1
|
Liu X, Dong S, Ding Y, Li J, Wang J. Hepatitis B virus impacts embryonic development and methylation of maternal genes in assisted reproductive technology patients. J Assist Reprod Genet 2025; 42:809-815. [PMID: 39730946 PMCID: PMC11950455 DOI: 10.1007/s10815-024-03359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE In China, the prevalence of hepatitis B virus (HBV) infection among infertile couples is a significant clinical problem. It is necessary to determine the effect of HBV infection on embryo development. METHODS The 4301 fresh cycles and 5763 frozen embryo transfer (FET) cycles were grouped according to the couple with or without HBV infection. The embryo fertilization rate, cleavage rate, transplantable embryo rate, and rate of high-quality embryos were analysed. The methylation status of maternal antigen that embryos require (MATER), zygote arrest 1 (ZAR1) and growth differentiation factor 9 (GDF9) genes in the peripheral blood of assisted reproductive technology (ART) women was detected by methylation-specific polymerase chain reaction (MSP). RESULTS The pregnancy rate of the female HBV-positive group was significantly lower than that of the HBV-negative group. The fertilization rate of intracytoplasmic sperm injection (ICSI) cycles in the male HBV-positive group was significantly lower than that of the male HBV-negative group. There were no differences in biochemistry or clinical pregnancy rates among the FET groups. The promoter methylation of GDF9 in HBV-positive ART women was higher than that in HBV-negative ART women, and that of ZAR1 in HBV-positive ART women was lower than that in HBV-negative ART women. CONCLUSION It was a detrimental effect of HBV infection on in vitro fertilization (IVF) and ICSI treatment outcomes in women. The HBV infection was associated with the maternal genes promoting methylation.
Collapse
Affiliation(s)
- Xia Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China.
| | - Shixiang Dong
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266061, China
| | - Yu Ding
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China
| | - Jinjin Li
- Department of Hepatology, Qingdao Sixth People's Hospital, 9 Fushun Road, Qingdao, 266000, China
| | - Jingyuan Wang
- Department of Reproduction, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, 266071, China
| |
Collapse
|
2
|
Su Z, Su Y, Shen X, Zhang J, Zeng T, Li J, Chen S, Shao K, Zhang S, Luo D, Hu L, Guo X, Li H. Analysis of differentially methylated sites and regions associated with intrauterine transmission of hepatitis B virus in infants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105705. [PMID: 39674522 DOI: 10.1016/j.meegid.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection. METHODS This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained. RESULTS We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding. CONCLUSIONS Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.
Collapse
Affiliation(s)
- Zhengqin Su
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Yongjian Su
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, China
| | - Xiaozhen Shen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Jiawei Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Ting Zeng
- Liuzhou Maternal and Child Health Care Hospital, Guangxi, China
| | - Jialing Li
- Zhongshan Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Shiyi Chen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Kai Shao
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Shiyue Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Dan Luo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Liping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, China; Key Laboratory for Prevention and Treatment of Viral Hepatitis, Guangxi, China.
| | - Xiaojing Guo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China.
| | - Hai Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China.
