1
|
Canato S, Sarate R, Carvalho-Marques S, Soares RM, Song Y, Monteiro-Ferreira S, Vieugué P, Liagre M, Grossi G, Cardoso E, Dubois C, Conway EM, Schenone S, Sánchez-Danés A, Blanpain C. Survivin Promotes Stem Cell Competence for Skin Cancer Initiation. Cancer Discov 2025; 15:427-443. [PMID: 39526566 PMCID: PMC7617290 DOI: 10.1158/2159-8290.cd-24-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE This study identifies Survivin as a key regulator of the different ability of SCs and Ps to initiate skin cancer. Survivin expression in oncogene-targeted SCs is essential for their survival and self-renewal and to prevent their differentiation and apoptosis, allowing SCs and not Ps to initiate skin cancer.
Collapse
Affiliation(s)
- Sara Canato
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Rahul Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Raquel Maia Soares
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Pauline Vieugué
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mélanie Liagre
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Erik Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine University of British Columbia, Vancouver, Canada
| | | | | | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Rocca R, Ascrizzi S, Citriniti EL, Scionti F, Juli G, Di Martino MT, Caracciolo D, Artese A, Tagliaferri P, Tassone P, Grillone K, Alcaro S. TERRA G-quadruplex stabilization behind the anti-multiple myeloma activity: Novel insights about resveratrol pleiotropic effects. Arch Pharm (Weinheim) 2024; 357:e2400269. [PMID: 39365272 DOI: 10.1002/ardp.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
Resveratrol (RSV) is a nutraceutical compound belonging to the nonflavonoid polyphenol family, whose antioxidants, anti-inflammatory, and antitumoral properties have been widely investigated. The ability of RSV to provide beneficial effects for neurological, cardiovascular, and cancer disorders rekindled the interest to explore the molecular mechanisms behind its pleiotropic effects, which are due to the modulation of coding and noncoding genes involved in many key biological pathways. With a computational approach, including docking studies and thermodynamics calculations followed by 200-ns-long molecular dynamics and a clustering analysis, we hypothesized the stabilizing binding between RSV and G4 structures of telomeric repeat-containing RNA (TERRA), which is a tumor-suppressive long noncoding RNAs (lncRNA) involved in the regulation of telomere maintenance. In vitro studies performed on cellular models of multiple myeloma (MM) strengthened our hypothesis by highlighting that the antiproliferative and apoptotic effect induced by the treatment with RSV is associated with an increase of TERRA transcript and with upregulation of telomeric heterochromatin markers, such as H3K27Me3 and H4K20Me3, and of the hallmark of apoptosis, cleaved-poly(ADP-ribose) polymerase-1. Our results propose innovative insights underlying the multifaceted role of RSV in MM, by pointing out the role of this natural compound in an lncRNA-mediated regulation to counteract cellular immortality.
Collapse
Affiliation(s)
- Roberta Rocca
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Francesca Scionti
- Department of Medical and Surgery Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Anna Artese
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
3
|
Gulzar M, Noor S, Hasan GM, Hassan MI. The role of serum and glucocorticoid-regulated kinase 1 in cellular signaling: Implications for drug development. Int J Biol Macromol 2024; 258:128725. [PMID: 38092114 DOI: 10.1016/j.ijbiomac.2023.128725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a ubiquitously expressed protein belonging to the Ser/Thr kinase family. It regulates diverse physiological processes, including epithelial sodium channel activity, hypertension, cell proliferation, and insulin sensitivity. Due to its significant role in the pathogenesis of numerous diseases, SGK1 can be exploited as a potential therapeutic target to address challenging health problems. SGK1 is associated with the development of obesity, and its overexpression enhances the sodium-glucose co-transporter 1 activity, which absorbs intestinal glucose. This review highlighted the detailed functional significance of SGK1 signaling and role in different diseases and subsequent therapeutic targeting. We aim to provide deeper mechanistic insights into understanding the pathogenesis and recent advancements in the SGK1 targeted drug development process. Small-molecule inhibitors are being developed with excellent binding affinity and improved SGK1 inhibition with desired selectivity. We have discussed small molecule inhibitors designed explicitly as potent SGK1 inhibitors and their therapeutic implications in various diseases. We further addressed the therapeutic potential and mechanism of action of these SGK1 inhibitors and provided a strong scientific foundation for developing effective therapeutics.
Collapse
Affiliation(s)
- Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Mozaffari MS, Abdelsayed R, Emami S, Kavuri S. Expression profiles of glucocorticoid-inducible proteins in human papilloma virus-related oropharyngeal squamous cell carcinoma. FRONTIERS IN ORAL HEALTH 2023; 4:1285139. [PMID: 37954869 PMCID: PMC10634427 DOI: 10.3389/froh.2023.1285139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human papillomavirus virus-related oropharyngeal squamous cell carcinoma (HPV-OPSCC) comprises a significant portion of head and neck cancers. Several glucocorticoid-inducible proteins play important roles in pathogenesis of some cancers but their status and roles in HPV-OPSCC remain elusive; these include the glucocorticoid-induced leucine zipper (GILZ), Annexin-A1 and serum glucocorticoid-regulated kinase-1 (SGK-1). Methods We determined expression profiles of these proteins, using immunohistochemistry, in archived biopsy samples of patients diagnosed with HPV-OPSCC; samples of non-cancer oral lesions (e.g., hyperkeratosis) were used as controls. Results GILZ staining was primarily confined to nuclei of all tissues but, in HPV-OPSCC specimens, neoplastic cells exhibiting mitosis displayed prominent cytoplasmic GILZ expression. On the other hand, nuclear, cytoplasmic and membranous Annexin-A1 staining was observed in suprabasal cell layers of control specimens. A noted feature of the HPV-OPSCC specimens was few clusters of matured and differentiated nonbasaloid cells that showed prominent nuclear and cytoplasmic Annexin-A1 staining while the remainder of the tumor mass was devoid of staining. Cytoplasmic and nuclear staining for SGK-1 was prominent for control than PV-OPSCC specimens while staining for phosphorylated SGK-1 (pSGK-1; active) was prominent for cell membrane and cytoplasm of control specimens but HPV-OPSCC specimens showed mild and patchy nuclear and cytoplasmic staining. Semi-quantitative analysis of GILZ immunostaining indicated increased staining area but similar normalized staining for HPV-OPSCC compared to control specimens. By contrast, staining area and normalized staining were reduced for other proteins in HPV-OPSCC than control specimens. Discussion Our collective observations suggest differential cellular localization and expression of glucocorticoid-inducible proteins in HPV-OPSCC suggestive of different functional roles in pathogenesis of this condition.
Collapse
Affiliation(s)
- Mahmood S. Mozaffari
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Rafik Abdelsayed
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sahar Emami
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sravan Kavuri
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
5
|
Bian X, Xue H, Jing D, Wang Y, Zhou G, Zhu F. Role of Serum/Glucocorticoid-Regulated Kinase 1 (SGK1) in Immune and Inflammatory Diseases. Inflammation 2023; 46:1612-1625. [PMID: 37353719 DOI: 10.1007/s10753-023-01857-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Serum/glucocorticoid-regulated kinase 1 (SGK1), a member of the serine/threonine protein kinase gene family, is primarily regulated by serum and glucocorticoids. SGK1 is involved in the development of tumors and fibrotic diseases. However, relatively little research has been conducted on their role in immune and inflammatory diseases. SGK1 may act as a pivotal immune regulatory gene by modulating immune cells (e.g., T cells, macrophages, dendritic cells, and neutrophils) and functions and is involved in the pathogenesis of some immune and inflammatory diseases, such as inflammatory bowel disease, multiple sclerosis, allergic diseases, sepsis, and major depressive disorder. This review aims to provide an overview of the latest research focusing on the immune and inflammatory regulatory roles of SGK1 and provide new insights into diagnostic and therapeutic approaches for immune and inflammatory diseases.
Collapse
Affiliation(s)
- Xixi Bian
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
6
|
Hochstetler A, Smith H, Reed M, Hulme L, Territo P, Bedwell A, Persohn S, Perrotti N, D'Antona L, Musumeci F, Schenone S, Blazer-Yost BL. Inhibition of serum- and glucocorticoid-induced kinase 1 ameliorates hydrocephalus in preclinical models. Fluids Barriers CNS 2023; 20:61. [PMID: 37596666 PMCID: PMC10439616 DOI: 10.1186/s12987-023-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF. Importantly, there are no long-term, effective pharmaceutical treatments and this represents a clinically unmet need. Many forms of hydrocephalus involve dysregulation in water and electrolyte homeostasis, making this an attractive, druggable target. METHODS In vitro, a combination of electrophysiological and fluid flux assays was used to elucidate secretory transepithelial electrolyte and fluid flux in a human cell culture model of the choroid plexus epithelium and to determine the involvement of serum-, glucocorticoid-induced kinase 1 (SGK1). In vivo, MRI studies were performed in a genetic rat model of hydrocephalus to determine effects of inhibition of SGK1 with a novel inhibitor, SI113. RESULTS In the cultured cell line, SI113 reduced secretory transepithelial electrolyte and fluid flux. In vivo, SI113 blocks the development of hydrocephalus with no effect on ventricular size of wild-type animals and no overt toxic effects. Mechanistically, the development of hydrocephalus in the rat model involves an increase in activated, phosphorylated SGK1 with no change in the total amount of SGK1. SI113 inhibits phosphorylation with no changes in total SGK1 levels in the choroid plexus epithelium. CONCLUSION These data provide a strong preclinical basis for the use of SGK1 inhibitors in the treatment of hydrocephalus.
