1
|
Pandey A, Goswami A, Jithin B, Shukla S. Autophagy: The convergence point of aging and cancer. Biochem Biophys Rep 2025; 42:101986. [PMID: 40224538 PMCID: PMC11986642 DOI: 10.1016/j.bbrep.2025.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy, a dynamic intracellular degradation system, is critical for cellular renovation and maintaining equilibrium. By eliminating damaged components and recycling essential molecules, autophagy safeguards cellular integrity and function. The versatility of the autophagy process across various biological functions enable cells to adapt and maintain homeostasis under unfavourable conditions. Disruptions in autophagy can shift a cell from a healthy state to a disease state or, conversely, support a return to health. This review delves into the multifaceted role of autophagy during aging and age-related diseases such as cancer, highlighting its significance as a unifying target with promising therapeutic implications. Cancer development is a dynamic process characterized by the acquisition of diverse survival capabilities for proliferating at different stages. This progression unfolds over time, with cancer cells exploiting autophagy to overcome encountered stress conditions during tumor development. Notably, there are several common pathways that utilize the autophagy process during aging and cancer development. This highlights the importance of autophagy as a crucial therapeutic target, holding the potential to not only impede the growth of tumor but also enhance the patient's longevity. This review aims to simplify the intricate relationship between cancer and aging, with a particular focus on the role of autophagy.
Collapse
Affiliation(s)
- Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| | | | | | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Tharamelveliyil Rajendran A, Dheeraj Rajesh G, Ashtekar H, Sairam A, Kumar P, Vadakkepushpakath AN. Uncovering naringin's anticancer mechanisms in glioblastoma via molecular docking and network pharmacology approaches. Sci Rep 2024; 14:21486. [PMID: 39277626 PMCID: PMC11401857 DOI: 10.1038/s41598-024-72475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Naringin, a flavonoid, exhibits diverse therapeutic properties and has been proven to exert cytotoxic effects on cancer cells. Nevertheless, the precise mechanism of naringin maintaining its cytotoxic effect on glioblastoma (GBM) remains unknown. Thus, the current study aimed to establish a plausible cellular mechanism for Naringin's inhibition of GBM. We employed various system biology techniques to forecast the primary targets, including gene ontology and cluster analysis, KEGG enrichment pathway estimation, molecular docking, MD (molecular dynamic) simulation and MMPBSA analysis. Glioblastoma target sequences were obtained via DisGeNet and Therapeutic Target Prediction, aligned with naringin targets, and analyzed for gene enrichment and ontology. Gene enrichment analysis identified the top ten hub genes. Further, molecular docking was conducted on all identified targets. For molecular dynamics modelling, we selected the two complexes that exhibited the most docking affinity and the two most prominent genes of the hub identified through analysis of the enrichment of genes. The PARP1 and ALB1 signalling pathways were found to be the main regulated routes. Naringin exhibited the highest binding potential of - 12.90 kcal/mol with PARP1 (4ZZZ), followed by ABL1 (2ABL), with naringin showing a - 8.4 kcal/mol binding score, as determined by molecular docking. The molecular dynamic approach and MM-PBSA investigation along with PCA study revealed that the complex of Naringin, with 4ZZZ (PARP1) and, 2ABL (ABL1), are highly stable compared to that of imatinib and talazoparib. Analyses of the signalling pathway suggested that naringin may have anticancer effects against GBM by influencing the protein PARP and ALB1 levels. Cytotoxicity assay was performed on two different glioblastoma cell lines C6 and U87MG cells. Naringin demonstrates a higher cytotoxic potency against U87MG human glioblastoma cells compared to C6 rat glioma cells.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Gupta Dheeraj Rajesh
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Harsha Ashtekar
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Anusha Sairam
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Pankaj Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
3
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
4
|
Dai L, Liang W, Shi Z, Li X, Zhou S, Hu W, Yang Z, Wang X. Systematic characterization and biological functions of non-coding RNAs in glioblastoma. Cell Prolif 2022; 56:e13375. [PMID: 36457281 PMCID: PMC9977673 DOI: 10.1111/cpr.13375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.
Collapse
Affiliation(s)
- Lirui Dai
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Wulong Liang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zimin Shi
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xiang Li
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Shaolong Zhou
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Weihua Hu
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zhuo Yang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xinjun Wang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| |
Collapse
|
5
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Liang C, Yang L, Guo SW, Li RC. Downregulation of Astrocyte Elevated Gene-1 Expression Combined with All-Trans Retinoic Acid Inhibits Development of Vasculogenic Mimicry and Angiogenesis in Glioma. Curr Med Sci 2022; 42:397-406. [PMID: 35201552 DOI: 10.1007/s11596-022-2517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of downregulating astrocyte elevated gene-1 (AEG-1) expression combined with all-trans retinoic acid (ATRA) on vasculogenic mimicry (VM) formation and angiogenesis in glioma. METHODS U87 glioma cells were transfected with AEG-1 shRNA lentiviral vectors (U87-siAEG-1) and incubated in a medium containing 20 µmol/L ATRA. Matrigel-based tube formation assay was performed to evaluate VM formation, and the cell counting kit-8 (CCK-8) assay was used to analyze the proliferation of glioma cells in vitro. Reverse transcription-quantitative polymerase chain reaction and Western blot analysis were used to investigate the mRNA and protein expression of related genes, respectively. Glioma xenograft models were generated via subcutaneous implantation of glioma cells in nude mice. Tumor-bearing mice received an intraperitoneal injection of ATRA (10 mg/kg per day). Immunohistochemistry was used to evaluate the expression of related genes and the microvessel density (MVD) in glioma xenograft models. CD34/periodic acid-Schiff double staining was performed to detect VM channels in vivo. The volume and weight of tumors were measured, and a tumor growth curve was drawn to evaluate tumor growth. RESULTS A combination of ATRA intervention and downregulation of AEG-1 expression significantly inhibited the proliferation of glioma cells in vitro and glioma VM formation in vitro and in vivo. It also significantly decreased MVD and inhibited tumor growth. Further, the expression levels of matrix metalloproteinase (MMP)-2, MMP-9, vascular endothelial-cadherin (VE-cadherin), and vascular endothelial growth factor (VEGF) in glioma significantly decreased in vivo and in vivo. CONCLUSION Hence, a combinatorial approach might be effective in treating glioma through regulating MMP-2, MMP-9, VEGF, and VE-cadherin expression.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, 710082, China
| | - Shi-Wen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui-Chun Li
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
7
|
Casciati A, Tanori M, Gianlorenzi I, Rampazzo E, Persano L, Viola G, Cani A, Bresolin S, Marino C, Mancuso M, Merla C. Effects of Ultra-Short Pulsed Electric Field Exposure on Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23063001. [PMID: 35328420 PMCID: PMC8950115 DOI: 10.3390/ijms23063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.