| |
Collapse
|
3
|
Hwangbo S, Kim G, Choi Y, Park YK, Bae S, Ryu JY, Hur W. Analysis of host factor networks during hepatitis B virus infection in primary human hepatocytes. Virol J 2024; 21:170. [PMID: 39090742 PMCID: PMC11295519 DOI: 10.1186/s12985-024-02446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection affects around 250 million people worldwide, causing approximately 887,000 deaths annually, primarily owing to cirrhosis and hepatocellular carcinoma (HCC). The current approved treatments for chronic HBV infection, such as interferon and nucleos(t)ide analogs, have certain limitations as they cannot completely eradicate covalently closed circular DNA (cccDNA). Considering that HBV replication relies on host transcription factors, focusing on host factors in the HBV genome may provide insights into new therapeutic targets against HBV. Therefore, understanding the mechanisms underlying viral persistence and hepatocyte pathogenesis, along with the associated host factors, is crucial. In this study, we investigated novel therapeutic targets for HBV infection by identifying gene and pathway networks involved in HBV replication in primary human hepatocytes (PHHs). Importantly, our study utilized cultured primary hepatocytes, allowing transcriptomic profiling in a biologically relevant context and enabling the investigation of early HBV-mediated effects. METHODS PHHs were infected with HBV virion particles derived from HepAD38 cells at 80 HBV genome equivalents per cell (Geq/cell). For transcriptomic sequencing, PHHs were harvested 1, 2-, 3-, 5-, and 7 days post-infection (dpi). After preparing the libraries, clustering and sequencing were conducted to generate RNA-sequencing data. This data was processed using Bioinformatics tools and software to analyze DEGs and obtain statistically significant results. Furthermore, qRT-PCR was performed to validate the RNA-sequencing results, ensuring consistent findings. RESULTS We observed significant alterations in the expression patterns of 149 genes from days 1 to 7 following HBV infection (R2 > 0.7, q < 0.05). Functional analysis of these genes identified RNA-binding proteins involved in mRNA metabolism and the regulation of alternative splicing during HBV infection. Results from qRT-PCR experiments and the analysis of two validation datasets suggest that RBM14 and RPL28 may serve as potential biomarkers for HBV-associated HCC. CONCLUSIONS Transcriptome analysis of gene expression changes during HBV infection in PHHs provided valuable insights into chronic HBV infection. Additionally, understanding the functional involvement of host factor networks in the molecular mechanisms of HBV replication and transcription may facilitate the development of novel strategies for HBV treatment.
Collapse
Affiliation(s)
- Suhyun Hwangbo
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Gahee Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
- Department of Pharmacy, Chungbuk National University, Cheongju, 28644, Korea
| | - Yongwook Choi
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
| | - Yong Kwang Park
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Korea
| | - Wonhee Hur
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea.
| |
Collapse
|
4
|
Sengupta I, Mondal P, Sengupta A, Mondal A, Singh V, Adhikari S, Dhang S, Roy S, Das C. Epigenetic regulation of Fructose‐1,6‐bisphosphatase 1 by host transcription factor Speckled 110
kDa
during hepatitis B virus infection. FEBS J 2022; 289:6694-6713. [DOI: 10.1111/febs.16544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Isha Sengupta
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
| | - Payel Mondal
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Vipin Singh
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Sinjini Dhang
- Structural Biology & Bio‐Informatics Division CSIR‐Indian Institute of Chemical Biology Kolkata India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Siddhartha Roy
- Structural Biology & Bio‐Informatics Division CSIR‐Indian Institute of Chemical Biology Kolkata India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Chandrima Das
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| |
Collapse
|
5
|
Zai W, Hu K, Ye J, Ding J, Huang C, Li Y, Fang Z, Wu M, Wang C, Chen J, Yuan Z. Long-Term Hepatitis B Virus Infection Induces Cytopathic Effects in Primary Human Hepatocytes, and Can Be Partially Reversed by Antiviral Therapy. Microbiol Spectr 2022; 10:e0132821. [PMID: 35171034 PMCID: PMC8849052 DOI: 10.1128/spectrum.01328-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic infection of hepatitis B virus (HBV) remains a major health burden worldwide. While the immune response has been recognized to play crucial roles in HBV pathogenesis, the direct cytopathic effects of HBV infection and replication on host hepatocytes and the HBV-host interactions are only partially defined due to limited culture systems. Here, based on our recently developed 5 chemical-cultured primary human hepatocytes (5C-PHHs) model that supports long-term HBV infection, we performed