1
|
Wang S, Wu X, Bi W, Xu J, Hou L, Li G, Pan Y, Zhang H, Li M, Du S, Zhang M, Liu D, Jin S, Shi X, Tian Y, Shuai J, Plikus MV, Song M, Zhou Z, Yu L, Lv C, Yu Z. ROS-induced cytosolic release of mitochondrial PGAM5 promotes colorectal cancer progression by interacting with MST3. Nat Commun 2025; 16:1406. [PMID: 39915446 PMCID: PMC11802746 DOI: 10.1038/s41467-025-56444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Aberrant release of mitochondrial reactive oxygen species (mtROS) in response to cellular stress is well known for promoting cancer progression. However, precise molecular mechanism by which mtROS contribute to epithelial cancer progression remains only partially understood. Here, using colorectal cancer (CRC) models, we show that upon sensing excessive mtROS, phosphatase PGAM5, which normally localizes to the mitochondria, undergoes aberrant cleavage by presenilin-associated rhomboid-like protein (PARL), becoming released into the cytoplasm. Cytosolic PGAM5 then directly binds to and dephosphorylates MST3 kinase. This, in turn, prevents STK25-mediated LATS1/2 phosphorylation, leading to YAP activation and CRC progression. Importantly, depletion of MST3 reciprocally promotes accumulation of cytosolic PGAM5 by inducing mitochondrial damage. Taken together, these findings demonstrate how mtROS promotes CRC progression by activating YAP via a post-transcriptional positive feedback loop between PGAM5 and MST3, both of which can serve as potential targets for developing next-generation anti-colon cancer therapeutics.
Collapse
Affiliation(s)
- Shiyang Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenxin Bi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Liyuan Hou
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwei Pan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hanfu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengzhen Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sujuan Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhua Tian
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhengquan Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Qiu X, Liu R, Ling H, Zhou Y, Ren X, Zhou F, Zhang J, Huang W, Wang Z, Ding K. Discovery of 5-aminopyrido[2,3-d]pyrimidin-7(8H)-one derivatives as new hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2024; 269:116310. [PMID: 38479166 DOI: 10.1016/j.ejmech.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling. While HPK1 is considered as a promising target for cancer immunotherapy, no small-molecule HPK1 inhibitors have been approved for cancer treatment. Herein, we report the discovery of a series of new HPK1 inhibitors with a 5-aminopyrido[2,3-d]pyrimidin-7(8H)-one scaffold. The most potent compound 9f inhibited HPK1 kinase activity with an IC50 of 0.32 nM in the time-resolved fluorescence resonance energy transfer (TR-FRET) assays, while displayed reasonable selectivity in a panel of 416 kinases. Cellular engagement of HPK1 by compound 9f was confirmed through the nano-bioluminescence resonance energy transfer (Nano-BRET) experiments. Compound 9f effectively reduced the phosphorylation of the downstream protein SLP-76 in primary peripheral blood mononuclear cells (PBMCs) and human T lymphocytic leukemia Jurkat cells. Compound 9f also enhanced the IL-2 and IFN-γ secretion in PBMCs. Furthermore, the binding mode of compound 9f with HPK1 was confirmed by the resolved cocrystal structure. Taken together, this study provides HPK1 inhibitors with a novel scaffold and clear binding mode for further development of HPK1-targeted therapeutic agents.
Collapse
Affiliation(s)
- Xiaorong Qiu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Rong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Huan Ling
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China.
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China.