Collapse
Affiliation(s)
- Alexandra Hochstetler
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Hillary Smith
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Makenna Reed
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Louise Hulme
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Paul Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Amanda Bedwell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Scott Persohn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Università" Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Lucia D'Antona
- Dipartimento di Scienze della Salute, Università" Magna Graecia" di Catanzaro, Catanzaro, Italy
| | | | | | - Bonnie L Blazer-Yost
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
8
|
Peng TF, Zhou YJ, Zhou J, Zhou Y, Li XC, Ouyang Q. Long non-coding RNA VPS9D1-AS1 enhances proliferation, invasion, and epithelial-mesenchymal transition in endometrial cancer via miR-377-3p/SGK1. Kaohsiung J Med Sci 2022; 38:1048-1059. [PMID: 36245426 DOI: 10.1002/kjm2.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
Endometrial cancer (EC) is a kind of gynecologic malignancy with a rising incidence rate. This study aimed to explore the role of VPS9D1 antisense RNA1 (VPS9D1-AS1) in EC. The expression of VPS9D1-AS1, microRNA (miR)-377-3p, and serum and glucocorticoid-regulated kinase 1 (SGK1) was detected by Quantitative Real-Time PCR (qRT-PCR). Cell proliferation, invasion and epithelial-mesenchymal transition (EMT) were determined by cell counting kit-8 (CCK-8), 5-Ethynyl-2'-Deoxyuridine (EdU) transwell, and western bolt. VPS9D1-AS1 was predicted to sponge miR-377-3p via Starbase, and verified by luciferase reporter, RNA binding protein immunoprecipitation (RIP), and RNA pull-down experiments. The clinical characteristics of VPS9D1-AS1, miR-377-3p, and SGK1 were analyzed. The role of VPS9D1-AS1 on EC tumorigenesis was assessed in xenografted nude mice. VPS9D1-AS1 was upregulated in EC cells and tissues. Interference of VPS9D1-AS1 inhibited growth, invasion, and EMT of EC cells. Mechanically, VPS9D1-AS1 was a molecular sponge of miR-377-3p, and overexpression of miR-377-3p reversed VPS9D1-AS1-induced EC cells proliferation, invasion, and EMT. Moreover, SGK1 was confirmed to bind with miR-377-3p. Furthermore, overexpression of SGK1 alleviated sh-VPS9D1-AS1-caused effects on EC cells. High level of VPS9D1-AS1 and SGK1, or low miR-377-3p expression predicted a poor prognosis. The expression of the three genes was correlated with lymph node metastasis, pathological stage, and International Federation of Gynecology and Obstetrics (FIGO) stage, but not associated with age, ER, and PR expression. Interestingly, knockdown of VPS9D1-AS1 suppressed EC tumor growth in mice. VPS9D1-AS1 promoted cell invasion, proliferation, and EMT via modulating miR-377-3p/SGK1 axis, which provided new options for therapeutic strategies of EC.
Collapse
Affiliation(s)
- Tian-Fang Peng
- Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Yan-Jie Zhou
- Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Jian Zhou
- Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Yi Zhou
- Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Xin-Chun Li
- Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Qiang Ouyang
- Department of Gynecological Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| |
Collapse
|
9
|
Okura A, Inoue K, Sakuma E, Takase H, Ueki T, Mase M. SGK1 in Schwann cells is a potential molecular switch involved in axonal and glial regeneration during peripheral nerve injury. Biochem Biophys Res Commun 2022; 607:158-165. [DOI: 10.1016/j.bbrc.2022.03.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
|
10
|
Cicenas J, Meskinyte-Kausiliene E, Jukna V, Rimkus A, Simkus J, Soderholm D. SGK1 in Cancer: Biomarker and Drug Target. Cancers (Basel) 2022; 14:2385. [PMID: 35625991 PMCID: PMC9139822 DOI: 10.3390/cancers14102385] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinases (SGKs) are members of the AGC family of serine/threonine kinases, consisting of three isoforms: SGK1, SGK2, and SGK3. SGK1 was initially cloned as a gene transcriptionally stimulated by serum and glucocorticoids in rat mammary tumor cells. It is upregulated in some cancers and downregulated in others. SGK1 increases tumor cell survival, adhesiveness, invasiveness, motility, and epithelial to mesenchymal transition. It stimulates tumor growth by mechanisms such as activation of K+ channels and Ca2+ channels, Na+/H+ exchanger, amino acid and glucose transporters, downregulation of Foxo3a and p53, and upregulation of β-catenin and NFκB. This chapter focuses on major aspects of SGK1 involvement in cancer, its use as biomarker as well as potential therapeutic target.
Collapse
Affiliation(s)
- Jonas Cicenas
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland; (A.R.); (J.S.)
- Center of Animal Husbandry Selections, Breeding Values and Dissemination, Agriculture Academy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademija, Lithuania; (E.M.-K.); (V.J.)
| | - Edita Meskinyte-Kausiliene
- Center of Animal Husbandry Selections, Breeding Values and Dissemination, Agriculture Academy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademija, Lithuania; (E.M.-K.); (V.J.)
| | - Vigilijus Jukna
- Center of Animal Husbandry Selections, Breeding Values and Dissemination, Agriculture Academy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademija, Lithuania; (E.M.-K.); (V.J.)
| | - Arnas Rimkus
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland; (A.R.); (J.S.)
| | - Jokubas Simkus
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland; (A.R.); (J.S.)
| | - Diana Soderholm
- Walker Art Center, 752 Vineland PI, Mineapolis, MN 55403, USA;
| |
Collapse
|
11
|
Mozaffari MS, Abdelsayed R. Expression Profiles of GILZ and SGK-1 in Potentially Malignant and Malignant Human Oral Lesions. FRONTIERS IN ORAL HEALTH 2022; 2:675288. [PMID: 35048019 PMCID: PMC8757717 DOI: 10.3389/froh.2021.675288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoid-induced leucine zipper and serum-glucocorticoid-regulated kinase-1 (SGK-1) are major glucocorticoid-inducible proteins. Recent studies indicate the local production of cortisol in oral mucosa, which can impact the tissue generation of glucocorticoid-induced leucine zipper (GILZ) and SGK-1. Furthermore, GILZ and SGK-1 play pathogenic roles in a variety of cancers, but their status in potentially malignant (e.g., epithelial dysplasia) or malignant oral lesions remains unknown. This study tested the hypothesis that expression profiles of GILZ and SGK-1, along with the phosphorylated (active) form of SGK-1 (pSGK-1), are different in epithelial dysplasia than squamous cell carcinoma. Accordingly, archived paraffin-embedded biopsy samples were subjected to immunohistochemistry to establish tissue localization and the profile of proteins of interest, while hematoxylin-eosin stained tissues were used for histopathological assessment. Based on histopathological examinations, tissue specimens were categorized as displaying mild-moderate or severe epithelial dysplasia and squamous cell carcinoma; benign keratosis specimens served as controls. All the tissue specimens showed staining for SGK-1 and pSGK-1; however, while SGK-1 staining was primarily cytoplasmic, pSGK-1 was mainly confined to the cell membrane. On the other hand, all the tissue specimens displayed primarily nuclear staining for GILZ. A semi-quantitative analysis of immunohistochemistry staining indicates increased GILZ expression in epithelial dysplasia but reversal in squamous cell carcinoma to a level seen for benign keratosis. On the other hand, the SGK-1 and pSGK-1 expressions decreased for squamous cell carcinoma specimens compared with benign keratosis or dysplastic specimens. Collectively, in this cross-sectional study, immunostaining patterns for proteins of interest do not seemingly differentiate epithelial dysplasia from squamous cell carcinoma. However, subcellular localization and expression profiles for GILZ, SGK-1, and pSGK-1 are suggestive of differential functional roles in dysplastic or malignant oral lesions compared with benign keratosis.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Rafik Abdelsayed
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Multiomics Differences in Lung Squamous Cell Carcinoma Patients with High Radiosensitivity Index Compared with Those with Low Radiosensitivity Index. DISEASE MARKERS 2021; 2021:3766659. [PMID: 34504628 PMCID: PMC8423540 DOI: 10.1155/2021/3766659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Objectives Radiosensitivity Index (RSI) can predict intrinsic radiotherapy sensitivity. We analyzed multiomics characteristics in lung squamous cell carcinoma between high and low RSI groups, which may help understand the underlying molecular mechanism of radiosensitivity and guide optional treatment for patients in the future. Methods The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data were used to download clinical data, mRNA, microRNA, and lncRNA expression. Differential analyses, including mRNA, miRNA, lncRNA, and G.O. and KEGG, and GSVA analyses, were performed with R. Gene set enrichment analysis was done by GSEA. miRNA-differentially expressed gene network and ceRNA network were analyzed and graphed by the Cytoscape software. Results In TCGA data, 542 patients were obtained, including 171 in the low RSI group (LRSI) and 371 in the high RSI group (HRSI). In RNAseq, 558 significantly differentially expressed genes (DEGs) were obtained. KRT6A was the most significantly upregulated gene and IDO1 was the most significantly downregulated gene. In miRNAseq, miR-1269a was the most significantly upregulated. In lncRNAseq, LINC01871 was the most upregulated. A 66-pair interaction between differentially expressed genes and miRNAs and an 11-pair interaction between differential lncRNAs and miRNAs consisted of a ceRNA network, of which miR-184 and miR-490-3p were located in the center. In the GEO data, there were 40 DEGs. A total of 17 genes were founded in both databases, such as ADAM23, AHNAK2, BST2, COL11A1, CXCL13, FBN2, IFI27, IFI44L, MAGEA6, and PTGR1. GSVA analysis revealed 31 significant pathways. GSEA found 87 gene sets enriched in HRSI and 91 gene sets in LRSI. G.O. and KEGG of RNA expression levels revealed that these genes were most enriched in T cell activation and cytokine-cytokine receptor interaction. Conclusions Patients with lung squamous cell carcinoma have different multiomics characteristics between two groups. These differences may have an essential significance with radiotherapy effect.
