involved in cell migration pathways; among these, FAK is the most notable gene whose expression was increased in the presence of ADAR. Molecular analyses revealed that ADAR posttranscriptionally increased FAK protein abundance by binding to the FAK transcript and editing a specific intronic site that resulted in the increased stabilization of FAK mRNA. Pharmacological inhibition of FAK blocked ADAR-induced invasiveness of LUAD cells, suggesting a potential therapeutic application for LUAD that has a high abundance of ADAR.
Collapse
Affiliation(s)
- Elianna M Amin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuan Liu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Su Deng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neel Chudgar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Francisco Sanchez-Vega
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
Hsu LH, Chu NM, Kao SH. Estrogen, Estrogen Receptor and Lung Cancer. Int J Mol Sci 2017; 18:ijms18081713. [PMID: 28783064 PMCID: PMC5578103 DOI: 10.3390/ijms18081713] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER) in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR), and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.
Collapse
Affiliation(s)
- Li-Han Hsu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan.
- Department of Medicine, National Yang-Ming University Medical School, Taipei 112, Taiwan.
| | - Nei-Min Chu
- Department of Medical Oncology, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan.
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
18
|
Sarkar M, Ghosh S, Bhuniya A, Ghosh T, Guha I, Barik S, Biswas J, Bose A, Baral R. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells. PLoS One 2017; 12:e0175540. [PMID: 28414726 PMCID: PMC5393573 DOI: 10.1371/journal.pone.0175540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP), a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs) was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
- * E-mail: ,
| |
Collapse
|
19
|
Benzerdjeb N, Sevestre H, Ahidouch A, Ouadid-Ahidouch H. Orai3 is a predictive marker of metastasis and survival in resectable lung adenocarcinoma. Oncotarget 2016; 7:81588-81597. [PMID: 27835593 PMCID: PMC5348414 DOI: 10.18632/oncotarget.13149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Orai3 channel has emerged as important player in malignant transformation. Indeed, its expression is increased in cancer and favors cell proliferation and survival by permitting calcium influx. In this study, Orai3 was overexpressed in lung adenocarcinoma as compared to their matched non-tumour samples and was associated with tumoural aggressiveness. Moreover, its expression was associated with estrogen receptor alpha (ERα) expression and visceral pleural invasion in multivariate analysis. Furthermore, both the overall survival (OS) median and the metastasis free survival (MFS) median of tumors with high Orai3 expression were lower than in low Orai3 expression regardless of cancer stage (35.01 months vs. 51.11 months for OS and 46.01 months vs. 62.04 months for MFS). In conclusion, Orai3 protein level constitutes an independent prognostic marker in lung adenocarcinoma, and a novel prognostic marker that could help selecting the patients with worst prognosis to be treated with adjuvant chemotherapy in resectable stage.
Collapse
Affiliation(s)
- Nazim Benzerdjeb
- Laboratory of Cellular and Molecular Physiology, LPCM: EA 4667, SFR CAP-SANTE (FED 4231), UFR of Sciences, Amiens, France
- Department of Pathology, Amiens University Hospital, Amiens, France
| | - Henri Sevestre
- Department of Pathology, Amiens University Hospital, Amiens, France
| | - Ahmed Ahidouch
- Department of Pathology, Amiens University Hospital, Amiens, France
- Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, LPCM: EA 4667, SFR CAP-SANTE (FED 4231), UFR of Sciences, Amiens, France
| |
Collapse
|