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
3
|
Wang N, Jiang Y, Li M, Wang H, Pan J, Tang Y, Xie S, Xu Y, Li X, Zhou X, Xu P, Lin W, Wang X. Protein Kinase STK24 Promotes Tumor Immune Evasion via the AKT-PD-L1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304342. [PMID: 38229183 PMCID: PMC10966517 DOI: 10.1002/advs.202304342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/27/2023] [Indexed: 01/18/2024]
Abstract
Immunotherapy targeting PD-L1 is still ineffective for a wide variety of tumors with high unpredictability. Deploying combined immunotherapy with alternative targeting is practical to overcome this therapeutic resistance. Here, the deficiency of serine-threonine kinase STK24 is observed in tumor cells causing substantial attenuation of tumor growth in murine syngeneic models, a process relying on cytotoxic CD8+ T and NK cells. Mechanistically, STK24 in tumor cells associates with and directly phosphorylates AKT at Thr21, which promotes AKT activation and subsequent PD-L1 induction. Deletion or inhibition of STK24, by contrast, blocks IFN-γ-mediated PD-L1 expression. Various murine models indicate that in vivo silencing of STK24 can significantly enhance the efficacy of the anti-PD-1 blockade strategy. Elevated STK24 levels are observed in patient specimens in multiple tumor types and inversely correlated with intratumoral infiltration of cytotoxic CD8+ T cells and with patient survival. The study collectively identifies STK24 as a critical modulator of antitumor immunity, which engages in AKT and PD-L1/PD-1 signaling and is a promising target for combined immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Yu Jiang
- Department of Clinical LaboratorySecond Affiliated Hospital of Zhejiang UniversitySchool of MedicineHangzhouZhejiang310058China
| | - Mengjie Li
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Haofei Wang
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Pan
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Yang Tang
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Shaofang Xie
- Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhouZhejiang310024China
| | - Yunyang Xu
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xu Li
- Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhouZhejiang310024China
| | - Xuefei Zhou
- Department of PharmacologySchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Pinglong Xu
- Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Wenlong Lin
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation CenterThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
4
|
Amrhein JA, Berger LM, Balourdas DI, Joerger AC, Menge A, Krämer A, Frischkorn JM, Berger BT, Elson L, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Synthesis of Pyrazole-Based Macrocycles Leads to a Highly Selective Inhibitor for MST3. J Med Chem 2024; 67:674-690. [PMID: 38126712 DOI: 10.1021/acs.jmedchem.3c01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Julia Marie Frischkorn
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
6
|
Premsagar Miriyala V, Raj Thommandru P, Kashanna J, Govinda V, Ravi G, Kishore R. Design, Synthesis and Cytotoxicity of New Coumarin-1,2,3-triazole Derivatives: Evaluation of Anticancer Activity and Molecular Docking Studies. Chem Biodivers 2023; 20:e202300269. [PMID: 37204157 DOI: 10.1002/cbdv.202300269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
A library of new coumarin-1,2,3-triazole hybrids 7a-l were synthesized from 4-(diethylamino)-2-hydroxybenzaldehyde precursor through a series of reactions including Vilsmeier-Haack reaction and condensation reaction to achieve key intermediate oxime and further performed click reaction by using different aromatic azides. We screened all molecules in silico against crystal structure of Serine/threonine-protein kinase 24 (MST3), based on these results all molecules were screened for their cytotoxicity against human breast cancer MCF-7 and lung cancer A-549 cell lines. Compound 7 b (p-bromo) showed best activity against both cell lines MCF-7 and A-549 with IC50 value of 29.32 and 21.03 μM, respectively, in comparison to Doxorubicin corresponding IC50 value of 28.76 and 20.82 μM. Another compound 7 f (o-methoxy) also indicated good activity against both cell lines with IC50 value of 29.26 and 22.41 μM. The toxicity of all compounds tested against normal HEK-293 cell lines have not shown any adverse effects.