Collapse
Affiliation(s)
- Arianna Casciati
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mirella Tanori
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Isabella Gianlorenzi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy;
| | - Elena Rampazzo
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Giampietro Viola
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alice Cani
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Carmela Marino
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mariateresa Mancuso
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| | - Caterina Merla
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| |
Collapse
|
8
|
Setlai BP, Hull R, Reis RM, Agbor C, Ambele MA, Mulaudzi TV, Dlamini Z. MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in Glioblastoma. Genes (Basel) 2022; 13:244. [PMID: 35205289 PMCID: PMC8872331 DOI: 10.3390/genes13020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that are 20-23 nucleotides in length, functioning as regulators of oncogenes or tumor suppressor genes. They are molecular modulators that regulate gene expression by suppressing gene translation through gene silencing/degradation, or by promoting translation of messenger RNA (mRNA) into proteins. Circulating miRNAs have attracted attention as possible prognostic markers of cancer, which could aid in the early detection of the disease. Epithelial to mesenchymal transition (EMT) has been implicated in tumorigenic processes, primarily by promoting tumor invasiveness and metastatic activity; this is a process that could be manipulated to halt or prevent brain metastasis. Studies show that miRNAs influence the function of EMT in glioblastomas. Thus, miRNA-related EMT can be exploited as a potential therapeutic target in glioblastomas. This review points out the interrelation between miRNA and EMT signatures, and how they can be used as reliable molecular signatures for diagnostic purposes or targeted therapy in glioblastomas.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| | - Rui Manuel Reis
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Cyril Agbor
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Melvin Anyasi Ambele
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, P.O. Box 1266, Pretoria 0001, South Africa;
- Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| |
Collapse
|
9
|
Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas JP, Perez V, Reynders C, Ancion M, Vigneron M, Baguet A, Guittaut M, Fraichard A, Despouy G. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. BIOLOGY 2021; 10:biology10100956. [PMID: 34681055 PMCID: PMC8533302 DOI: 10.3390/biology10100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Epithelial–mesenchymal transition (EMT) is involved in metastasis formation, chemoresistance, apoptosis resistance, and acquisition of stem cell properties, making this process an attractive target in cancer. However, direct targeting of EMT remains challenging. Autophagy—an intracellular mechanism—has been noted to be involved in the regulation of EMT—mainly by its involvement in the degradation of EMT actors, explaining why understanding of how autophagy could regulate EMT might be promising in the development of new cancer therapies. Here, we found that GABARAPL1—an autophagy-related gene—was increased in human NSCLC mesenchymal tumors compared to epithelial tumors, and induction of EMT in an A549 lung cancer cell line by TGF-β/TNF-α cytokines also led to an increase in GABARAPL1 expression. This regulation could involve the EMT-related transcription factors of the SMAD family. To understand the role of GABARAPL1 in EMT regulation in lung cancer cells, A549 KO GABARAPL1 were designed and used to investigate whether GABARAPL1 could inhibit EMT via its involvement in SMAD degradation. The results indicate that GABARAPL1-mediated autophagic degradation could intervene as a negative EMT-regulatory loop. Abstract The pathway of selective autophagy, leading to a targeted elimination of specific intracellular components, is mediated by the ATG8 proteins, and has been previously suggested to be involved in the regulation of the Epithelial–mesenchymal transition (EMT) during cancer’s etiology. However, the molecular factors and steps of selective autophagy occurring during EMT remain unclear. We therefore analyzed a cohort of lung adenocarcinoma tumors using transcriptome analysis and immunohistochemistry, and found that the expression of ATG8 genes is correlated with that of EMT-related genes, and that GABARAPL1 protein levels are increased in EMT+ tumors compared to EMT- ones. Similarly, the induction of EMT in the A549 lung adenocarcinoma cell line using TGF-β/TNF-α led to a high increase in GABARAPL1 expression mediated by the EMT-related transcription factors of the SMAD family, whereas the other ATG8 genes were less modified. To determine the role of GABARAPL1 during EMT, we used the CRISPR/Cas9 technology in A549 and ACHN kidney adenocarcinoma cell lines to deplete GABARAPL1. We then observed that GABARAPL1 knockout induced EMT linked to a defect of GABARAPL1-mediated degradation of the SMAD proteins. These findings suggest that, during EMT, GABARAPL1 might intervene in an EMT-regulatory loop. Indeed, induction of EMT led to an increase in GABARAPL1 levels through the activation of the SMAD signaling pathway, and then GABARAPL1 induced the autophagy-selective degradation of SMAD proteins, leading to EMT inhibition.
Collapse
Affiliation(s)
- Marine Jacquet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Eric Hervouet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
- DImaCellplatform, Université Bourgogne Franche-Comté, F-25000 Besançon, France
- EPIGENExp, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Timothée Baudu
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium; (M.H.); (C.R.); (M.A.)
| | - Chloé Parratte
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Jean-Paul Feugeas
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Valérie Perez
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Célia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium; (M.H.); (C.R.); (M.A.)
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium; (M.H.); (C.R.); (M.A.)
| | - Marc Vigneron
- Team Replisome Dynamics and Cancer, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, CNRS-Université de Strasbourg, F-67412 Illkirch, France;
| | - Aurélie Baguet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Michaël Guittaut
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
- DImaCellplatform, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Annick Fraichard
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Gilles Despouy
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
- Correspondence:
| |
Collapse
|
10
|
Batara DCR, Choi MC, Shin HU, Kim H, Kim SH. Friend or Foe: Paradoxical Roles of Autophagy in Gliomagenesis. Cells 2021; 10:1411. [PMID: 34204169 PMCID: PMC8227518 DOI: 10.3390/cells10061411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.
Collapse
Affiliation(s)
- Don Carlo Ramos Batara
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Hyeon-Uk Shin
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| |
Collapse
|
11
|
Liang C, Shangguan J, Yang L, Guo S. Downregulation of astrocyte elevated gene-1 expression inhibits the development of vasculogenic mimicry in gliomas. Exp Ther Med 2020; 21:22. [PMID: 33235631 PMCID: PMC7678608 DOI: 10.3892/etm.2020.9454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Vasculogenic mimicry (VM) contributes to the resistance of anti-angiogenic therapies in glioma. Certain genes, including MMP-2 and VEGF may be associated with the development of VM. Astrocyte elevated gene-1 (AEG-1) is considered to be an oncogene that promotes autophagy, invasion, metastasis, angiogenesis and drug resistance; however, the association between AEG-1 and VM formation is still unknown. The present study investigated the effects of AEG-1 downregulation on VM formation in the U87 glioma cell line in vitro and in xenograft models of glioma, and the potential underlying mechanisms of action. In the present study, U87 glioma cells were infected with the AEG-1 short hairpin RNA lentivirus. A Matrigel-based tube formation assay was performed to evaluate VM formation in vitro. Reverse transcription-quantitative PCR and western blot analysis were conducted to investigate the mRNA and protein expression levels of MMP-2 and VEGF. Glioma xenograft models were generated through the intracerebral implantation of U87 glioma cells into nude rats; CD34/Periodic Acid-Schiff double-staining was performed to detect VM channels in vivo. Following AEG-1 downregulation in U87 cells, the development of VM was significantly decreased in vitro and in vivo. In addition, the expression levels of MMP-2 and VEGF in glioma cells were decreased compared with the control group. These results suggested that downregulation of AEG-1 expression could significantly inhibit the development of VM in gliomas, both in vitro and in vivo, and may be partially related to the regulation of VEGF and MMP-2 expression.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Shangguan
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Astrocyte elevated gene-1 as a novel therapeutic target in malignant gliomas and its interactions with oncogenes and tumor suppressor genes. Brain Res 2020; 1747:147034. [DOI: 10.1016/j.brainres.2020.147034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
|
13
|
Li C, Liu HL, Zhou YM, Shi YC, Zhang ZB, Chen L, Feng SY. Astrocyte elevated gene-1 serves as a target of miR542 to promote glioblastoma proliferation and invasion. Chin Med J (Engl) 2020; 133:2437-2443. [PMID: 32925290 PMCID: PMC7575175 DOI: 10.1097/cm9.0000000000001072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) is strongly linked with tumor invasion and metastasis, which performs a vital role in carcinogenesis and cancer progression. Emerging evidence suggests that microRNAs (miRNAs) expression are closely associated to EMT by regulating targeted genes. MiR542 has been found to be involved in the EMT program and bound up with various cancers. However, the functions of miR542 and its underlying mechanism in glioblastoma multiforme (GBM) remain largely unknown. In the current study, we investigated the effect of astrocyte elevated gene-1 (AEG-1) on U251 cells aggressiveness, proliferation, apoptosis, and cell cycle. METHODS The screening of targeted miRNAs was performed, as well as the functional roles and mechanisms of miR542 were explored. RESULTS MiR542 was selected as the target because of the most significantly differential expression and this high level of expression negatively correlated with cell migration and proliferation, which suggested that miR542 could be a novel tumor suppressor. Moreover, we confirmed that AEG-1 was a direct targeted gene of miR542 by luciferase activity assay, reverse transcription-polymerase chain reaction, and immunoblotting analysis. Furthermore, miR542 suppressed the expression of AEG-1, which upgraded the level of E-cadherin and degraded Vimentin expression contributing to retraining EMT. CONCLUSION The in vitro findings demonstrated that miR542 inhibited the migration and proliferation of U251 cells and suppressed EMT through targeting AEG-1, indicating that miR542 may be a potential anti-cancer target for GBM.