Collapse
|
13
|
Rango E, D'Antona L, Iovenitti G, Brai A, Mancini A, Zamperini C, Trivisani CI, Marianelli S, Fallacara AL, Molinari A, Cianciusi A, Schenone S, Perrotti N, Dreassi E, Botta M. Si113-prodrugs selectively activated by plasmin against hepatocellular and ovarian carcinoma. Eur J Med Chem 2021; 223:113653. [PMID: 34161866 DOI: 10.1016/j.ejmech.2021.113653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022]
Abstract
Si113, a pyrazolo[3,4-d]pyrimidine derivative, gained more attention as an anticancer agent due to its potent anticancer activity on both in vitro and in vivo hepatocellular carcinomas (HCC) and ovarian carcinoma models. But the drawback is the low water solubility which prevents its further development. In this context, we successfully overcame this limitation by synthesizing two novel prodrugs introducing the amino acid sequence D-Ala-Leu-Lys (TP). Moreover, TP sequence has a high affinity with plasmin, a protease recognized as overexpressed in many solid cancers, including HCC and ovarian carcinoma. The prodrugs were synthesized and fully characterized in terms of in vitro ADME properties, plasma stability and plasmin-induced release of the parent drug. The inhibitory activity against Sgk1 was evaluated and in vitro growth inhibition was evaluated on ovarian carcinoma and HCC cell lines in the presence and absence of human plasmin. In vivo pharmacokinetic properties and preliminary tissue distribution confirmed a better profile highlighting the importance of the prodrug approach. Finally, the prodrug antitumor efficacy was evaluated in an HCC xenografted murine model, where a significant reduction (around 90%) in tumor growth was observed. Treatment with ProSi113-TP in combination with paclitaxel in a paclitaxel-resistant ovarian carcinoma xenografted murine model, resulted in an impressive reduction of tumor volume greater than 95%. Our results revealed a promising activity of Si113 prodrugs and pave the way for their further development against resistant cancer.
Collapse
Affiliation(s)
- Enrico Rango
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Lucia D'Antona
- Dipartimento di Scienze della Salute, Università"Magna Graecia" di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giulia Iovenitti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Annalaura Brai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Arianna Mancini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Claudio Zamperini
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019, Castelnuovo Berardenga, Siena, Italy
| | - Claudia Immacolata Trivisani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Marianelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Alessio Molinari
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Annarita Cianciusi
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, Genoa, 16132, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, Genoa, 16132, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Università"Magna Graecia" di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy; Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019, Castelnuovo Berardenga, Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology Temple University, BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia, PA, 19122, United States
| |
Collapse
|
14
|
Angeline N, Choo SS, Kim CH, Bhang SH, Kim TH. Precise Electrical Detection of Curcumin Cytotoxicity in Human Liver Cancer Cells. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00002-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors. Int J Pharm 2021; 599:120281. [PMID: 33524522 DOI: 10.1016/j.ijpharm.2021.120281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Uncontrolled cell proliferation is a hallmark of cancer as a result of rapid and deregulated progression through the cell cycle. The inhibition of cyclin-dependent kinases (CDKs) activities is a promising therapeutic strategy to block cell cycle of tumor cells. In this work we reported a new example of nanocomposites based on halloysite nanotubes (HNTs)/pyrazolo[3,4-d]pyrimidine derivatives (Si306 and Si113) as anticancer agents and CDK inhibitors. HNTs/Si306 and HNTs/Si113 nanocomposites were synthesized and characterized. The release kinetics were also investigated. Antitumoral activity was evaluated on three cancer cell lines (HeLa, MDA-MB-231 and HCT116) and the effects on cell cycle arrest in HCT116 cells were evaluated. Finally, molecular dynamics simulations were performed of the complexes between Si113 or Si306 and the active site of both CDK 1 and 2.
Collapse
|
16
|
Sang Y, Kong P, Zhang S, Zhang L, Cao Y, Duan X, Sun T, Tao Z, Liu W. SGK1 in Human Cancer: Emerging Roles and Mechanisms. Front Oncol 2021; 10:608722. [PMID: 33542904 PMCID: PMC7851074 DOI: 10.3389/fonc.2020.608722] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a member of the "AGC" subfamily of protein kinases, which shares structural and functional similarities with the AKT family of kinases and displays serine/threonine kinase activity. Aberrant expression of SGK1 has profound cellular consequences and is closely correlated with human cancer. SGK1 is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in the genesis and development of many human cancers. Abnormal expression of SGK1 has been found in tissue and may hopefully become a useful indicator of cancer progression. In addition, SGK1 acts as a prognostic factor for cancer patient survival. This review systematically summarizes and discusses the role of SGK1 as a diagnostic and prognostic biomarker of diverse cancer types; focuses on its essential roles and functions in tumorigenesis, cancer cell proliferation, apoptosis, invasion, metastasis, autophagy, metabolism, and therapy resistance and in the tumor microenvironment; and finally summarizes the current understanding of the regulatory mechanisms of SGK1 at the molecular level. Taken together, this evidence highlights the crucial role of SGK1 in tumorigenesis and cancer progression, revealing why it has emerged as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Greco C, Catania R, Balacco DL, Taresco V, Musumeci F, Alexander C, Huett A, Schenone S. Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4- d]pyrimidines Kinase Inhibitors. Molecules 2020; 25:molecules25225354. [PMID: 33207806 PMCID: PMC7696985 DOI: 10.3390/molecules25225354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pyrazolo[3,4-d]pyrimidines represent an important class of heterocyclic compounds well-known for their anticancer activity exerted by the inhibition of eukaryotic protein kinases. Recently, pyrazolo[3,4-d]pyrimidines have become increasingly attractive for their potential antimicrobial properties. Here, we explored the activity of a library of in-house pyrazolo[3,4-d]pyrimidines, targeting human protein kinases, against Staphylococcus aureus and Escherichia coli and their interaction with ampicillin and kanamycin, representing important classes of clinically used antibiotics. Our results represent a first step towards the potential application of dual active pyrazolo[3,4-d]pyrimidine kinase inhibitors in the prevention and treatment of bacterial infections in cancer patients.
Collapse
Affiliation(s)
- Chiara Greco
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
| | - Rosa Catania
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Dario Leonardo Balacco
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK;
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Francesca Musumeci
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Alan Huett
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Correspondence: (A.H.); (S.S.)
| | - Silvia Schenone
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy; (C.G.); (F.M.)
- Correspondence: (A.H.); (S.S.)
| |
Collapse
|
18
|
Lack of PPAR β/ δ-Inactivated SGK-1 Is Implicated in Liver Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9563851. [PMID: 33083492 PMCID: PMC7556072 DOI: 10.1155/2020/9563851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/05/2022]
Abstract
Objective The present study examined the role of PPARβ/δ in hepatocellular carcinoma (HCC). Methods The effect of PPARβ/δ on HCC development was analyzed using PPARβ/δ-overexpressed liver cancer cells and PPARβ/δ-knockout mouse models. Results PPARβ/δ(-/-) mice were susceptible to diethylnitrosamine- (DEN-) induced HCC (87.5% vs. 37.5%, p < 0.05). In addition, PPARβ/δ-overexpressed HepG2 cells had reduced proliferation, migration, and invasion capabilities accompanied by increased apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, differential gene expression profiling uncovered that the levels of serine/threonine-protein kinase (SGK-1) mRNA and its encoded protein were reduced in PPARβ/δ-overexpressed HepG2 cells. Consistently, elevated SGK-1 levels were found in PPARβ/δ(-/-) mouse livers as well as PPARβ/δ-knockdown human SMMC-7721 HCC cells. Chromatin immunoprecipitation (ChIP) assays followed by real-time quantitative polymerase chain reaction (qPCR) assays further revealed the binding of PPARβ/δ to the SGK-1 regulatory region in HepG2 cells. Conclusions Due to the known tumor-promoting effect of SGK1, the present data suggest that PPARβ/δ-deactivated SGK1 is a novel pathway for inhibiting liver carcinogenesis.