Collapse
Affiliation(s)
- Victor Premsagar Miriyala
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Prakash Raj Thommandru
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Jajula Kashanna
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies-Basar, Nirmal, 504107, India
| | - Varadhi Govinda
- Department of Chemistry, Gayatri Vidya Parishad College, Visakhapatnam, 530045, India
| | - Guguloth Ravi
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana-500007, India
| | - Ravada Kishore
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| |
Collapse
|
7
|
Getu AA, Zhou M, Cheng SY, Tan M. The mammalian Sterile 20-like kinase 4 (MST4) signaling in tumor progression: Implications for therapy. Cancer Lett 2023; 563:216183. [PMID: 37094736 PMCID: PMC10642761 DOI: 10.1016/j.canlet.2023.216183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Cancer is a leading cause of death in humans, with a complex and dynamic nature that makes it challenging to fully comprehend and treat. The Mammalian Sterile 20-Like Kinase 4 (MST4 or STK26) is a serine/threonine-protein kinase that plays a crucial role in cell migration and polarity in both normal and tumor cells via activation of intracellular signaling molecules and pathways. MST4 is involved in tumor cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), survival, and cancer metastasis through modulation of downstream signaling pathways including the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways. Additionally, MST4 interacts with programmed cell death 10 (PDCD10) to promote tumor proliferation and migration. MST4 phosphorylates autophagy related 4B cysteine peptidase (ATG4B) to mediate autophagy signaling, promote tumor cell survival and proliferation, and contribute to treatment resistance. Taken together, MST4 functions as an oncogene and is a promising therapeutic target which deserves further exploration.
Collapse
Affiliation(s)
- Ayechew A Getu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
8
|
de Azevedo ALK, Carvalho TM, Mara CS, Giner IS, de Oliveira JC, Gradia DF, Cavalli IJ, Ribeiro EMSF. Major regulators of the multi-step metastatic process are potential therapeutic targets for breast cancer management. Funct Integr Genomics 2023; 23:171. [PMID: 37211553 DOI: 10.1007/s10142-023-01097-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Metastasis is a multi-step process that leads to the dissemination of tumor cells to new sites and, consequently, to multi-organ neoplasia. Although most lethal breast cancer cases are related to metastasis occurrence, little is known about the dysregulation of each step, and clinicians still lack reliable therapeutic targets for metastasis impairment. To fill these gaps, we constructed and analyzed gene regulatory networks for each metastasis step (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis). Through topological analysis, we identified E2F1, EGR1, EZH2, JUN, TP63, and miR-200c-3p as general hub-regulators, FLI1 for cell-adhesion loss specifically, and TRIM28, TCF3, and miR-429 for angiogenesis. Applying the FANMOD algorithm, we identified 60 coherent feed-forward loops regulating metastasis-related genes associated with distant metastasis-free survival prediction. miR-139-5p, miR-200c-3p, miR-454-3p, and miR-1301-3p, among others, were the FFL's mediators. The expression of the regulators and mediators was observed to impact overall survival and to go along with metastasis occurrence. Lastly, we selected 12 key regulators and observed that they are potential therapeutic targets for canonical and candidate antineoplastics and immunomodulatory drugs, like trastuzumab, goserelin, and calcitriol. Our results highlight the relevance of miRNAs in mediating feed-forward loops and regulating the expression of metastasis-related genes. Altogether, our results contribute to understanding the multi-step metastasis complexity and identifying novel therapeutic targets and drugs for breast cancer management.
Collapse
Affiliation(s)
| | | | - Cristiane Sato Mara
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | - Igor Samesima Giner
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | | | - Daniela Fiori Gradia
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | - Iglenir João Cavalli
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | - Enilze M S F Ribeiro
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil.