Collapse
Affiliation(s)
- Chong Li
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Hai-Long Liu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yu-Mei Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010058, China
| | - Yan-Chun Shi
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi-Bin Zhang
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Shi-Yu Feng
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
MicroRNA‑22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma. Mol Med Rep 2020; 22:3911-3921. [PMID: 33000186 PMCID: PMC7533487 DOI: 10.3892/mmr.2020.11447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone tissue. Effective chemotherapy may improve the survival of patients with OS. MicroRNAs (miRs) serve significant roles in the regulatory function of tumorigenesis and chemosensitivity of different types of cancer. miR‑22 has been revealed to inhibit the proliferation and migration of OS cells, as well as increasing their sensitivity to cisplatin (CDDP). The mechanisms of action behind the functions of miR‑22 in OS drug resistance require investigation. Therefore, in the present study, the human OS cell lines (MG‑63, U2OS, Saos2 and OS9901) and a drug‑resistant cell line (MG‑63/CDDP) were cultured. Cell proliferation, apoptosis and autophagy assays were performed to investigate the proliferation, apoptosis and autophagy of cell lines transfected with miR‑22 mimic. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were performed to investigate the expression levels of associated genes. The results revealed that miR‑22 inhibited the proliferation of MG‑63 cells and MG‑63/CDDP cells, and enhanced the anti‑proliferative ability of CDDP. miR‑22 induced apoptosis and inhibited autophagy of MG‑63 cells and MG‑63/CDDP cells. Apoptosis‑related genes, including caspase‑3 and Bcl‑2‑associated X protein were upregulated, while B‑cell lymphoma‑2 was downregulated in both cell lines transfected with the miR‑22 mimic. Autophagy protein 5, beclin1 and microtubules‑associated protein 1 light chain 3 were downregulated in both cell lines transfected with miR‑22 mimic. Furthermore, the in vitro and in vivo expression levels of metadherin (MTDH) in the OS/OS‑CDDP‑resistant models were downregulated following transfection with the miR‑22 mimic. Therefore, the results of the present study suggested that miR‑22 promoted CDDP sensitivity by inhibiting autophagy and inducing apoptosis in OS cells, while MTDH may serve a positive role in inducing CDDP resistance of OS cells.
Collapse
|
15
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
16
|
Li ZG, Xiang WC, Shui SF, Han XW, Guo D, Yan L. 11 Long noncoding RNA UCA1 functions as miR-135a sponge to promote the epithelial to mesenchymal transition in glioma. J Cell Biochem 2019; 121:2447-2457. [PMID: 31680311 DOI: 10.1002/jcb.29467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
The dysregulation of long noncoding (lncRNA) UCA1 may play an important role in tumor progression. However, the function in gliomas is unclear. Therefore, this experiment was designed to explore the pathogenesis of glioma based on lncRNA UCA1. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA UCA1, miR-135a, and HOXD9 in gliomas tissues. The effect of lncRNA UCA1 and miR-135a on tumor cell proliferation and migration invasiveness was examined by CCK-8 and transwell assays. Target gene prediction and screening, luciferase reporter assay were used to verify downstream target genes of lncRNA UCA1. Expression of E-cadherin, N-cadherin, vimentin, and HOXD9 was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in vivo experiments in nude mice. lncRNA UCA1 was highly expressed in glioma tissues and cell lines. lncRNA UCA1 expression was associated with significantly poor overall survival in gliomas. Moreover, lncRNA UCA1 significantly enhanced cell proliferation and migration, and promoted the occurrence of EMT. In addition, lncRNA UCA1 promoted the development of EMT by positively regulating HOXD9 expression as a miR-135a sponge. In vivo experiments indicated that UCA1 exerted its biological functions by modulating miR-135a and HOXD9. In conclusion, lncRNA UCA1 can induce the activation of HOXD9 by inhibiting the expression of miR-135a and promote the occurrence of EMT in glioma.
Collapse
Affiliation(s)
- Zhi-Guo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Chu Xiang
- Department of Neurosurgery, The General Hospital of Central Theater Command, PLA, China
| | - Shao-Feng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Gao G, Zhang Y, Chao Y, Niu C, Fu X, Wei J. miR-4735-3p regulates phenotypic modulation of vascular smooth muscle cells by targeting HIF-1-mediated autophagy in intracranial aneurysm. J Cell Biochem 2019; 120:19432-19441. [PMID: 31498485 DOI: 10.1002/jcb.29219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/20/2019] [Indexed: 11/08/2022]
Abstract
Intracranial aneurysm (IA) is recognized as a lethal form of cerebrovascular disease mainly featured with a modulated phenotype of vascular smooth muscle cells (SMCs). It is generally believed that enhanced SMC proliferation and migration capabilities are the main characteristics in this process. In this study, we revealed that microRNA-4735 (miR-4735) participates in phenotypic modulation in a hypoxia-inducible factor-1 (HIF-1)-dependent manner of SMCs. miR-4735 targets the 3'-untranslated region of HIF-1. The downregulated expression of miR-4735 in IA tissues leads to elevated expression of HIF-1, which activates autophagy and promotes autophagy-mediated SMC proliferation and migration. Overexpression of miR-4735 suppressed HIF-1 expression and HIF-1-mediated autophagy, which led to impaired SMC proliferation and migration abilities. Forced expression of HIF-1 in miR-4735-overexpressed SMCs rescued the impaired SMC proliferation and migration abilities. In conclusion, miR-4735 plays an important role in phenotypic modulation in IA by regulating autophagy-promoted SMC proliferation and migration.