Collapse
|
19
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Sharif Siam MK, Sarker A, Sayeem MMS. In silico drug design and molecular docking studies targeting Akt1 (RAC-alpha serine/threonine-protein kinase) and Akt2 (RAC-beta serine/threonine-protein kinase) proteins and investigation of CYP (cytochrome P450) inhibitors against MAOB (monoamine oxidase B) for OSCC (oral squamous cell carcinoma) treatment. J Biomol Struct Dyn 2020; 39:6467-6479. [PMID: 32746771 DOI: 10.1080/07391102.2020.1802335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The overexpression of Akt1 (RAC-alpha serine/threonine-protein Kinase) and Akt2 (RAC-beta serine/threonine-protein Kinase) is a hallmark of Oral Squamous Cell Carcinoma (OSCC). Because of the elevated frequency of OSCC occurrence in South Asian countries, novel therapeutic approaches are indispensable. Drugs that inhibit the overexpression of Akt1 and Akt2 proteins in Akt pathway and do not cause reduced expression of MAOB can be leads for OSCC treatment. In this study, Akt1, Akt2 and MAOB were targeted and 100 CYP inhibitors were screened through several in silico approaches and Galuteolin and Linarin were identified as potential leads for OSCC treatment as they inhibited Akt1 proteins with strong binding affinities of -12.3 and -11.5 kcal/mol respectively and also Akt2 proteins with strong binding affinities of -11.4 and -11.1 kcal/mol respectively, but they did not inhibit MAOB. Decreased expression of MAOB in tissues causes OSCC but overexpression is also responsible for other types of diseases and cancers. From the investigation of CYP inhibitors against MAOB, five CYP inhibitors- Diosmetin, Acacetin, Epicatechin, Eriodictyol and Capillin have expressed inhibitory action against MAOB without any interference with Akt1 and Akt2. This study mainly represents that Galuteolin and Linarin in the Akt pathway can be perceived for OSCC treatment and other five CYP inhibitors - Diosmetin, Acacetin, Epicatechin, Eriodictyol and Capillin for the treatment of other diseases and cancers caused by overexpression of MAOB. ADMET properties of CYP inhibitors obtained from admetSAR 2.0 and were compared with reference drugs for validation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Anusree Sarker
- Department of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Mohammad Manzur Sharif Sayeem
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Zhu R, Yang G, Cao Z, Shen K, Zheng L, Xiao J, You L, Zhang T. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol 2020; 12:1758835920940946. [PMID: 32728395 PMCID: PMC7364809 DOI: 10.1177/1758835920940946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is an AGC kinase that has been reported to be involved in a variety of physiological and pathological processes. Recent evidence has accumulated that SGK1 acts as an essential Akt-independent mediator of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in cancer. SGK1 is overexpressed in several tumors, including prostate cancer, colorectal carcinoma, glioblastoma, breast cancer, and endometrial cancer. The functions of SGK1 include regulating tumor growth, survival, metastasis, autophagy, immunoregulation, calcium (Ca2+) signaling, cancer stem cells, cell cycle, and therapeutic resistance. In this review, we introduce the pleiotropic role of SGK1 in the development and progression of tumors, summarize its downstream targets, and integrate the knowledge provided by preclinical studies that the prospect of SGK1 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Ruizhe Zhu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing 100730, China
| |
Collapse
|
22
|
Ciliberto G, Mancini R, Paggi MG. Drug repurposing against COVID-19: focus on anticancer agents. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:86. [PMID: 32398164 PMCID: PMC7214852 DOI: 10.1186/s13046-020-01590-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Background The very limited time allowed to face the COVID-19 pandemic poses a pressing challenge to find proper therapeutic approaches. However, synthesis and full investigation from preclinical studies to phase III trials of new medications is a time-consuming procedure, and not viable in a global emergency, such as the one we are facing. Main Body Drug repurposing/repositioning, a strategy effectively employed in cancer treatment, can represent a valid alternative. Most drugs considered for repurposing/repositioning in the therapy of the COVID-19 outbreak are commercially available and their dosage and toxicity in humans is well known, due to years (or even decades) of clinical use. This can allow their fast-track evaluation in phase II–III clinical trials, or even within straightforward compassionate use. Several drugs being re-considered for COVID-19 therapy are or have been used in cancer therapy. Indeed, virus-infected cells are pushed to enhance the synthesis of nucleic acids, protein and lipid synthesis and boost their energy metabolism, in order to comply to the “viral program”. Indeed, the same features are seen in cancer cells, making it likely that drugs interfering with specific cancer cell pathways may be effective as well in defeating viral replication. Short Conclusion To our knowledge, cancer drugs potentially suitable for facing SARS-CoV-2 infection have not been carefully reviewed. We present here a comprehensive analysis of available information on potential candidate cancer drugs that can be repurposed for the treatment of COIVD-19.
Collapse
Affiliation(s)
- Gennaro Ciliberto
- Scientific Director, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
23
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
24
|
Catalogna G, Moraca F, D'Antona L, Dattilo V, Perrotti G, Lupia A, Costa G, Ortuso F, Iuliano R, Trapasso F, Amato R, Alcaro S, Perrotti N. Review about the multi-target profile of resveratrol and its implication in the SGK1 inhibition. Eur J Med Chem 2019; 183:111675. [PMID: 31539779 DOI: 10.1016/j.ejmech.2019.111675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023]
Abstract
Resveratrol (trans-3,4',5-trihydroxystilbene) is a polyphenolic natural product with a well-known polypharmacological profile that places it among the multi-target-directed ligands (MTDLs). Given its protective action against a wide number of chronic diseases, in this review, we introduce a general overview about the cardioprotective and antioxidant effects, the antidiabetic, neuroprotective and anti-inflammatory effects of this polyphenol. In the second part of the manuscript, we focused our attention on the anticancer activity of Resveratrol, given the alteration of many different signaling pathways, leading to suppression of tumor cell proliferation in numerous cancer types. Among the several anticancer targets involved in the mechanism of action of Resveratrol, here we introduce experimental and molecular modeling studies performed against the SGK1 protein as a novel anticancer target of Resveratrol. SGK1 inhibitors have been demonstrated to inhibit cell growth of different cancer cells. We demonstrated that resveratrol inhibits SGK1 in vitro and in intact cells, affecting proliferation and survival of HUH7 human hepatoma cells. Our findings demonstrate that resveratrol may function as a SGK1 inhibitor, suggesting possible applications in sodium retention and cancer.
Collapse
Affiliation(s)
- Giada Catalogna
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Federica Moraca
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Lucia D'Antona
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giuseppe Perrotti
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Nicola Perrotti
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
25
|
D'Antona L, Dattilo V, Catalogna G, Scumaci D, Fiumara CV, Musumeci F, Perrotti G, Schenone S, Tallerico R, Spoleti CB, Costa N, Iuliano R, Cuda G, Amato R, Perrotti N. In Preclinical Model of Ovarian Cancer, the SGK1 Inhibitor SI113 Counteracts the Development of Paclitaxel Resistance and Restores Drug Sensitivity. Transl Oncol 2019; 12:1045-1055. [PMID: 31163384 PMCID: PMC6545392 DOI: 10.1016/j.tranon.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy worldwide. Paclitaxel is particularly important in the therapy of ovarian carcinomas, but the treatment efficacy is counteracted by the development of resistance to chemotherapy. The identification of target molecules that can prevent or control the development of chemoresistance might provide important tools for the management of patients affected by ovarian cancer. Serum- and glucocorticoid-regulated kinase 1 (SGK1) appears to be a key determinant of resistance to chemo- and radiotherapy. Specifically, SGK1 affects paclitaxel sensitivity in RKO colon carcinoma cells by modulating the specificity protein 1 (SP1)–dependent expression of Ran-specific GTPase-activating protein (RANBP1), a member of the GTP-binding nuclear protein Ran (RAN) network that is required for the organization and function of the mitotic spindle. SGK1 inhibition might thus be useful for counteracting the development of paclitaxel resistance. Here, we present in vitro data obtained using ovarian carcinoma cell lines that indicate that the SGK1 inhibitor SI113 inhibits cancer cell proliferation, potentiates the effects of paclitaxel-based chemotherapy, counteracts the development of paclitaxel resistance, and restores paclitaxel sensitivity in paclitaxel-resistant A2780 ovarian cancer cells. The results were corroborated by preclinical studies of xenografts generated in nude mice through the implantation of paclitaxel-resistant human ovarian cancer cells. The SGK1 inhibitor SI113 synergizes with paclitaxel in the treatment of xenografted ovarian cancer cells. Taken together, these data suggest that SGK1 inhibition should be investigated in clinical trials for the treatment of paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Giada Catalogna
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Domenica Scumaci
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Claudia Vincenza Fiumara
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | | | - Giuseppe Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | | | - Rossana Tallerico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Cristina B Spoleti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Nicola Costa
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Rodolfo Iuliano
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Giovanni Cuda
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro.
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro.
| |
Collapse
|
26
|
Matteoni S, Abbruzzese C, Matarrese P, De Luca G, Mileo AM, Miccadei S, Schenone S, Musumeci F, Haas TL, Sette G, Carapella CM, Amato R, Perrotti N, Signore M, Paggi MG. The kinase inhibitor SI113 induces autophagy and synergizes with quinacrine in hindering the growth of human glioblastoma multiforme cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:202. [PMID: 31101126 PMCID: PMC6525441 DOI: 10.1186/s13046-019-1212-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Background Glioblastoma multiforme (GBM), due to its location, aggressiveness, heterogeneity and infiltrative growth, is characterized by an exceptionally dismal clinical outcome. The small molecule SI113, recently identified as a SGK1 inhibitor, has proven to be effective in restraining GBM growth in vitro and in vivo, showing also encouraging results when employed in combination with other antineoplastic drugs or radiotherapy. Our aim was to explore the pharmacological features of SI113 in GBM cells in order to elucidate the pivotal molecular pathways affected by the drug. Such knowledge would be of invaluable help in conceiving a rational offensive toward GBM. Methods We employed GBM cell lines, either established or primary (neurospheres), and used a Reverse-Phase Protein Arrays (RPPA) platform to assess the effect of SI113 upon 114 protein factors whose post-translational modifications are associated with activation or repression of specific signal transduction cascades. Results SI113 strongly affected the PI3K/mTOR pathway, evoking a pro-survival autophagic response in neurospheres. These results suggested the use of SI113 coupled, for maximum efficiency, with autophagy inhibitors. Indeed, the association of SI113 with an autophagy inhibitor, the antimalarial drug quinacrine, induced a strong synergistic effect in inhibiting GBM growth properties in all the cells tested, including neurospheres. Conclusions RPPA clearly identified the molecular pathways influenced by SI113 in GBM cells, highlighting their vulnerability when the drug was administered in association with autophagy inhibitors, providing a strong molecular rationale for testing SI113 in clinical trials in associative GBM therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1212-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Matteoni
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Claudia Abbruzzese
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna M Mileo
- Tumor Immunology and Immunotherapy, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Miccadei
- Tumor Immunology and Immunotherapy, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Tobias L Haas
- Department of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carmine M Carapella
- Division of Neurosurgery, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00162, Rome, Italy.