| |
Collapse
|
9
|
Qiu J, Xiong J, Jiang L, Wang X, Zhang K, Yu H. Molecular mechanisms involved in regulating protein activity and biological function of MST3. Cell Div 2023; 18:8. [PMID: 37202821 DOI: 10.1186/s13008-023-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
Mammalian sterile 20-like (Ste20-like) protein kinase 3 (MST3) or serine/threonine-protein kinase 24 (STK24) is a serine/threonine protein kinase that belongs to the mammalian STE20-like protein kinase family. MST3 is a pleiotropic protein that plays a critical role in regulating a variety of events, including apoptosis, immune response, metabolism, hypertension, tumor progression, and development of the central nervous system. The MST3-mediated regulation is intricately related to protein activity, post-translational modification, and subcellular location. Here, we review the recent progress on the regulatory mechanisms against MST3 and its-mediated control of disease progression.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinmin Wang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yu
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
10
|
Serine/threonine-protein kinase STK24 induces tumorigenesis by regulating the STAT3/VEGFA signaling pathway. J Biol Chem 2023; 299:102961. [PMID: 36720310 PMCID: PMC10011487 DOI: 10.1016/j.jbc.2023.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related death. Although anti-angiogenesis therapy has been effective in the treatment of nonsmall cell lung cancer (NSCLC), drug-resistance is a common challenge. Therefore, there is a need to develop new therapeutic strategies for NSCLC. Serine/threonine-protein kinase 24 (STK24), also known as MST3, belongs to the germinal center kinase III subfamily, and the biological function of STK24 in NSCLC tumorigenesis and tumor angiogenesis is still unclear. In this study, we demonstrated that STK24 was overexpressed in lung cancer tissues compared with normal lung tissues, and lung cancer patients with higher STK24 expression levels had shorter overall survival time. In addition, our in vitro assays using A549 and H226 cell lines revealed that the STK24 expression level of cancer cells was positively correlated with cancer cells proliferation, migration, invasion, and tumor angiogenesis ability; in vivo assays also demonstrated that silencing of STK24 dramatically inhibited tumor progress and tumor angiogenesis. To investigate a mechanism, we revealed that STK24 positively regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor A (VEGFA) signaling pathway by inhibiting polyubiquitin-proteasomal-mediated degradation of STAT3. Furthermore, we performed in vivo assays in BALB/c nude mice and in vitro assays to show that STK24-regulated tumor angiogenesis depends on STAT3. These findings deepened our understanding of tumor angiogenesis, and the STK24/STAT3/VEGFA signaling pathway might be a novel therapeutic target for NSCLC treatment.
Collapse
|
11
|
Li Y, Liu Y, Wang K, Xue D, Huang Y, Tan Z, Chen Y. STK24 Promotes Progression of LUAD and Modulates the Immune Microenvironment. Mediators Inflamm 2023; 2023:8646088. [PMID: 37181807 PMCID: PMC10175013 DOI: 10.1155/2023/8646088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/06/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Recent studies have shown that serine/threonine-protein kinase 24 (STK24) plays an important role in cancer development. However, the significance of STK24 in lung adenocarcinoma (LUAD) remains to be determined. This study is aimed at investigating the significance of STK24 in LUAD. Methods STK24 was silenced and overexpressed by siRNAs and lentivirus, respectively. Cellular function was assessed by CCK8, colony formation, transwell, apoptosis, and cell cycle. mRNA and protein abundance was checked by qRT-PCR and WB assay, respectively. Luciferase reporter activity was evaluated to examine the regulation of KLF5 on STK24. Various public databases and tools were applied to investigate the immune function and clinical significance of STK24 in LUAD. Results We found that STK24 was overexpressed in lung adenocarcinoma (LUAD) tissues. High expression of STK24 predicted poor survival of LUAD patients. In vitro, STK24 enhanced the proliferation and colony growth ability of A549 and H1299 cells. STK24 knockdown induced apoptosis and cell cycle arrest at G0/G1 phase. Furthermore, Krüppel-like factor 5 (KLF5) activated STK24 in lung cancer cells and tissues. Enhanced lung cancer cell growth and migration triggered by KLF5 could be reversed by silencing of STK24. Finally, the bioinformatics results showed that STK24 may be involved in the regulation of the immunoregulatory process of LUAD. Conclusion KLF5 upregulation of STK24 contributes to cell proliferation and migration in LUAD. Moreover, STK24 may participate in the immunomodulatory process of LUAD. Targeting KLF5/STK24 axis may be a potential therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Yadong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhu Liu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Wang
- The Affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, China