Collapse
Affiliation(s)
- Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yingjiu Chao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xianming Fu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Jianjun Wei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
18
|
Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers (Basel) 2019; 11:cancers11030312. [PMID: 30845654 PMCID: PMC6468412 DOI: 10.3390/cancers11030312] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event by which cancer cells acquire an invasive phenotype through the activation of specific transcription factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so far. This review summarizes the current understanding of the interplay between autophagy and EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for targeting these processes in future therapeutical approaches.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| |
Collapse
|
19
|
[Effect of telmisartan on expression of metadherin in the kidney of mice with unilateral ureter obstruction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39. [PMID: 30890502 PMCID: PMC6765631 DOI: 10.12122/j.issn.1673-4254.2019.02.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the effect of telmisartan on the expression of metadherin in the kidney of mice with unilateral ureter obstruction. METHODS Eighteen male C57 mice were randomized into sham-operated group, model group and telmisartan treatment group. In the latter two groups, renal interstitial fibrosis as the result of unilateral ureter obstruction (UUO) was induced by unilateral ureteral ligation with or without telmisartan intervention. Renal pathological changes of the mice were assessed using Masson staining, and immunohistochemistry and Western blotting were used to detect the expression of extracellular matrix proteins and metadherin in the kidney of the mice. In the in vitro experiment, cultured mouse renal tubular epithelial cells (mTECs) were stimulated with transforming growth factor-β1 (TGF-β1) and transfected with a siRNA targeting metadherin, and the changes in the expressions of extracellular matrix proteins and metadherin were detected using Western blotting. RESULTS The expressions of extracellular matrix proteins and metadherin increased significantly in the kidney of mice with UUO (P < 0.05). Intervention with telmisartan significantly lowered the expressions of extracellular matrix proteins and metadherin and alleviated the pathology of renal fibrosis in mice with UUO (P < 0.05). In cultured mTECs, siRNA-mediated knockdown of metadherin obviously reversed TGF-β1-induced increase in the expressions of extracellular matrix proteins and metadherin. CONCLUSIONS Telmisartan can suppress the production of extracellular matrix proteins and the expression of metadhein to attenuate UUO-induced renal fibrosis in mice.
Collapse
|
20
|
Peng F, Li H, Li S, Wang Y, Liu W, Gong W, Yin B, Chen S, Zhang Y, Luo C, Zhou W, Chen Y, Li P, Huang Q, Xu Z, Long H. Micheliolide ameliorates renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway. J Transl Med 2019; 99:1092-1106. [PMID: 30976056 PMCID: PMC6760645 DOI: 10.1038/s41374-019-0245-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Micheliolide (MCL), derived from parthenolide (PTL), is known for its antioxidant and anti-inflammatory effects and has multiple roles in inflammatory diseases and tumours. To investigate its effect on renal disease, we intragastrically administrated DMAMCL, a dimethylamino Michael adduct of MCL for in vivo use, in two renal fibrosis models-the unilateral ureteral occlusion (UUO) model and an ischaemia-reperfusion injury (IRI) model and used MCL in combination with transforming growth factor beta 1 (TGF-β1) on mouse tubular epithelial cells (mTEC) in vitro. The expression of fibrotic markers (fibronectin and α-SMA) was remarkably reduced, while the expression of the epithelial marker E-cadherin was restored after DMAMCL treatment both in the UUO and IRI mice. MCL function in TGF-β1-induced epithelial-mesenchymal transition (EMT) in mTEC was consistent with the in vivo results. Metadherin (Mtdh) was activated in the fibrotic condition, suggesting that it might be involved in fibrogenesis. Interestingly, we found that while Mtdh was upregulated in the fibrotic condition, DMAMCL/MCL could suppress its expression. The overexpression of Mtdh exerted a pro-fibrotic effect by modulating the BMP/MAPK pathway in mTECs, and MCL could specifically reverse this effect. In conclusion, DMAMCL/MCL treatment represents a novel and effective therapy for renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway.
Collapse
Affiliation(s)
- Fenfen Peng
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Hongyu Li
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Shuting Li
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Yuxian Wang
- 0000 0000 8877 7471grid.284723.8Department of Gerontology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Wenting Liu
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Wangqiu Gong
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Bohui Yin
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Sijia Chen
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410000 China
| | - Ying Zhang
- 0000 0000 8653 1072grid.410737.6Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
| | - Congwei Luo
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Weidong Zhou
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Yihua Chen
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Peilin Li
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Qianyin Huang
- 0000 0004 1771 3058grid.417404.2Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Zhaozhong Xu
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
21
|
Liu H, Du Y, Zhang Z, Lv L, Xiong W, Zhang L, Li N, He H, Li Q, Liu Y. Autophagy contributes to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis. Biol Reprod 2018; 99:968-981. [PMID: 29860279 PMCID: PMC6297317 DOI: 10.1093/biolre/ioy128] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a benign gynecologic disorder, and presents with malignant characteristics, such as migration and invasion. Hypoxia has been implicated in triggering epithelial-mesenchymal transition (EMT). Hypoxia is also known to induce autophagy. However, the relationship between autophagy and EMT under hypoxia conditions in endometriosis remains unknown. In the present study, we found that the expression of hypoxia-inducible factor-1α (HIF-1α), microtubule associated protein light chain 3 (LC3), and mesenchymal cell marker vimentin was significantly higher in ectopic endometrium from patients with endometriosis, along with decreased expression of epithelial cell marker E-cadherin. After hypoxia treatment, endometrial epithelial cells exhibited enhanced migration and invasion abilities, as well as promoted autophagy and the EMT phenotype. Our analyses also show that HIF-1α was responsible for induction of autophagy. Moreover, inhibition of autophagy by chemical or genetic approaches suppressed hypoxia triggered EMT and reduced cell migration and invasion. Collectively, our findings identify that autophagy is critical for the migration and invasion of endometrial cells through the induction of EMT and indicate that inhibition of autophagy may be a novel useful strategy in the treatment of endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, USA
| | - Liqun Lv
- Department of Obstetrics and Gynecology, Wu Han Kang Jian Fu Ying Hospital, Wuhan, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitang He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Qiang Z, Jun-Jie L, Hai W, Hong L, Bing-Xi L, Lei C, Wei X, Ya-Wei L, Huang A, Song-Tao Q, Yun-Tao L. TPD52L2 impacts proliferation, invasiveness and apoptosis of glioblastoma cells via modulation of wnt/β-catenin/snail signaling. Carcinogenesis 2018; 39:214-224. [PMID: 29106517 DOI: 10.1093/carcin/bgx125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Intratumoral heterogeneity greatly hinders efficiency of target therapy in glioblastoma (GBM). To decipher the underlying mechanisms of heterogeneity, patient-derived adult GBM cells were separately isolated from margins of T1 gadolinium enhancing tumor lesions (PNCs) and T1 gadolinium enhancing core lesions (ECs). Single clone culture was conducted in ECs and U87MG cell line to screen clones with distinct biological phenotypes. Single cell clones with diverse phenotypes were simultaneously separated from ECs and U87 cell line. PNCs, GCs(H) and U87(H) exhibited longer cellular protrusion than ECs, GCs(L) and U87(L), respectively. Cell strains with longer protrusion exhibited higher invasive ability and lower sensitivity to temozolomide (TMZ) and radiation. Subsequently, TPD52L2 was verified as the functional protein to regulate the cellular heterogeneity by the proteomics analysis. Downregulation of TPD52L2 enhanced cell invasion whereas inhibited cell proliferation rate and sensitivity to chemotherapy in vivo and in vitro, this condition was reversed when TPD52L2 was overexpressed. The invasiveness was facilitated by up-regulating CTNNB1/β-catenin and SNAI1/Snail mediated EMT process. In addition, the clinical data of 88 GBM cases in our neurosurgery center was analyzed to reveal the influence of TPD52L2 in the prognosis of GBM. Low expression of TPD52L2 exacerbated prognosis of GBM patients received standard radiotherapy plus concomitant and adjuvant TMZ (Stupp strategy). Taken together, TPD52L2 is an important biomarker influencing GBM prognosis.