| | - Marco G Paggi
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
27
|
Abbruzzese C, Matteoni S, Persico M, Ascione B, Schenone S, Musumeci F, Amato R, Perrotti N, Matarrese P, Paggi MG. The small molecule SI113 hinders epithelial-to-mesenchymal transition and subverts cytoskeletal organization in human cancer cells. J Cell Physiol 2019; 234:22529-22542. [PMID: 31099037 DOI: 10.1002/jcp.28816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Matteoni
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Persico
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Marco G Paggi
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
28
|
Pan H, Lv W, Li Z, Han W. SGK1 protein expression is a prognostic factor of lung adenocarcinoma that regulates cell proliferation and survival. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:391-408. [PMID: 31933845 PMCID: PMC6945076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 06/10/2023]
Abstract
The etiological or clinicopathological significance of serum glucocorticoid-induced protein kinase 1 (SGK1) in lung adenocarcinoma remains unclear. This study aimed to investigate the role of SGK1 in the development and progression of human lung adenocarcinoma and the effects of targeted inhibition of intrinsic SGK1 expression on the proliferation of lung adenocarcinoma cells. SGK1 protein expression in 150 human cases of lung adenocarcinoma was detected by immunohistochemical analysis, and the relationships between SGK1 expression and clinicopathological features were assessed. In addition, endogenous SGK1 profiles were determined in seven lung adenocarcinoma cell lines. Cell proliferation, cell cycle distribution, and apoptosis were characterized in the absence and presence of SGK1 inhibitors. Compared to the adjacent normal tissues, significantly higher SGK1 expression levels were detected in the cytoplasm in cancerous lung adenocarcinoma tissues. Besides, SGK1 expression correlated with lymph node metastasis, distant metastasis, and pathological staging. Univariate analysis suggested that overexpression of this protein correlated significantly with a poor prognosis. Cultured lung adenocarcinoma cells expressed relatively high SGK1 levels, and inhibition of this protein was associated with G2 cell cycle arrest and reduced cyclin B1 and cdc2 expression. Pharmacological SGK1 inhibition experiments corroborated the role of this protein in cell cycle progression. SGK1 expression correlated closely with lung adenocarcinoma progression and could be used as a prognostic marker. Endogenous SGK1 inhibition abrogated lung adenocarcinoma cell proliferation via G2/M-phase cell cycle arrest, which was likely mediated by the concerted actions of cell cycle regulators.
Collapse
Affiliation(s)
- Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Zhoubin Li
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Weili Han
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
29
|
Spagnuolo R, Dattilo V, D'Antona L, Cosco C, Tallerico R, Ventura V, Conforti F, Camastra C, Mancina RM, Catalogna G, Cosco V, Iuliano R, Carbone E, Perrotti N, Amato R, Doldo P. Deregulation of SGK1 in Ulcerative Colitis: A Paradoxical Relationship Between Immune Cells and Colonic Epithelial Cells. Inflamm Bowel Dis 2018; 24:1967-1977. [PMID: 29788407 DOI: 10.1093/ibd/izy158] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is due to the interaction of genetic and environmental factors that trigger an unbalanced immune response ultimately resulting in the peculiar inflammatory reaction. Experimental models of IBD point to a role of T-cell-derived cytokines (Th17) and to SGK1 as mediator of the Th17 switch. We hypothesize that SGK1, a salt inducible kinase, directs lymphocytic behavior and tissue damage. METHODS Eleven controls and 32 ulcerative colitis (UC) patients were randomized according to endoscopic Mayo score. Mucosal biopsies from different intestinal tracts were analyzed by immunohistochemistry and quantitative real-time polymerase chain reaction to check the expression of disease markers including SGK1. Peripheral blood mononuclear cells (PBMCs) from patients and controls were analyzed by fluorescence-activated cell sorting. Finally, an in vitro cell model was developed to test the hypothesis. RESULTS SGK1 mRNA and protein expression in lesional areas of UC patients were lower than in normal peri-lesional areas of the same patients and in normal tissues of healthy controls. SGK1 expression was increased in PBMCs from UC patients, particularly in the CD4+ cell population, enriched in Th17 cells. IL17/IL13 was increased in patients and correlated with SGK1 expression. Genetically engineered Jurkat cells confirmed the effect of SGK1 overexpression on viability of RKO cells. CONCLUSIONS These observations suggest a pathogenic mechanism whereby SGK1 overexpression in CD4+ T cells induces the secretion of the inflammatory cytokines IL17 and IL13, which downregulate the expression of SGK1 in target tissues. Our data suggest a novel hypothesis in the pathogenesis of UC, integrating colonic epithelial cells and lymphocytes.
Collapse
Affiliation(s)
- Rocco Spagnuolo
- Departments of "Scienze Mediche e Chirurgiche,", Catanzaro, Italy
| | | | - Lucia D'Antona
- Departments of "Scienze della Salute,", Catanzaro, Italy
| | - Cristina Cosco
- Departments of "Scienze Mediche e Chirurgiche,", Catanzaro, Italy
| | - Rossana Tallerico
- Departments of "Medicina Sperimentale e Clinica," University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Valeria Ventura
- Departments of "Medicina Sperimentale e Clinica," University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Vincenzo Cosco
- Departments of "Scienze Mediche e Chirurgiche,", Catanzaro, Italy
| | | | - Ennio Carbone
- Departments of "Medicina Sperimentale e Clinica," University "Magna Graecia" of Catanzaro, Catanzaro, Italy.,Department of Microbiology Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | - Rosario Amato
- Departments of "Scienze della Salute,", Catanzaro, Italy
| | - Patrizia Doldo
- Departments of "Scienze Mediche e Chirurgiche,", Catanzaro, Italy
| |
Collapse
|
30
|
Sestito S, Runfola M, Tonelli M, Chiellini G, Rapposelli S. New Multitarget Approaches in the War Against Glioblastoma: A Mini-Perspective. Front Pharmacol 2018; 9:874. [PMID: 30123135 PMCID: PMC6085564 DOI: 10.3389/fphar.2018.00874] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common tumor of the CNS, and the deadliest form of brain cancer. The rapid progression, the anatomic location in the brain and a deficient knowledge of the pathophysiology, often limit the effectiveness of therapeutic interventions. Current pillars of GBM therapies include surgical resection, radiotherapy and chemotherapy, but the low survival rate and the short life expectation following these treatments strongly underline the urgency to identify innovative and more effective therapeutic tools. Frequently, patients subjected to a mono-target therapy, such as Temozolomide (TMZ), develop drug resistance and undergo relapse, indicating that targeting a single cellular node is not sufficient for eradication of this disease. In this context, a multi-targeted therapeutic approach aimed at using compounds, alone or in combination, capable of inhibiting more than one specific molecular target, offers a promising alternative. Such strategies have already been well integrated into drug discovery campaigns, including in the field of anticancer drugs. In this miniperspective, we will discuss the recent progress in the treatment of GBM focusing on innovative and effective preclinical strategies, which are based on a multi-targeted approach.
Collapse
Affiliation(s)
| | | | - Marco Tonelli
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Abdellatif KR, Bakr RB. New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorg Chem 2018; 78:341-357. [DOI: 10.1016/j.bioorg.2018.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 01/20/2023]
|
32
|
Calandro P, Iovenitti G, Zamperini C, Candita F, Dreassi E, Chiariello M, Angelucci A, Schenone S, Botta M, Mancini A. Plasmin-Binding Tripeptide-Decorated Liposomes Loading Pyrazolo[3,4- d]pyrimidines for Targeting Hepatocellular Carcinoma. ACS Med Chem Lett 2018; 9:646-651. [PMID: 30034594 DOI: 10.1021/acsmedchemlett.8b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancer types worldwide. HCC cells were proved to overexpress c-Src and Sgk1, a tyrosine and a serine-threonine kinase, respectively, whose role is crucial for the development and progression of the tumor. Pyrazolo[3,4-d]pyrimidine derivatives are a class of tyrosine kinase inhibitors that have shown good activity against HepG2. HCC cells were also proved to overexpress plasmin, which is localized on the cell surface bound to its receptors. In this study, a tripeptide with sequence d-Ala-Phe-Lys, which binds a specific reactive site of plasmin, was synthesized and characterized. This tripeptide was used to decorate liposomes encapsulating three selected pyrazolo[3,4-d]pyrimidines. Liposomes bearing tripeptide have been characterized, not showing remarkable differences with respect to the corresponding tripeptide-free liposomes. In vitro HepG2 cell uptake profiles and cytotoxicities showed that the presence of the tripeptide on the liposomal membrane surface improves the cell-penetrating ability of liposomes and increases the activity of two of the three tested compounds.
Collapse
Affiliation(s)
- Pierpaolo Calandro
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Giulia Iovenitti
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo Berardenga, Siena, Italy
| | - Francesca Candita
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, 67100, Coppito, L’Aquila, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo Berardenga, Siena, Italy
- Biotechnology College of Science and Technology, Temple University, Biolife Science Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Arianna Mancini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
33
|
Liu W, Wang X, Wang Y, Dai Y, Xie Y, Ping Y, Yin B, Yu P, Liu Z, Duan X, Liao Z, Chen Y, Liu C, Li X, Tao Z. SGK1 inhibition-induced autophagy impairs prostate cancer metastasis by reversing EMT. J Exp Clin Cancer Res 2018; 37:73. [PMID: 29609629 PMCID: PMC5879613 DOI: 10.1186/s13046-018-0743-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite SGK1 has been identified and characterized as a tumor-promoting gene, the functions and underlying mechanisms of SGK1 involved in metastasis regulation have not yet been investigated in cancer. METHODS We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by wound healing assay, migration and invasion assay, western blotting, immunofluorescence and immunohistochemistry. RESULTS In the present study, we found that SGK1 expression positively correlates with human prostate cancer (PCa) progression and metastasis. We show that SGK1 inhibition significantly attenuates EMT and metastasis both in vitro and in vivo, whereas overexpression of SGK1 dramaticlly promoted the invasion and migration of PCa cells. Our further results suggest that SGK1 inhibition induced antimetastatic effects, at least partially via autophagy-mediated repression of EMT through the downregulation of Snail. Moreover, ectopic expression of SGK1 obviously attenuated the GSK650394-induced autophagy and antimetastatic effects. What's more, dual inhibition of mTOR and SGK1 enhances autophagy and leads to synergistic antimetastatic effects on PCa cells. CONCLUSIONS Taken together, this study unveils a novel mechanism in which SGK1 functions as a tumor metastasis-promoting gene and highlights how co-targeting SGK1 and autophagy restrains cancer progression due to the amplified antimetastatic effects.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyun Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Ping
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Binbin Yin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells. Oncotarget 2018; 8:24292-24302. [PMID: 28061476 PMCID: PMC5421847 DOI: 10.18632/oncotarget.14464] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
The survival rates in colon cancer patients are inversely proportional to the number of lymph node metastases. The hypoxia-induced Epithelial to Mesenchymal Transition (EMT), driven by HIF1α, is known to be involved in cancer progression and metastasis. Recently, we have reported that miR-675-5p promotes glioma growth by stabilizing HIF1α; here, by use of the syngeneic cell lines we investigated the role of the miR-675-5p in colon cancer metastasis.Our results show that miR-675-5p, over expressed in metastatic colon cancer cells, participates to tumour progression by regulating HIF1α induced EMT. MiR-675-5p increases Snail transcription by a dual strategy: i) stabilizing the activity of the transcription factor HIF1α and ii) and inhibiting Snail's repressor DDB2 (Damage specific DNA Binding protein 2).Moreover, transcriptional analyses on specimens from colon cancer patients confirmed, in vivo, the correlation between miR-675-5p over-expression and metastasis, thus identifying miR-675-5p as a new marker for colon cancer progression and therefore a putative target for therapeutic strategies.