multiplexed quantitative analysis of temporal changes of host proteome and transcriptome on PHHs infected by HBV for up to 4 weeks. We showed that metabolic-, complement-, cytoskeleton-, mitochondrial-, and oxidation-related pathways were modulated at transcriptional or posttranscriptional levels during long-term HBV infection, which led to cytopathic effects and could be partially rescued by early, rather than late, nucleot(s)ide analog (NA) administration and could be significantly relieved by blocking viral antigens with RNA interference (RNAi). Overexpression screening of the dysregulated proteins identified a series of host factors that may contribute to pro- or anti-HBV responses of the infected hepatocytes. In conclusion, our results suggest that long-term HBV infection in primary human hepatocytes leads to cytopathic effects through remodeling the proteome and transcriptome and early antiviral treatment may reduce the extent of such effects, indicating a role of virological factors in HBV pathogenesis and a potential benefit of early administration of antiviral treatment. IMPORTANCE Global temporal quantitative proteomic and transcriptomic analysis using long-term hepatitis B virus (HBV)-infected primary human hepatocytes uncovered extensive remodeling of the host proteome and transcriptome and revealed cytopathic effects of long-term viral replication. Metabolic-, complement-, cytoskeleton-, mitochondrial-, and oxidation-related pathways were modulated at transcriptional or posttranscriptional levels, which could be partially rescued by early, rather than late, NA therapy and could be relieved by blocking viral antigens with RNAi. Overexpression screening identified a series of pro- or anti-HBV host factors. These data have deepened the understanding of the mechanisms of viral pathogenesis and HBV-host interactions in hepatocytes, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Fang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
6
|
Zeisel MB, Guerrieri F, Levrero M. Host Epigenetic Alterations and Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10081715. [PMID: 33923385 PMCID: PMC8071488 DOI: 10.3390/jcm10081715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and a leading cause of cancer-related deaths worldwide. Although much progress has been made in HCC drug development in recent years, treatment options remain limited. The major cause of HCC is chronic hepatitis B virus (HBV) infection. Despite the existence of a vaccine, more than 250 million individuals are chronically infected by HBV. Current antiviral therapies can repress viral replication but to date there is no cure for chronic hepatitis B. Of note, inhibition of viral replication reduces but does not eliminate the risk of HCC development. HBV contributes to liver carcinogenesis by direct and indirect effects. This review summarizes the current knowledge of HBV-induced host epigenetic alterations and their association with HCC, with an emphasis on the interactions between HBV proteins and the host cell epigenetic machinery leading to modulation of gene expression.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Correspondence: (M.B.Z.); (M.L.)
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Correspondence: (M.B.Z.); (M.L.)
| |
Collapse
|
7
|
Virzì A, Gonzalez-Motos V, Tripon S, Baumert TF, Lupberger J. Profibrotic Signaling and HCC Risk during Chronic Viral Hepatitis: Biomarker Development. J Clin Med 2021; 10:jcm10050977. [PMID: 33801181 PMCID: PMC7957739 DOI: 10.3390/jcm10050977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Despite breakthroughs in antiviral therapies, chronic viral hepatitis B and C are still the major causes of liver fibrosis and hepatocellular carcinoma (HCC). Importantly, even in patients with controlled infection or viral cure, the cancer risk cannot be fully eliminated, highlighting a persisting oncogenic pressure imposed by epigenetic imprinting and advanced liver disease. Reliable and minimally invasive biomarkers for early fibrosis and for residual HCC risk in HCV-cured patients are urgently needed. Chronic infection with HBV and/or HCV dysregulates oncogenic and profibrogenic signaling within the host, also displayed in the secretion of soluble factors to the blood. The study of virus-dysregulated signaling pathways may, therefore, contribute to the identification of reliable minimally invasive biomarkers for the detection of patients at early-stage liver disease potentially complementing existing noninvasive methods in clinics. With a focus on virus-induced signaling events, this review provides an overview of candidate blood biomarkers for liver disease and HCC risk associated with chronic viral hepatitis and epigenetic viral footprints.
Collapse
Affiliation(s)
- Alessia Virzì
- Université de Strasbourg, 67000 Strasbourg, France; (A.V.); (V.G.-M.); (S.T.); (T.F.B.)
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), 67000 Strasbourg, France
| | - Victor Gonzalez-Motos
- Université de Strasbourg, 67000 Strasbourg, France; (A.V.); (V.G.-M.); (S.T.); (T.F.B.)