Collapse
Affiliation(s)
- Zhou Qiang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Jun-Jie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Hai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Hong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Bing-Xi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Lei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Wei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Ya-Wei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Annie Huang
- Brain Tumor Research Center, Hospital for Sickkids, Toronto, Canada
| | - Qi Song-Tao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Glioma Center, Guangzhou, China
| | - Lu Yun-Tao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Glioma Center, Guangzhou, China
| |
Collapse
|
23
|
Yin Q, Han Y, Zhu D, Li Z, Shan S, Jin W, Lu Q, Ren T. miR-145 and miR-497 suppress TGF-β-induced epithelial-mesenchymal transition of non-small cell lung cancer by targeting MTDH. Cancer Cell Int 2018; 18:105. [PMID: 30065618 PMCID: PMC6062944 DOI: 10.1186/s12935-018-0601-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been reported to play crucial roles in multiple cancers including non-small cell lung cancer (NSCLC). Here, we investigated the role of miR-145 and miR-497 in TGF-β-induced epithelial–mesenchymal transition (EMT) process of NSCLC. Methods We performed quantitative real time PCR (qRT-PCR) to detect the expression level of miR-145 and miR-497 in NSCLC cell lines. Then in the presence/absence of TGF-β, we transfected miRNA mimics or inhibitor into A549 and H1299 cells and investigated the role of miR-145 and miR-497 in cell migration and invasion using transwell and wound-healing assay. The regulation role of miR-145 and miR-497 on Metadherin (MTDH) was determined by luciferase assay. The expression level of MTDH and EMT markers E-cadherin and vimentin were detected on mRNA and protein level. Results In our study, our results showed that miR-145 and miR-497 were downregulated in NSCLC cell lines. Overexpression of miR-145 and miR-497 inhibited TGF-β-induced EMT and suppressed cancer cell migration and invasion, while the opposite results were observed in cells transfected with miR-145 or miR-497 inhibitor. Moreover, the luciferase assay confirmed that miR-145 and miR-497 attenuated MTDH expression by directly binding 3′-UTR of MTDH mRNA and exert the tumor-suppression role. Conclusions Overall, we demonstrated that miR-145 and miR-497 functioned as EMT-suppressor in NSCLC by targeting MTDH, provided new evidence that miR-145 and miR-497 as potential therapeutic targets.
Collapse
Affiliation(s)
- Qi Yin
- 1Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| | - Yang Han
- 2Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Dongyi Zhu
- 1Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| | - Zhanxia Li
- 3Department of Intensive Care Unit, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| | - Shan Shan
- 4Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Wenjing Jin
- 5Department of Intensive Care Unit, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399 China
| | - Qingchun Lu
- 1Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| | - Tao Ren
- 1Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China.,4Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| |
Collapse
|
24
|
Yan J, Zhang J, Zhang X, Li X, Li L, Li Z, Chen R, Zhang L, Wu J, Wang X, Sun Z, Fu X, Chang Y, Nan F, Yu H, Wu X, Feng X, Li W, Zhang M. AEG-1 is involved in hypoxia-induced autophagy and decreases chemosensitivity in T-cell lymphoma. Mol Med 2018; 24:35. [PMID: 30134829 PMCID: PMC6038315 DOI: 10.1186/s10020-018-0033-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background This study was to examine the link between astrocyte elevated gene-1 (AEG-1) and hypoxia induced-chemoresistance in T-cell non-Hodgkin’s lymphoma (T-NHL), as well as the underlying molecular mechanisms. Methods Expression of AEG-1, LC3-II, and Beclin-1 were initially examined in human T-NHL tissues (n = 30) and normal lymph node tissues (n = 16) using western blot, real-time PCR and immunohistochemistry. Western blot was also performed to analyze the expression of AEG-1, LC3-II, and Beclin-1 in T-NHL cells (Hut-78 and Jurkat cells) under normoxia and hypoxia. Additionally, the proliferation and apoptosis of Hut-78 cells exposed to different concentration of Adriamycin (ADM) in normoxia and hypoxia were evaluated by MTT and Annexin-V FITC/PI staining assay. Finally, the effects of AEG-1 on Hut-78 cells exposed to ADM in hypoxia were assessed by MTT and Annexin-V FITC/PI staining assay, and 3-MA (autophagy inhibitor) was further used to determine the underlying mechanism. Results AEG-1, LC3-II and Beclin-1 expression were significantly increased in T-NHL tissues compared with normal tissues. Incubation of Hut-78 and Jurkat cells in hypoxia obviously increased AEG-1, LC3-II and Beclin-1 expression. Hypoxia induced proliferation and reduced apoptosis of Hut-78 cells exposed to ADM. AEG-1 overexpression further increased proliferation and decreased apoptosis of Hut-78 cells exposed to ADM in hypoxia. Moreover, overexpression of AEG-1 significantly inversed 3-MA induced-changes in cell proliferation and apoptosis of Hut-78 cells exposed to ADM in hypoxia. Conclusions This study suggested that AEG-1 is associated with hypoxia-induced T-NHL chemoresistance via regulating autophagy, uncovering a novel target against hypoxia-induced T-NHL chemoresistance. Electronic supplementary material The online version of this article (10.1186/s10020-018-0033-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Junhui Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Renyin Chen
- Department of pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Hui Yu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaolong Wu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Wencai Li
- Department of pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Tang H, Yuan X, Ran Q, Wang X, Song Q, Zhang L, Qiu Y, Wang X. TGF-β3 Promotes MUC5AC Hyper-Expression by Modulating Autophagy Pathway in Airway Epithelium. EBioMedicine 2018; 33:242-252. [PMID: 29997053 PMCID: PMC6085582 DOI: 10.1016/j.ebiom.2018.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Mucus secretion accumulation in the airways may act as a contributing factor for the development of airflow limitation in severe fetal asthma patients. Accumulated evidences showed that transforming growth factor beta (TGF-β) plays a regulatory role in airway remodeling including mucus hyper-secretion in asthma. However, the detailed molecular mechanisms of TGF-β3 induced MUC5AC hyper-expression in airway epithelium remains unclear. Here, we demonstrated the pivotal roles of autophagy in regulation of MUC5AC hyper-production induced by TGF-β3 in airway epithelium. Our experimental data showed that inhibiting autophagy pathway in repeated ovalbumin (OVA) exposed mice exhibited decreased airway hyper-response and airway inflammation, diminishing the expression of Muc5ac and TGF-β3. Furthermore, our studies demonstrated that autophagy was induced upon exposure to TGF-β3 and then mediated MUC5AC hyper-expression by activating the activator protein-1 (AP-1) in human bronchial epithelial cells. Finally, Smad2/3 pathway was involved in TGF-β3-induced MUC5AC hyper-expressions by promoting autophagy. These data indicated that autophagy was required for TGF-β3 induced airway mucous hyper-production, and that inhibition of autophagy exerted therapeutic benefits for TGF-β3 induced airway mucus secretion.
Collapse
Affiliation(s)
- Yun Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin Ran
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Zhang
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yuhuan Qiu
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
26
|
DSGOST regulates resistance via activation of autophagy in gastric cancer. Cell Death Dis 2018; 9:649. [PMID: 29844404 PMCID: PMC5974125 DOI: 10.1038/s41419-018-0658-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST in Korean, Danggui-Sini-Jia-Wuzhuyu-Shengian-Tang in Chinese, and Tokishigyakukagoshuyushokyoto (TJ-38) in Japanese), a well-known traditional Korean/Chinese/Japanese medicine, has long been used to treat vascular diseases such as Raynaud’s phenomenon (RP). However, anticancer effect of DSGOST remains elusive. In this study, we checked if DSGOST has an anticancer effect against gastric cancer cells, and investigated the mechanisms underlying DSGOST resistance. Moreover, DSGOST regulates chemoresistance in cisplatin-treated gastric cancer cells. Interestingly, DSGOST treatment induced the accumulation of GFP-LC3 puncta and increased the level of autophagy markers, such as LC3-II, ATG5, and Beclin-1, indicating activated autophagy. Furthermore, DSGOST could activate epithelial-to-mesenchymal transition (EMT) and exosomes via induction of autophagy. DSGOST in combination with TGFβ also induced autophagy and EMT. However, autophagy inhibition induces DSGOST-mediated cell death in gastric cancer cells. In addition, autophagy inhibition blocks the activation of DSGOST-mediated EMT markers including N-cadherin, Snail, Slug, vimentin, β-catenin, p-Smad2, and p-Smad3. Taken together, these findings indicated that prosurvival autophagy was one of the mechanisms involved in the resistance of gastric cancer to DSGOST. Targeting the inhibition of autophagy could be an effective therapeutic approach to overcome resistance to DSGOST in gastric cancer.