| | - Dong Xue
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqin Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenguo Tan
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Xuan DTM, Yeh IJ, Su CY, Liu HL, Ta HDK, Anuraga G, Chiao CC, Wang CY, Yen MC. Prognostic and Immune Infiltration Value of Proteasome Assembly Chaperone (PSMG) Family Genes in Lung Adenocarcinoma. Int J Med Sci 2023; 20:87-101. [PMID: 36619227 PMCID: PMC9812804 DOI: 10.7150/ijms.78590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
The complexity of lung adenocarcinoma (LUAD) including many interacting biological processes makes it difficult to find therapeutic biomarkers for treatment. Previous studies demonstrated that PSMG (proteasome assembly chaperone) family members regulate the degradation of abnormal proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. Therefore, we used a holistic bioinformatics approach to explore PSMG genes involved in LUAD patients by integrating several high-throughput databases and tools including The Cancer Genome Atlas (TCGA), and Kaplan-Meier plotter database. These data demonstrated that PSMG3 and PSMG4 were expressed at significantly higher levels in neoplastic cells than in normal lung tissues. Notably, increased expressions of these proteins were correlated with poor prognoses of lung cancer patients, which probably confirmed their fundamental roles in the staging of LUAD tumors. Meanwhile, it was also indicated that there were positive correlations between PSMG family genes and the immune response, metabolism of ubiquinone, cell cycle regulatory pathways, and heat shock protein 90 (HSP90)/phosphatidylinositol 3-kinase (PI3K)/Wnt signaling. Experimental data also confirmed that the knockdown of PSMG4 in LUAD cell lines decreased cell proliferation and influenced expressions of downstream molecules. Collectively, this study revealed that PSMG family members are novel prognostic biomarkers for LUAD progression, which also provide new therapeutic targets of LUAD patients.
Collapse
Affiliation(s)
- Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Che-Yu Su
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Liang Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan.,Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, East Java, Surabaya 60234, Indonesia
| | - Chung-Chieh Chiao
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Xuan DTM, Wu CC, Kao TJ, Ta HDK, Anuraga G, Andriani V, Athoillah M, Chiao CC, Wu YF, Lee KH, Wang CY, Chuang JY. Prognostic and immune infiltration signatures of proteasome 26S subunit, non-ATPase (PSMD) family genes in breast cancer patients. Aging (Albany NY) 2021; 13:24882-24913. [PMID: 34839279 PMCID: PMC8660617 DOI: 10.18632/aging.203722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.
Collapse
Affiliation(s)
- Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Che Wu
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Chung-Chieh Chiao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Chiao CC, Liu YH, Phan NN, An Ton NT, Ta HDK, Anuraga G, Minh Xuan DT, Fitriani F, Putri Hermanto EM, Athoillah M, Andriani V, Ajiningrum PS, Wu YF, Lee KH, Chuang JY, Wang CY, Kao TJ. Prognostic and Genomic Analysis of Proteasome 20S Subunit Alpha (PSMA) Family Members in Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11122220. [PMID: 34943457 PMCID: PMC8699889 DOI: 10.3390/diagnostics11122220] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The complexity of breast cancer includes many interacting biological processes, and proteasome alpha (PSMA) subunits are reported to be involved in many cancerous diseases, although the transcriptomic expression of this gene family in breast cancer still needs to be more thoroughly investigated. Consequently, we used a holistic bioinformatics approach to study the PSMA genes involved in breast cancer by integrating several well-established high-throughput databases and tools, such as cBioPortal, Oncomine, and the Kaplan–Meier plotter. Additionally, correlations of breast cancer patient survival and PSMA messenger RNA expressions were also studied. The results demonstrated that breast cancer tissues had higher expression levels of PSMA genes compared to normal breast tissues. Furthermore, PSMA2, PSMA3, PSMA4, PSMA6, and PSMA7 showed high expression levels, which were correlated with poor survival of breast cancer patients. In contrast, PSMA5 and PSMA8 had high expression levels, which were associated with good prognoses. We also found that PSMA family genes were positively correlated with the cell cycle, ubiquinone metabolism, oxidative stress, and immune response signaling, including antigen presentation by major histocompatibility class, interferon-gamma, and the cluster of differentiation signaling. Collectively, these findings suggest that PSMA genes have the potential to serve as novel biomarkers and therapeutic targets for breast cancer. Nevertheless, the bioinformatic results from the present study would be strengthened with experimental validation in the future by prospective studies on the underlying biological mechanisms of PSMA genes and breast cancer.