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), 67000 Strasbourg, France
| | - Simona Tripon
- Université de Strasbourg, 67000 Strasbourg, France; (A.V.); (V.G.-M.); (S.T.); (T.F.B.)
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), 67000 Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67091 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (A.V.); (V.G.-M.); (S.T.); (T.F.B.)
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), 67000 Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67091 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Joachim Lupberger
- Université de Strasbourg, 67000 Strasbourg, France; (A.V.); (V.G.-M.); (S.T.); (T.F.B.)
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
8
|
Niu C, Livingston CM, Li L, Beran RK, Daffis S, Ramakrishnan D, Burdette D, Peiser L, Salas E, Ramos H, Yu M, Cheng G, Strubin M, Delaney IV WE, Fletcher SP. The Smc5/6 Complex Restricts HBV when Localized to ND10 without Inducing an Innate Immune Response and Is Counteracted by the HBV X Protein Shortly after Infection. PLoS One 2017; 12:e0169648. [PMID: 28095508 PMCID: PMC5240991 DOI: 10.1371/journal.pone.0169648] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
The structural maintenance of chromosome 5/6 complex (Smc5/6) is a restriction factor that represses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing HBV X protein (HBx), which targets Smc5/6 for degradation. However, the mechanism by which Smc5/6 suppresses HBV transcription and how HBx is initially expressed is not known. In this study we characterized viral kinetics and the host response during HBV infection of primary human hepatocytes (PHH) to address these unresolved questions. We determined that Smc5/6 localizes with Nuclear Domain 10 (ND10) in PHH. Co-localization has functional implications since depletion of ND10 structural components alters the nuclear distribution of Smc6 and induces HBV gene expression in the absence of HBx. We also found that HBV infection and replication does not induce a prominent global host transcriptional response in PHH, either shortly after infection when Smc5/6 is present, or at later times post-infection when Smc5/6 has been degraded. Notably, HBV and an HBx-negative virus establish high level infection in PHH without inducing expression of interferon-stimulated genes or production of interferons or other cytokines. Our study also revealed that Smc5/6 is degraded in the majority of infected PHH by the time cccDNA transcription could be detected and that HBx RNA is present in cell culture-derived virus preparations as well as HBV patient plasma. Collectively, these data indicate that Smc5/6 is an intrinsic antiviral restriction factor that suppresses HBV transcription when localized to ND10 without inducing a detectable innate immune response. Our data also suggest that HBx protein may be initially expressed by delivery of extracellular HBx RNA into HBV-infected cells.
Collapse
Affiliation(s)
- Congrong Niu
- Gilead Sciences, Foster City, California, United States of America
| | | | - Li Li
- Gilead Sciences, Foster City, California, United States of America
| | - Rudolf K. Beran
- Gilead Sciences, Foster City, California, United States of America
| | - Stephane Daffis
- Gilead Sciences, Foster City, California, United States of America
| | | | - Dara Burdette
- Gilead Sciences, Foster City, California, United States of America
| | - Leanne Peiser
- Gilead Sciences, Foster City, California, United States of America
| | - Eduardo Salas
- Gilead Sciences, Foster City, California, United States of America
| | - Hilario Ramos
- Gilead Sciences, Foster City, California, United States of America
| | - Mei Yu
- Gilead Sciences, Foster City, California, United States of America
| | - Guofeng Cheng
- Gilead Sciences, Foster City, California, United States of America
| | - Michel Strubin
- Department of Microbiology and Molecular Medicine, University Medical Center (C.M.U.), Geneva, Switzerland
| | | | | |
Collapse
|
9
|
Zeybel M, Vatansever S, Hardy T, Sarı AA, Cakalağaoğlu F, Avcı A, Zeybel GL, Karahüseyinoğlu S, Bashton M, Mathers JC, Ünsal B, Mann J. DNA methylation profiling identifies novel markers of progression in hepatitis B-related chronic liver disease. Clin Epigenetics 2016; 8:48. [PMID: 27152124 PMCID: PMC4857425 DOI: 10.1186/s13148-016-0218-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/28/2016] [Indexed: 12/19/2022] Open
Abstract