Collapse
|
35
|
Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 Inhibitors in Cancer. Cancers (Basel) 2017; 10:cancers10010001. [PMID: 29267206 PMCID: PMC5789351 DOI: 10.3390/cancers10010001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAP kinases) are a family of kinases that regulates a range of biological processes implicated in the response to growth factors like latelet-derived growth factor (PDGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and stress, such as ultraviolet irradiation, heat shock, and osmotic shock. The MAP kinase family consists of four major subfamilies of related proteins (extracellular regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and extracellular regulated kinase 5 (ERK5)) and regulates numerous cellular activities, such as apoptosis, gene expression, mitosis, differentiation, and immune responses. The deregulation of these kinases is shown to be involved in human diseases, such as cancer, immune diseases, inflammation, and neurodegenerative disorders. The awareness of the therapeutic potential of the inhibition of MAP kinases led to a thorough search for small-molecule inhibitors. Here, we discuss some of the most well-known MAP kinase inhibitors and their use in cancer research.
Collapse
Affiliation(s)
- Jonas Cicenas
- Department for Microbiology, Immunbiology und Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna AT-1030, Austria.
- Proteomics Centre, Institute of Biochemistry, Vilnius University, 01513 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland.
| | - Egle Zalyte
- Proteomics Centre, Institute of Biochemistry, Vilnius University, 01513 Vilnius, Lithuania.
| | - Arnas Rimkus
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania.
| | - Dalius Dapkus
- Department of Biology and Chemistry, Lithuanian University of Educational Sciences, 08106 Vilnius, Lithuania.
| | - Remigijus Noreika
- Department of Biology and Chemistry, Lithuanian University of Educational Sciences, 08106 Vilnius, Lithuania.
| | - Sigitas Urbonavicius
- Cardiovascular Research Centre, Viborg Hospital, Heibergs Alle 4, 8800 Viborg, Denmark.
| |
Collapse
|
36
|
Alevizopoulos K, Dimas K, Papadopoulou N, Schmidt EM, Tsapara A, Alkahtani S, Honisch S, Prousis KC, Alarifi S, Calogeropoulou T, Lang F, Stournaras C. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor. Oncotarget 2017; 7:24415-28. [PMID: 27027435 PMCID: PMC5029711 DOI: 10.18632/oncotarget.8329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/06/2016] [Indexed: 12/31/2022] Open
Abstract
Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development.
Collapse
Affiliation(s)
| | - Konstantinos Dimas
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Natalia Papadopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Eva-Maria Schmidt
- Department of Physiology, University of Tübingen, Tübingen, Germany.,Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Kyriakos C Prousis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Saud Alarifi
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Theodora Calogeropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece.,Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Talarico C, Dattilo V, D'Antona L, Barone A, Amodio N, Belviso S, Musumeci F, Abbruzzese C, Bianco C, Trapasso F, Schenone S, Alcaro S, Ortuso F, Florio T, Paggi MG, Perrotti N, Amato R. SI113, a SGK1 inhibitor, potentiates the effects of radiotherapy, modulates the response to oxidative stress and induces cytotoxic autophagy in human glioblastoma multiforme cells. Oncotarget 2017; 7:15868-84. [PMID: 26908461 PMCID: PMC4941283 DOI: 10.18632/oncotarget.7520] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive CNS tumor and is characterized by a very high frequency of clinical relapse after therapy and thus by a dismal prognosis, which strongly compromises patients survival. We have recently identified the small molecule SI113, as a potent and selective inhibitor of SGK1, a serine/threonine protein kinase, that modulates several oncogenic signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation and perturbs cell cycle progression by modulating SGK1-related substrates. SI113 is also able to strongly and consistently block, in vitro and in vivo, growth and survival of human hepatocellular-carcinomas, either used as a single agent or in combination with ionizing radiations. In the present paper we aim to study the effect of SI113 on human GBM cell lines with variable p53 expression. Cell viability, cell death, caspase activation and cell cycle progression were then analyzed by FACS and WB-based assays, after exposure to SI113, with or without oxidative stress and ionizing radiations. Moreover, autophagy and related reticulum stress response were evaluated. We show here, that i) SGK1 is over-expressed in highly malignant gliomas and that the treatment with SI113 leads to ii) significant increase in caspase-mediated apoptotic cell death in GBM cell lines but not in normal fibroblasts; iii)enhancement of the effects of ionizing radiations; iv) modulation of the response to oxidative reticulum stress; v) induction of cytotoxic autophagy. Evidence reported here underlines the therapeutic potential of SI113 in GBM, suggesting a new therapeutic strategy either alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Cristina Talarico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Agnese Barone
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Stefania Belviso
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Claudia Abbruzzese
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Cataldo Bianco
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Stefano Alcaro
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Ortuso
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Tullio Florio
- Department of Medicina Interna e Specialità Mediche e Center of Excellence per la Ricerca Biomedica (CEBR), University of Genova, Genova, Italy
| | - Marco G Paggi
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
38
|
The small molecule SI113 synergizes with mitotic spindle poisons in arresting the growth of human glioblastoma multiforme. Oncotarget 2017; 8:110743-110755. [PMID: 29340013 PMCID: PMC5762281 DOI: 10.18632/oncotarget.22500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest brain tumor. State-of-art GBM therapy often fails to ensure control of a disease characterized by high frequency of recurrences and progression. In search for novel therapeutic approaches, we assayed the effect of compounds from a cancer drug library on the ADF GBM cell line, establishing their elevated sensitivity to mitotic spindle poisons. Our previous work showed that the effectiveness of the spindle poison paclitaxel in inhibiting cancer cell growth was dependent on the expression of RANBP1, a regulatory target of the serine/threonine kinase SGK1. Recently, we developed the small molecule SI113 to inhibit SGK1 activity. Therefore, we explored the outcome of the association between SI113 and selected spindle poisons, finding that these drugs generated a synergistic cytotoxic effect in GBM cells, drastically reducing their viability and clonogenic capabilities in vitro, as well as inhibiting tumor growth in vivo. We also defined the molecular bases of such a synergistic effect. Because SI113 displays low systemic toxicity, yet strong activity in potentiating the effect of radiotherapy in GBM cells, we believe that this drug could be a strong candidate for clinical trials, with the aim to add it to the current GBM therapeutic approaches.