Collapse
|
27
|
Li Q, Wang M, Wang N, Wang J, Qi L, Mao P. Downregulation of microRNA-216b contributes to glioma cell growth and migration by promoting AEG-1-mediated signaling. Biomed Pharmacother 2018; 104:420-426. [PMID: 29787989 DOI: 10.1016/j.biopha.2018.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates microRNA-216b (miR-216b) plays an important role in the development and progression of various cancers. However, little is known about the function of miR-216b in gliomas. In this study, we aimed to investigate the expression level and functional significance of miR-216b in gliomas. We found that miR-216b was significantly downregulated in glioma specimens and cell lines. Overexpression of miR-216b suppressed the growth and migration of glioma cells, while miR-216b inhibition showed the opposite effects. Astrocyte elevated gene-1 (AEG-1) was predicted as a potential target gene of miR-216b by bioinformatics analysis. A dual-luciferase reporter assay showed that miR-216b could directly target the 3'-untranslated region of AEG-1. RT-qPCR and western blot analysis showed that miR-216 negatively regulated AEG-1 expression in glioma cells. Correlation analysis revealed an inverse correlation between miR-216b and AEG-1 in clinical glioma specimens. miR-216b also regulated the activation of nuclear factor-κB and Wnt signaling in glioma cells. Moreover, restoration of AEG-1 expression partially reversed the inhibitory effect of miR-216b overexpression on glioma cell growth and migration. Overall, these results revealed a tumor suppressive role of miR-216b in glioma tumorigenesis, and identified AEG-1 as a target gene of miR-216b action. Our study suggests that miR-216b can be potentially targeted for the development of novel therapies for gliomas.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
28
|
Zhao Y, Li Y, Gao Y, Yuan M, Manthari RK, Wang J, Wang J. TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem Toxicol 2018; 115:26-33. [DOI: 10.1016/j.fct.2018.02.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022]
|
29
|
Wu J, Chen X, Liu X, Huang S, He C, Chen B, Liu Y. Autophagy regulates TGF-β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells. Mol Med Rep 2017; 17:3607-3614. [PMID: 29286127 PMCID: PMC5802162 DOI: 10.3892/mmr.2017.8360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor (TGF)-β2-induced epithelial-mesenchymal transition (EMT) in human retinal pigment epithelium (RPE) cells has an important role in the pathophysiology of intraocular fibrotic disorders, which may cause vision impairment and blindness. Autophagy, an intracellular homeostatic pathway, contributes to the physiological and pathological processes of RPE. Furthermore, autophagy has previously been reported to function in the EMT process in numerous tissue and cell types. However, the association between autophagy and the EMT process in RPE cells has not yet been fully determined. The present study demonstrated that TGF-β2-treated human RPE cells (ARPE-19 cell line) exhibited a significantly increased autophagic flux compared with control cells, as determined by western blot analysis of the protein levels of microtubule-associated protein 1 light chain 3-II and p62 (also termed sequestosome 1). Furthermore, it was demonstrated that autophagy activation enhanced the TGF-β2-induced EMT process in ARPE-19 cells, and inhibition of autophagy by chloroquine administration attenuated TGF-β2-induced EMT, which was determined by analyzing the expression of mesenchymal and epithelial markers by reverse transcription-quantitative polymerase chain reaction and/or western blotting. A transwell migration and invasion assays was also performed that demonstrated that autophagy activation by rapamycin enhanced TGF-β2-stimulated RPE cell migration and invasion, and inhibition of autophagy reduced TGF-β2-stimulated RPE cell migration and invasion. These results also demonstrated that autophagy activation enhanced the TGF-β2-induced EMT process in ARPE-19 cells, and inhibition of autophagy attenuated TGF-β2-induced EMT. Overall, the results of the present study demonstrated that TGF-β2-induced EMT may be regulated by autophagy, thus indicating that autophagy may serve as a potential therapeutic target for the attenuation of EMT in intraocular fibrotic disorders.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Baoxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
30
|
Draz H, Goldberg AA, Titorenko VI, Tomlinson Guns ES, Safe SH, Sanderson JT. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cell Signal 2017; 40:172-182. [PMID: 28923415 DOI: 10.1016/j.cellsig.2017.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
Abstract
3,3'-Diindolylmethane (DIM) and its synthetic halogenated derivatives 4,4'-Br2- and 7,7'-Cl2DIM (ring-DIMs) have recently been shown to induce protective autophagy in human prostate cancer cells. The mechanisms by which DIM and ring-DIMs induce autophagy have not been elucidated. As DIM is a mitochondrial ATP-synthase inhibitor, we hypothesized that DIM and ring-DIMs induce autophagy via alteration of intracellular AMP/ATP ratios and activation of AMP-activated protein kinase (AMPK) signaling in prostate cancer cells. We found that DIM and ring-DIMs induced autophagy was accompanied by increased autophagic vacuole formation and conversion of LC3BI to LC3BII in LNCaP and C42B human prostate cancer cells. DIM and ring-DIMs also induced AMPK, ULK-1 (unc-51-like autophagy activating kinase 1; Atg1) and acetyl-CoA carboxylase (ACC) phosphorylation in a time-dependent manner. DIM and the ring-DIMs time-dependently induced the oncogenic protein astrocyte-elevated gene 1 (AEG-1) in LNCaP and C42B cells. Downregulation of AEG-1 or AMPK inhibited DIM- and ring-DIM-induced autophagy. Pretreatment with ULK1 inhibitor MRT 67307 or siRNAs targeting either AEG-1 or AMPK potentiated the cytotoxicity of DIM and ring-DIMs. Interestingly, downregulation of AEG-1 induced senescence in cells treated with overtly cytotoxic concentrations of DIM or ring-DIMs and inhibited the onset of apoptosis in response to these compounds. In summary, we have identified a novel mechanism for DIM- and ring-DIM-induced protective autophagy, via induction of AEG-1 and subsequent activation of AMPK. Our findings could facilitate the development of novel drug therapies for prostate cancer that include selective autophagy inhibitors as adjuvants.