Background Chronic hepatitis B infection is characterized by hepatic immune and inflammatory response with considerable variation in the rates of progression to cirrhosis. Genetic variants and environmental cues influence predisposition to the development of chronic liver disease; however, it remains unknown if aberrant DNA methylation is associated with fibrosis progression in chronic hepatitis B. Results To identify epigenetic marks associated with inflammatory and fibrotic processes of the hepatitis B-induced chronic liver disease, we carried out hepatic genome-wide methylation profiling using Illumina Infinium BeadArrays comparing mild and severe fibrotic disease in a discovery cohort of 29 patients. We obtained 310 differentially methylated regions and selected four loci comprising three genes from the top differentially methylated regions: hypermethylation of HOXA2 and HDAC4 along with hypomethylation of PPP1R18 were significantly linked to severe fibrosis. We replicated the prominent methylation marks in an independent cohort of 102 patients by bisulfite modification and pyrosequencing. The timing and causal relationship of epigenetic modifications with disease severity was further investigated using a cohort of patients with serial biopsies. Conclusions Our findings suggest a linkage of widespread epigenetic dysregulation with disease progression in chronic hepatitis B infection. CpG methylation at novel genes sheds light on new molecular pathways, which can be potentially exploited as a biomarker or targeted to attenuate inflammation and fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0218-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Müjdat Zeybel
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,School of Medicine, Koç University Hospital, Koç University, 4th floor- M-4220. Davutpaşa Caddesi no: 4, 34010 Istanbul, Turkey
| | - Sezgin Vatansever
- Department of Gastroenterology and Hepatology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Timothy Hardy
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ayşegül Akder Sarı
- Department of Pathology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Fulya Cakalağaoğlu
- Department of Pathology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Arzu Avcı
- Department of Pathology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Gemma Louise Zeybel
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Serçin Karahüseyinoğlu
- School of Medicine, Koç University Hospital, Koç University, 4th floor- M-4220. Davutpaşa Caddesi no: 4, 34010 Istanbul, Turkey
| | - Matthew Bashton
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Belkıs Ünsal
- Department of Gastroenterology and Hepatology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Jelena Mann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Koumbi L, Karayiannis P. The Epigenetic Control of Hepatitis B Virus Modulates the Outcome of Infection. Front Microbiol 2016; 6:1491. [PMID: 26779147 PMCID: PMC4701982 DOI: 10.3389/fmicb.2015.01491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications are stable alterations in gene expression that do not involve mutations of the genetic sequence itself. It has become increasingly clear that epigenetic factors contribute to the outcome of chronic hepatitis B virus (HBV) infection by affecting cellular and virion gene expression, viral replication and the development of hepatocellular carcinoma. HBV persists in the nucleus of infected hepatocytes as a stable non-integrated covalently closed circular DNA (cccDNA) which functions as a minichromosome. There are two major forms of HBV epigenetic regulation: posttranslational modification of histone proteins associated with the cccDNA minichromosome and DNA methylation of viral and host genomes. This review explores how HBV can interphase with host epigenetic regulation in order to evade host defences and to promote its own survival and persistence. We focus on the effect of cccDNA bound-histone modifications and the methylation status of HBV DNA in regulating viral replication. Investigation of HBV epigenetic control has important clinical correlates with regards to the development of potential therapeutic regimens that will successfully eradicate HBV infection and deal with HBV reactivation in those undergoing treatment with demethylating agents.
Collapse
Affiliation(s)
- Lemonica Koumbi
- Hepatology and Gastroenterology Section, Department of Medicine, Imperial CollegeLondon, UK
| | - Peter Karayiannis
- Microbiology/Molecular Virology, University of Nicosia Medical SchoolNicosia, Cyprus
| |
Collapse
|