Collapse
|
39
|
Li J, Wang X, Xie Y, Ying Z, Liu W, Ping L, Zhang C, Pan Z, Ding N, Song Y, Zhu J. The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton's tyrosine kinase (BTK) inhibitor PLS-123 on Mantle cell lymphoma. Int J Cancer 2017; 142:202-213. [PMID: 28905990 DOI: 10.1002/ijc.31044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jiao Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Xiaogan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Yan Xie
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Zhitao Ying
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Weiping Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Lingyan Ping
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Chen Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Zhengying Pan
- Key Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili; Shenzhen China
| | - Ning Ding
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Yuqin Song
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| | - Jun Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma; Peking University Cancer Hospital & Institute; Beijing China
| |
Collapse
|
40
|
Liu W, Wang X, Liu Z, Wang Y, Yin B, Yu P, Duan X, Liao Z, Chen Y, Liu C, Li X, Dai Y, Tao Z. SGK1 inhibition induces autophagy-dependent apoptosis via the mTOR-Foxo3a pathway. Br J Cancer 2017; 117:1139-1153. [PMID: 29017179 PMCID: PMC5674106 DOI: 10.1038/bjc.2017.293] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although inhibition of SGK1 has been shown to delay cancer progression, the underlying mechanisms have not yet been elucidated. METHODS We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by flow cytometry, western blotting, immunofluorescence, transmission electron microscopy and immunohistochemistry. RESULTS In the present study, we demonstrated that SGK1 inhibition, mediated by either GSK650394 or SGK1 shRNA, induced G2/M arrest, apoptosis and autophagy. Furthermore, 3MA-mediated autophagy inhibition attenuated SGK1 inhibition-induced apoptosis, suggesting that induction of autophagy precedes apoptosis. Moreover, ectopic expression of SGK1 significantly attenuated the GSK650394-induced effects. Suppression of mTOR and Foxo3a phosphorylation is critical for blockade of SGK1-induced autophagy and apoptosis, at least partially via pFoxo3a (S253)-LC3 and pFoxo3a (S253)-p27 interactions. Dual inhibition of mTOR and SGK1 enhances autophagy activation and leads to synergistic cytocidal effects in PCa cells. CONCLUSIONS In summary, our findings show that SGK1 inhibition exhibits significant antitumour effects against PCa in vitro and in vivo. This study uncovered a novel mechanism of SGK1 inhibition in PCa, which is mediated, at least in part, by inducing autophagy-dependent apoptosis via the mTOR-Foxo3a pathway.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhenping Liu
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yiyun Wang
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Binbin Yin
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
41
|
Marzook H, Deivendran S, George B, Reshmi G, Santhoshkumar TR, Kumar R, Pillai MR. Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells. Oncogene 2017; 36:5263-5273. [PMID: 28504714 DOI: 10.1038/onc.2017.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Chromatin remodeling factor metastatic tumor protein 1 (MTA1), one of the most upregulated oncogene in human cancer, has an important role in gene expression, cell survival and promoting hypoxic response. Successful cancer progression is dependent on the ability of cells to utilize its survival pathways for adapting to hypoxic microenvironment. Although MTA1 is a stress-responsive gene, but whether hypoxia modulates its function and its role in engaging other core stress-responsive survival pathway(s) remains unknown. Here we have discovered that MTA1 is a novel corepressor of serum and glucocorticoid-inducible kinase 1 (SGK1). Surprisingly, this regulatory corepressive function of MTA1 is lost under hypoxia, allowing upregulation of SGK1 expression and engaging the MTA1-SGK1 axis for the benefit of the cell survival. The underlying mechanism of the noticed stimulation of SGK1 expression by hypoxia includes de-repression of SGK1 transcription because of hypoxia-triggered nucleus-to-cytoplasmic translocation of MTA1. In addition, the newly recognized cytoplasmic translocation of MTA1 was dependent on the chaperoning function of heat shock protein 90 (HSP90) and co-accompanied by the formation of MTA1, HSP90 and HIF1α complex under hypoxic condition but not under normoxic condition. Hypoxia-triggered redistribution of MTA1, SGK1 upregulation and cell survival functions were compromised by a pharmacological SGK1 inhibitor. In summary, for the first time, we report MTA1 regulation of SGK1 expression, hypoxia-dependent MTA1 translocation to the cytoplasm and de-repression of SGK1 transcription. These findings illustrate how cancer cells utilize a chromatin remodeling factor to engage a core survival pathway to support its cancerous phenotypes, and reveal new facets of MTA1-SGK1 axis by a physiologic signal in cancer progression.
Collapse
Affiliation(s)
- H Marzook
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - S Deivendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - B George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - G Reshmi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - M R Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
42
|
Ni Q, Chen J, Li X, Xu X, Zhang N, Zhou A, Zhou B, Lu Q, Chen Z. Expression of OTUB1 in hepatocellular carcinoma and its effects on HCC cell migration and invasion. Acta Biochim Biophys Sin (Shanghai) 2017; 49:680-688. [PMID: 28575188 DOI: 10.1093/abbs/gmx056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 12/17/2022] Open
Abstract
OTUB1 (OTU domain-containing ubiquitin aldehyde binding protein 1) is a deubiquitinating enzyme (DUB) that belongs to the ovarian tumor (OTU) domain protease superfamily. Although it has been demonstrated to play important roles in the development of many kinds of cancer, the mechanism of OTUB1 in hepatocellular carcinoma (HCC) is not clear. The aim of this study was to explore the roles of OTUB1 in HCC progression using cell lines and 115 archived HCC samples. In addition, the clinical outcomes were also analyzed with a special focus on OTUB1 expression in HCC samples. In the immunohistochemical study, OTUB1 showed high expression in 60 of the 115 cases (52.2%). The OTUB1 expression level was significantly correlated with many clinicopathological parameters, including TNM stage (P = 0.002), histology stage (P = 0.002), and metastasis/recurrence (P = 0.016). Survival analysis showed that the group with OTUB1 overexpression had significantly shorter overall survival time than the group with OTUB1 downregulation (hazard ratio [HR] = 0.482; confidence interval [CI]: 0.311-0.748; P = 0.001). Multivariate analysis indicated that OTUB1 expression was a significant and independent prognostic parameter (HR = 0.214; CI: 0.126-0.364; P < 0.001) for HCC patients. The ability of HCC cells to undergo proliferation, migration, and invasion was suppressed by disruption of endogenous OTUB1 using short hairpin RNA (shRNA). OTUB1 expression appears to be a new and independent predictor for the prognosis of HCC patients. Overexpression of OTUB1 in HCC could be a novel, effective, and supplementary biomarker for HCC because it plays a vital role in the progression of HCC.
Collapse
Affiliation(s)
- Qinggan Ni
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| | - Jiahui Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xia Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaodong Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| | - Nannan Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| | - Ang Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| | - Qian Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University, Nantong 226001, China
| |
Collapse
|
43
|
Abstract
Successful cancer metastasis relies on the ability of cancer cells to survive independently of attachment to the extracellular matrix (ECM) and to overcome ECM-detachment-induced death programs. This can be accomplished through activating mutations in cellular oncogenes that subsequently lead to the inhibition of anoikis and to alterations in productive metabolism. One example of such an oncogene is Ras which is found to be mutated and hyperactivated in a variety of distinct cancers. Despite numerous studies on Ras, the precise molecular mechanisms that facilitate survival during ECM-detachment remain poorly understood. Recently, we discovered that ECM-detached cells harboring oncogenic Ras mutations require signaling through the PI(3)K/SGK1 signaling axis to promote survival. Furthermore, we found that oncogenic Ras can concurrently diminish PHLPP1 phosphatase levels, which results in a decrease in p38 MAPK-mediated activation of anoikis. Thus, our data suggest that cancer cells with activating Ras mutations can survive during ECM-detachment using downstream effector molecules that modulate distinct pathways. Overall, these data suggest that new therapeutic interventions that aim to mitigate SGK1 signaling and activate the p38 MAPK activity may aid in specifically targeting and eliminating metastatic cancer cells.
Collapse
Affiliation(s)
- Joshua A Mason
- a Department of Biological Sciences , University of Notre Dame , Notre Dame , IN , USA
| | - Zachary T Schafer
- a Department of Biological Sciences , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
44
|
Conza D, Mirra P, Calì G, Tortora T, Insabato L, Fiory F, Schenone S, Amato R, Beguinot F, Perrotti N, Ulianich L. The SGK1 inhibitor SI113 induces autophagy, apoptosis, and endoplasmic reticulum stress in endometrial cancer cells. J Cell Physiol 2017; 232:3735-3743. [PMID: 28177128 DOI: 10.1002/jcp.25850] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Endometrial cancer is often characterized by PI3K/AKT pathway deregulation. Recently it has been suggested that SGK1, a serine/threonine protein kinase that shares structural and functional similarities with the AKT family, might play a role in cancer, since its expression and/or activity has been found to be deregulated in different human tumors. However, the role of SGK1 in endometrial cancer has been poorly investigated. Here, we show that SGK1 expression is increased in tissue specimens from neoplastic endometrium. The SGK1 inhibitor SI113 induced a significant reduction of endometrial cancer cells viability, measured by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. This effect was associated to the increase of autophagy, as revealed by the increase of the markers LC3B-II and beclin I, detected by both immunofluorescence and western blot analysis. SI113 treatment caused also apoptosis of endometrial cancer cells, evidenced by the cleavage of the apoptotic markers PARP and Caspase-9. Intriguingly, these effects were associated to the induction of endoplasmic reticulum stress markers GRP78 and CHOP evaluated by both Real-Time RT-PCR and Western Blot analysis. Increased expression of SGK1 in endometrial cancer tissues suggest a role for SGK1 in this type of cancer, as reported for other malignancies. Moreover, the efficacy of SI113 in affecting endometrial cancer cells viability, possibly via endoplasmic reticulum stress activation, identifies SGK1 as an attractive molecular target for new tailored therapeutic intervention for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Domenico Conza
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Paola Mirra
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Gaetano Calì
- Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Teresa Tortora
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Francesca Fiory
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Luca Ulianich
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
45
|
Dattilo V, D’Antona L, Talarico C, Capula M, Catalogna G, Iuliano R, Schenone S, Roperto S, Bianco C, Perrotti N, Amato R. SGK1 affects RAN/RANBP1/RANGAP1 via SP1 to play a critical role in pre-miRNA nuclear export: a new route of epigenomic regulation. Sci Rep 2017; 7:45361. [PMID: 28358001 PMCID: PMC5371792 DOI: 10.1038/srep45361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
The serum- and glucocorticoid-regulated kinase (SGK1) controls cell transformation and tumor progression. SGK1 affects mitotic stability by regulating the expression of RANBP1/RAN. Here, we demonstrate that SGK1 fluctuations indirectly modify the maturation of pre-miRNAs, by modulating the equilibrium of the RAN/RANBP1/RANGAP1 axis, the main regulator of nucleo-cytoplasmic transport. The levels of pre-miRNAs and mature miRNAs were assessed by qRT-PCR, in total extracts and after differential nuclear/cytoplasmic extraction. RANBP1 expression is the limiting step in the regulation of SGK1-SP1 dependent nuclear export. These results were validated in unrelated tumor models and primary human fibroblasts and corroborated in tumor-engrafted nude mice. The levels of pri-miRNAs, DROSHA, DICER and the compartmental distribution of XPO5 were documented. Experiments using RANGTP conformational antibodies confirmed that SGK1, through RANBP1, decreases the level of the GTP-bound state of RAN. This novel mechanism may play a role in the epigenomic regulation of cell physiology and fate.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Lucia D’Antona
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Cristina Talarico
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Mjriam Capula
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Giada Catalogna
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Rodolfo Iuliano
- University “Magna Graecia” of Catanzaro, Dept. of “Medicina Sperimentale e Clinica”, Viale Europa Catanzaro, Italy
| | - Silvia Schenone
- University of Genova, Dept of Farmacia, Viale Benedetto XV 3, Genova, Italy
| | - Sante Roperto
- University “Federico II” of Naple, Dept of Medicina Veterinaria e Produzioni Animali, Via Federico Delpino 1, Napoli, Italy.