Collapse
Affiliation(s)
- Hossam Draz
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Alexander A Goldberg
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Critical Care Division and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | | | - Stephen H Safe
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
31
|
Astrocyte elevated gene-1 promotes tumour growth and invasion by inducing EMT in oral squamous cell carcinoma. Sci Rep 2017; 7:15447. [PMID: 29133850 PMCID: PMC5684276 DOI: 10.1038/s41598-017-15805-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common human malignancy with a high incidence rate and poor prognosis. Although astrocyte elevated gene 1 (AEG-1) expression is up-regulated in various human cancers and plays an important role in carcinogenesis and tumour progression, the impact of AEG-1 on the development and progression of OSCC remains unclear. Accordingly, this study aims to clarify the biological significance of AEG-1 in OSCC. We found AEG-1 to be overexpressed in OSCC tissues compared to normal oral mucosa. Knockdown or overexpression of AEG-1 in OSCC cell lines showed that AEG-1 is important for tumour growth, apoptosis, drug tolerance, and maintaining epithelial-mesenchymal transition (EMT)-mediated cell migration and invasion in vitro. Moreover, in a xenograft-mouse model generated by AEG-1-overexpressing SCC15 cells, we found that higher expression of AEG-1 promoted tumour growth, angiogenesis, and EMT in vivo. These findings provide mechanistic insight into the role of AEG-1 in regulating OSCC tumour growth, apoptosis, drug tolerance, and invasion, as well as AEG-1-induced activation of p38 and NF-κB signalling, suggesting that AEG-1 is an important prognostic factor and therapeutic target for OSCC.
Collapse
|
32
|
Yang X, Shi L, Yi C, Yang Y, Chang L, Song D. Astrocyte elevated gene-1 promotes invasion and epithelial-mesenchymal transition in bladder cancer cells through activation of signal transducer and activator of transcription 3. Int J Urol 2017; 25:157-163. [PMID: 29117631 DOI: 10.1111/iju.13486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To determine the impact of astrocyte elevated gene-1 on the invasion and epithelial-mesenchymal transition of bladder cancer cells in vitro and metastasis in vivo. METHODS Gain- and loss-of-function studies were carried out to investigate the biological roles of astrocyte elevated gene-1 in bladder cancer cell invasion, epithelial-mesenchymal transition and lung metastasis. The mechanism underlying the activity of astrocyte elevated gene-1 was examined. RESULTS Overexpression of astrocyte elevated gene-1 led to a significant increase in the invasive ability of UMUC3 and T24 bladder cancer cells in Matrigel invasion assays. In contrast, silencing of astrocyte elevated gene-1 restrained bladder cancer cell invasion. Overexpression of astrocyte elevated gene-1 downregulated E-cadherin and upregulated vimentin and Twist1, while silencing of astrocyte elevated gene-1 exerted an opposite effect. Mechanistically, astrocyte elevated gene-1 overexpression promoted the phosphorylation of signal transducer and activator of transcription 3 in bladder cancer cells. Treatment with WP1066, a specific signal transducer and activator of transcription 3 inhibitor, significantly abolished astrocyte elevated gene-1-induced invasion and epithelial-mesenchymal transition in UMUC3 cells. In vivo studies showed that astrocyte elevated gene-1 overexpression stimulated the growth of UMUC3 xenograft tumors and lung metastasis. CONCLUSIONS Astrocyte elevated gene-1 shows the ability to promote bladder cancer metastasis, which is causally linked to induction of signal transducer and activator of transcription 3 activation and epithelial-mesenchymal transition. Therefore, targeting astrocyte elevated gene-1 might offer therapeutic benefits in treating metastatic bladder cancer.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Shi
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengzhi Yi
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liansheng Chang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongkui Song
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Zheng Y, Miu Y, Yang X, Yang X, Zhu M. CCR7 Mediates TGF-β1-Induced Human Malignant Glioma Invasion, Migration, and Epithelial–Mesenchymal Transition by Activating MMP2/9 Through the Nuclear Factor KappaB Signaling Pathway. DNA Cell Biol 2017; 36:853-861. [PMID: 28817313 DOI: 10.1089/dna.2017.3818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yanyan Zheng
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Yiting Miu
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaokai Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaoguo Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Meijia Zhu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
| |
Collapse
|
34
|
Kahlert UD, Joseph JV, Kruyt FAE. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 2017; 11:860-877. [PMID: 28556516 PMCID: PMC5496495 DOI: 10.1002/1878-0261.12085] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to mesenchymal (EMT) process is increasingly recognized for playing a key role in the progression, dissemination, and therapy resistance of epithelial tumors. Accumulating evidence suggests that EMT inducers also lead to a gain in mesenchymal properties and promote malignancy of nonepithelial tumors. In this review, we present and discuss current findings, illustrating the importance of EMT inducers in tumors originating from nonepithelial/mesenchymal tissues, including brain tumors, hematopoietic malignancies, and sarcomas. Among these tumors, the involvement of mesenchymal transition has been most extensively investigated in glioblastoma, providing proof for cell autonomous and microenvironment-derived stimuli that provoke EMT-like processes that regulate stem cell, invasive, and immunogenic properties as well as therapy resistance. The involvement of prominent EMT transcription factor families, such as TWIST, SNAI, and ZEB, in promoting therapy resistance and tumor aggressiveness has also been reported in lymphomas, leukemias, and sarcomas. A reverse process, resembling mesenchymal-to-epithelial transition (MET), seems particularly relevant for sarcomas, where (partial) epithelial differentiation is linked to less aggressive tumors and a better patient prognosis. Overall, a hybrid model in which more stable epithelial and mesenchymal intermediates exist likely extends to the biology of tumors originating from sources other than the epithelium. Deeper investigation and understanding of the EMT/MET machinery in nonepithelial tumors will shed light on the pathogenesis of these tumors, potentially paving the way toward the identification of clinically relevant biomarkers for prognosis and future therapeutic targets.
Collapse
Affiliation(s)
- Ulf D Kahlert
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
35
|
Du Y, Jiang B, Song S, Pei G, Ni X, Wu J, Wang S, Wang Z, Yu J. Metadherin regulates actin cytoskeletal remodeling and enhances human gastric cancer metastasis via epithelial-mesenchymal transition. Int J Oncol 2017; 51:63-74. [PMID: 28534938 PMCID: PMC5467779 DOI: 10.3892/ijo.2017.4002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/28/2017] [Indexed: 12/17/2022] Open
Abstract
Metadherin (MTDH) can be recruited to mature tight junction complexes, and it regulates mesenchymal marker protein expression in many tumors and promote cancer metastasis. This study investigated the influence of MTDH expression on gastric cancer and to elucidate the potential mechanisms by which MTDH regulates actin cytoskeletal remodeling and enhances human gastric cancer metastasis via epithelial-mesenchymal transition (EMT). Relative MTDH mRNA expression levels were assessed by quantitative real-time PCR (Q-PCR), and MTDH protein expression levels and localization were evaluated via immunohistochemical (ICH) staining. We studied the role of MTDH in cancer cell migration and invasion by modulating MTDH expression in the gastric cancer cell lines MKN45 and AGS. We also confirmed the functions of MTDH through in vivo experiments. We found that MTDH expression levels were correlated with lymph node metastasis, TNM stages and decreased OS (P=0.002, <0.001 and 0.010, respectively) in human gastric cancer and that MTDH upregulation promoted EMT in vitro. Consistent with this finding, MTDH downregulation inhibited cell migration and invasion in vitro and suppressed tumor growth and metastasis in vivo. Furthermore, MTDH knockdown regulated actin cytoskeletal remodeling and inhibited EMT. Overall, our results provide a novel role for MTDH in regulating gastric cancer metastasis.