| | - Cataldo Bianco
- University “Magna Graecia” of Catanzaro, Dept. of “Medicina Sperimentale e Clinica”, Viale Europa Catanzaro, Italy
| | - Nicola Perrotti
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Rosario Amato
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| |
Collapse
|
46
|
Gao S, Wang D, Kong G, Li S, Wang W, Wang H, Zhou F. Expression of serum- and glucocorticoid-regulated kinase 1 and its association with clinicopathological factors and the survival of patients with adenocarcinoma of the esophagogastric junction. Oncol Lett 2017; 13:3572-3578. [PMID: 28529581 PMCID: PMC5431499 DOI: 10.3892/ol.2017.5927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
While the aberrant expression and the controversial results of serum- and glucocorticoid-regulated kinase (SGK1) have been reported in a number of malignancies, the expression of SGK1 and its possible association with the progression of adenocarcinoma in the esophagogastric junction (AEG) remain to be elucidated. To the best of our knowledge, the expression and localization of SGK1 was examined for the first time in the present study in cancerous and adjacent tissue from 60 patients with AEG, and compared with 20 healthy mucosa control tissue samples. Furthermore, the association between SGK1 expression and the clinicopathological characteristics, and prognosis of patients with AEG was statistically analyzed. The expression level of SGK1 was identified to be significantly higher (P<0.0001) in the cancerous AEG tissue samples (65%) compared with that of the adjacent tissue (31.7%) and healthy control (10%) samples. Enhanced SGK1 was primarily localized in the cytoplasm and the expression level of SGK1 was associated with the differentiation (P=0.045) and lymph node metastasis (P=0.006) of AEG. Notably, increased expression of SGK1 was demonstrated to be significantly correlated with poor overall survival (P=0.027). The results of the present study revealed the expression profile of SGK1 in AEG and demonstrated that SGK1 expression in cancerous tissue is an indicator for the progression of AEG. Thus, SGK1 may be a potential molecular marker for the diagnosis, interference therapy and prognosis of AEG.
Collapse
Affiliation(s)
- Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine and Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Dan Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine and Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guoqiang Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine and Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shuoguo Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine and Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wei Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine and Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| |
Collapse
|
47
|
Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 2017; 45:62-71. [PMID: 28343126 DOI: 10.1016/j.ceb.2017.02.007] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered pathways in human cancer and has a critical role in driving tumor initiation and progression. Although PI3K and its lipid product phosphatidylinositol-3,4,5-trisphosphate (PIP3) have been shown to activate multiple downstream signaling proteins, the vast majority of studies have focused on the protein kinase AKT as the dominant effector of PI3K signaling. However, recent studies have demonstrated many contexts under which other PIP3-dependent signaling proteins critically contribute to cancer progression, illustrating the importance of understanding AKT-independent signaling downstream of PI3K. Here, we highlight three PI3K-dependent, but AKT-independent, signaling branches that have recently been shown to have important roles in promoting phenotypes associated with malignancy. First, the PDK1-mTORC2-SGK axis can substitute for AKT in survival, migration, and growth signaling and has emerged as a major mechanism of resistance to PI3K and AKT inhibitors. Second, Rac signaling mediates the reorganization of the actin cytoskeleton to regulate cancer cell migration, invasion, and metabolism. Finally, the TEC family kinase BTK has a critical role in B cell function and malignancy and represents a recent example of an effective therapeutic target in cancer. These mechanisms highlight how understanding PI3K-dependent, but AKT-independent, signaling mechanisms that drive cancer progression will be crucial for the development of novel and more effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Evan C Lien
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian C Dibble
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Lou Y, Hu M, Wang Q, Yuan M, Wang N, Le F, Li L, Huang S, Wang L, Xu X, Jin F. Estradiol Suppresses TLR4-triggered Apoptosis of Decidual Stromal Cells and Drives an Anti-inflammatory T H2 Shift by Activating SGK1. Int J Biol Sci 2017; 13:434-448. [PMID: 28529452 PMCID: PMC5436564 DOI: 10.7150/ijbs.18278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022] Open
Abstract
A pro-inflammatory cytokine profile at the feto-maternal interface may predispose immune maladaptation notably in early miscarriages. We investigated the involvement of estradiol (E2)-activated serum-glucocorticoid regulated kinase 1 (SGK1) in preserving the tolerogenic and pro-survival intrauterine microenvironment beneficial to gestation maintenance. Decidual SGK1 was down-regulated in early miscarriage, consistent with the lower serum E2 concentration seen in pregnancy loss. Lipopolysaccharide (LPS)/Toll-like receptors 4 (TLR4) signaling induced apoptosis and the pro-inflammatory T helper type (TH) 1 response of decidual stromal cells (DSCs) were associated with miscarriage. SGK1 activation was suppressed by LPS/TLR4 signaling and would be rescued by E2 administration via the PI3K signaling pathway in DSCs. SGK1 activation attenuated TLR4-mediated cell apoptosis, while promoting cell viability of DSCs by up-regulating the pro-survival genes BCL2 and XIAP, and enhancing the phosphorylation of FOXO1. Furthermore, E2-induced SGK1 activation reduced the secretion of pro-inflammatory TH1 cytokines, and promoted the generation of TH2 cytokines and elevated IRF4 mRNA and protein levels in LPS-incubated DSCs. Pharmacologic inhibition of SGK1 or suppression by small interfering (si) RNA increased the phosphorylation and nuclear translocation of NF-κB to reverse the pro-TH2 and anti-inflammatory effects of E2 pretreatment, leading to compromised pregnancy. These findings suggest that the E2-mediated SGK1 activation suppressed LPS-mediated apoptosis and promoted the anti-inflammatory TH2 responses in DSCs, ultimately contributing to a successful pregnancy.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mu Yuan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shisi Huang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
49
|
Yuen HF, Chan KK, Platt-Higgins A, Dakir EH, Matchett KB, Haggag YA, Jithesh PV, Habib T, Faheem A, Dean FA, Morgan R, Rudland PS, El-Tanani M. Ran GTPase promotes cancer progression via Met recepto-rmediated downstream signaling. Oncotarget 2016; 7:75854-75864. [PMID: 27716616 PMCID: PMC5342783 DOI: 10.18632/oncotarget.12420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 01/12/2023] Open
Abstract
It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival.Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator.
Collapse
Affiliation(s)
- Hiu-Fung Yuen
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Ka-Kui Chan
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Angela Platt-Higgins
- Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | - El-Habib Dakir
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| | - Kyle B. Matchett
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Yusuf Ahmed Haggag
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Puthen V. Jithesh
- Biomedical Informatics Research, Sidra Medical and Research Center, Doha, Qatar
| | - Tanwir Habib
- Biomedical Informatics Research, Sidra Medical and Research Center, Doha, Qatar
| | - Ahmed Faheem
- University of Sunderland, Department of Pharmacy, Health and Well-Being, Sunderland Pharmacy School, Sunderland, UK
| | - Fennell A. Dean
- Translational Clinical Research, University of Leicester, Leicester, UK
| | - Richard Morgan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| | - Philip S. Rudland
- Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| |
Collapse
|
50
|
Matschke J, Wiebeck E, Hurst S, Rudner J, Jendrossek V. Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol 2016; 11:75. [PMID: 27251632 PMCID: PMC4888512 DOI: 10.1186/s13014-016-0647-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background Unsaturated fatty acids (FA) are required for cancer cell growth. In normoxia cells can generate unsaturated FA from saturated stearic and palmitic acid by desaturation. However, since the desaturation step is oxygen-dependent hypoxic cancer cells display an increased dependence on the uptake of unsaturated FA. Up to now the mechanism of increased FA uptake in hypoxia is largely unknown. Here we aimed to study the role of human serum and glucocorticoid-inducible kinase (SGK1) in the regulation of FA uptake in cancer cells exposed to acute or chronic cycling hypoxia and explore its use as target for the radiosensitization of hypoxic cancer cells. Methods The effect of SGK1-inhibition (GSK650394) on NCI-H460 lung adenocarcinoma cells exposed to normoxia, acute or chronic cycling hypoxia was analyzed under standard and serum-deprived conditions by short-term proliferation, apoptosis and cell death assays. The impact of SGK1-inhibition on radiation sensitivity was determined by standard colony formation assays. The effect of GSK650394 on FA uptake was quantified by measuring intracellular accumulation of fluorescent FA (C1-BODIPY®-C12). Results Exposure to acute or chronic cycling hypoxia was associated with up-regulated expression of SGK1 in NCI-H460 cells, increased uptake of FA from the culture medium, and increased sensitivity to serum deprivation. Survival of serum-deprived hypoxic NCI-H460 cells was rescued by the addition of the unsaturated FA, oleic acid, whereas the saturated FA, palmitic acid was highly toxic to the hypoxic cancer cells. Interestingly, SGK1 inhibition abrogated the rescue effect of oleic acid in serum-deprived hypoxic cancer cells and this effect was associated with a reduction in FA uptake particularly in anoxia-tolerant cancer cells exposed to severe hypoxia. Finally, SKG1 inhibition decreased long-term survival and potently sensitized the parental and anoxia-tolerant NCI-H460 cells to the cytotoxic effects of ionizing radiation in normoxia as well as the anoxia-tolerant cancer cells in severe hypoxia. Conclusions Our data suggest that SGK1 plays a role in the regulation of FA uptake that becomes essential under conditions of acute or chronic cycling hypoxia. We assume that SGK1 may represent a promising therapeutic target for the eradication of hypoxic cancer cells.
Collapse
Affiliation(s)
- Johann Matschke
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Elisa Wiebeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany.
| |
Collapse
|