Collapse
Affiliation(s)
- Yaqiong Du
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Bojian Jiang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Shuzheng Song
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Guoqing Pei
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Xiaochun Ni
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Jugang Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Shoulian Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Zhengyuan Wang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Yangpu, Shanghai 200090, P.R. China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| |
Collapse
|
36
|
Long noncoding RNA FTX is upregulated in gliomas and promotes proliferation and invasion of glioma cells by negatively regulating miR-342-3p. J Transl Med 2017; 97:447-457. [PMID: 28112756 DOI: 10.1038/labinvest.2016.152] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022] Open
Abstract
Gliomas remain a major public health challenge, posing a high risk for brain tumor-related morbidity and mortality. However, the mechanisms that drive the development of gliomas remain largely unknown. Emerging evidence has shown that long noncoding RNAs are key factors in glioma pathogenesis. qRT-PCR analysis was used to assess the expression of FTX and miR-342-3p in the different stages of gliomas in tissues. Bioinformatics tool DIANA and TargetSCan were used to predict the targets of FTX and miR-342-3p, respectively. Pearson's correlation analysis was performed to test the correlation between the expression levels of FTX, miR-342-3p, and astrocyte-elevated gene-1 (AEG-1). To examine the role of FTX in regulating proliferation and invasion of glioma cells, specific siRNA was used to knockdown FTX, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and transwell assays were performed. Furthermore, rescue experiments were performed to further confirm the regulation of miR-342-3p by FTX. We then found that the expression of FTX and miR-342-3p was associated with progression of gliomas. FTX directly inhibited the expression of miR-342-3p, which subsequently regulates the expression of AEG-1. Collectively, FTX is critical for proliferation and invasion of glioma cells by regulating miR-342-3p and AEG-1. Our findings indicate that FTX and miR-342-3p may serve as a biomarker of glioma diagnosis, and offer potential novel therapeutic targets of treatment of gliomas.
Collapse
|
37
|
Zhang X, Zheng K, Li C, Zhao Y, Li H, Liu X, Long Y, Yao J. Nobiletin inhibits invasion via inhibiting AKT/GSK3β/β-catenin signaling pathway in Slug-expressing glioma cells. Oncol Rep 2017; 37:2847-2856. [PMID: 28339056 DOI: 10.3892/or.2017.5522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a pivotal event in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. In this study, we found that nobiletin, a polymethoxylated flavone, suppressed migration and invasion in both U87 and U251 glioma cells. Expression of epithelial markers (E-cadherin and occludin) was upregulated; mesenchymal markers (N-cadherin, fibronectin) and the transcriptional factor Slug were downregulated after nobiletin treatment. Transforming growth factor β (TGF-β) was applied to stimulate EMT and the results showed that nobiletin not only influenced basal level cell migration but also prevented TGF-β-triggered migration and EMT, with the AKT/GSK3β/β-catenin signaling pathway greatly involved. Furthermore, nobiletin remarkably diminished TGF-β-induced β-catenin nuclear translocation and the binding to the Slug promoter. It is worth noting that nobiletin almost blocked invasion in Slug-expressing U87 and U251 cells, and only exhibiting faint effect on non-Slug-expressing U343 glioma cells. Reinforced Slug expression in U343 cells by transfecting Slug plasmid was significantly attenuated by nobiletin, demonstrating the essential role of Slug in the anti-metastasis effect of nobiletin. Nobiletin repressed tumor growth in vivo and abrogated EMT in nude mice bearing U87-Luc xenografts, as demonstrated by Xenogen IVIS imaging and immunohistochemistry assay. Our findings suggested that nobiletin might have a great potential for treating glioblastoma.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Heyang Li
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xuguang Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yinbo Long
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
38
|
Baisantry A, Bhayana S, Wrede C, Hegermann J, Haller H, Melk A, Schmitt R. The impact of autophagy on the development of senescence in primary tubular epithelial cells. Cell Cycle 2016; 15:2973-2979. [PMID: 27715411 DOI: 10.1080/15384101.2016.1234547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy and senescence are 2 distinct pathways that are importantly involved in acute kidney injury and renal repair. Recent data indicate that the 2 processes might be interrelated. To investigate the potential link between autophagy and senescence in the kidney we isolated primary tubular epithelial cells (PTEC) from wild-type mice and monitored the occurrence of cellular senescence during autophagy activation and inhibition. We found that the process of cell isolation and transfer into culture was associated with a strong basal autophagic activation in PTEC. Specific inhibition of autophagy by silencing autophagy-related 5 (Atg5) counteracted the occurrence of senescence hallmarks under baseline conditions. Reduced senescent features were also observed in Atg5 silenced PTEC after γ-irradiation and during H-Ras induced oncogenic senescence, but the response was less uniform in these stress models. Senescence inhibition was paralleled by better preservation of a mature epithelial phenotype in PTEC. Interestingly, treatment with rapamycin, which acts as an activator of autophagy, also counteracted the occurrence of senescence features in PTEC. While we interpret the anti-senescent effect of rapamycin as an autophagy-independent effect of mTOR-inhibition, the more specific approach of Atg5 silencing indicates that overactivated autophagy can have pro-senescent effects in PTEC. These results highlight the complex interaction between cell culture dependent stress mechanisms, autophagy and senescence.
Collapse
Affiliation(s)
- Arpita Baisantry
- a Department of Nephrology , Children's Hospital , Hannover , Germany.,b Department of Kidney , Liver and Metabolic Diseases, Children's Hospital , Hannover , Germany
| | - Sagar Bhayana
- a Department of Nephrology , Children's Hospital , Hannover , Germany
| | - Christoph Wrede
- c Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,d Cluster of Excellence REBIRTH (Regenerative Biology to Reconstructive Therapy), Hannover Medical School , Hannover , Germany
| | - Jan Hegermann
- c Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,d Cluster of Excellence REBIRTH (Regenerative Biology to Reconstructive Therapy), Hannover Medical School , Hannover , Germany
| | - Hermann Haller
- a Department of Nephrology , Children's Hospital , Hannover , Germany
| | - Anette Melk
- b Department of Kidney , Liver and Metabolic Diseases, Children's Hospital , Hannover , Germany
| | - Roland Schmitt
- a Department of Nephrology , Children's Hospital , Hannover , Germany
| |
Collapse
|
39
|
Zou M, Duan Y, Wang P, Gao R, Chen X, Ou Y, Liang M, Wang Z, Yuan Y, Wang L, Zhu H. DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, blocks malignant glioblastoma growth and invasion by inhibiting AEG-1 and NF-κB signaling pathways. Sci Rep 2016; 6:27331. [PMID: 27251589 PMCID: PMC4890319 DOI: 10.1038/srep27331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been explored as a novel target for human glioma therapy, thus reflecting its potential contribution to gliomagenesis. In the present study, we investigated the effect of DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, on cell growth and invasion in glioblastoma (GBM) and uncovered the underlying mechanisms of this molecule. DYT-40 induces the intrinsic mitochondrial pathway of apoptosis and inhibits the epithelial-mesenchymal transition (EMT) and invasion of GBM cell lines. Furthermore, DYT-40 deactivates PI3K/Akt and MAPK pathways, suppresses AEG-1 expression, and inhibits NF-κB nuclear translocation. DYT-40 reduced the tumor volumes in a rat C6 glioma model by apoptotic induction. Moreover, HE staining demonstrated that the glioma rat model treated with DYT-40 exhibited better defined tumor margins and fewer invasive cells to the contralateral striatum compared with the vehicle control and temozolomide-treated rats. Microscopic examination showed a decrease in AEG-1-positive cells in DYT-40-treated rats compared with the untreated controls. DYT-40-treatment increases the in vivo apoptotic response of glioma cells to DYT-40 treatment by TUNEL staining. In conclusion, the inhibitory effects of DYT-40 on growth and invasion in GBM suggest that DYT-40 might be a potential AEG-1 inhibitor to prevent the growth and motility of malignant glioma.
Collapse
Affiliation(s)
- Meijuan Zou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yongtao Duan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Pengfei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Xuguan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Yingwei Ou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Mingxing Liang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Zhongchang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yi Yuan
- Jiangsu Key Laboratory of Oral Diseases; Department of oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Li Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hailiang Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|