Collapse
Affiliation(s)
- Chung-Chieh Chiao
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Yen-Hsi Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Fenny Fitriani
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Elvira Mustikawati Putri Hermanto
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Purity Sabila Ajiningrum
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jian-Ying Chuang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Correspondence: (C.-Y.W.); (T.-J.K.)
| | - Tzu-Jen Kao
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.W.); (T.-J.K.)
| |
Collapse
|
15
|
Anuraga G, Wang WJ, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, Minh Xuan DT, Ku SC, Wu YF, Andriani V, Athoillah M, Lee KH, Wang CY. Potential Prognostic Biomarkers of NIMA (Never in Mitosis, Gene A)-Related Kinase (NEK) Family Members in Breast Cancer. J Pers Med 2021; 11:1089. [PMID: 34834441 PMCID: PMC8625415 DOI: 10.3390/jpm11111089] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most common malignant cancer in women, with a staggering incidence of two million cases annually worldwide; therefore, it is crucial to explore novel biomarkers to assess the diagnosis and prognosis of breast cancer patients. NIMA-related kinase (NEK) protein kinase contains 11 family members named NEK1-NEK11, which were discovered from Aspergillus Nidulans; however, the role of NEK family genes for tumor development remains unclear and requires additional study. In the present study, we investigate the prognosis relationships of NEK family genes for breast cancer development, as well as the gene expression signature via the bioinformatics approach. The results of several integrative analyses revealed that most of the NEK family genes are overexpressed in breast cancer. Among these family genes, NEK2/6/8 overexpression had poor prognostic significance in distant metastasis-free survival (DMFS) in breast cancer patients. Meanwhile, NEK2/6 had the highest level of DNA methylation, and the functional enrichment analysis from MetaCore and Gene Set Enrichment Analysis (GSEA) suggested that NEK2 was associated with the cell cycle, G2M checkpoint, DNA repair, E2F, MYC, MTORC1, and interferon-related signaling. Moreover, Tumor Immune Estimation Resource (TIMER) results showed that the transcriptional levels of NEK2 were positively correlated with immune infiltration of B cells and CD4+ T Cell. Collectively, the current study indicated that NEK family genes, especially NEK2 which is involved in immune infiltration, and may serve as prognosis biomarkers for breast cancer progression.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Wei-Jan Wang
- Research Center for Cancer Biology, Department of Biological Science and Technology, China Medical University, Taichung 40604, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| |
Collapse
|
16
|
Prayugo FB, Kao TJ, Anuraga G, Ta HDK, Chuang JY, Lin LC, Wu YF, Wang CY, Lee KH. Expression Profiles and Prognostic Value of FABPs in Colorectal Adenocarcinomas. Biomedicines 2021; 9:1460. [PMID: 34680577 PMCID: PMC8533171 DOI: 10.3390/biomedicines9101460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the world's leading causes of cancer-related deaths; thus, it is important to detect it as early as possible. Obesity is thought to be linked to a large rise in the CRC incidence as a result of bad dietary choices, such as a high intake of animal fats. Fatty acid-binding proteins (FABPs) are a set of molecules that coordinate intracellular lipid responses and are highly associated with metabolism and inflammatory pathways. There are nine types of FABP genes that have been found in mammals, which are FABP1-7, FABP9, and FABP12. Each FABP gene has its own roles in different organs of the body; hence, each one has different expression levels in different cancers. The roles of FABP family genes in the development of CRC are still poorly understood. We used a bioinformatics approach to examine FABP family gene expression profiles using the Oncomine, GEPIA, PrognoScan, STRING, cBioPortal, MetaCore, and TIMER platforms. Results showed that the FABP6 messenger (m)RNA level is overexpressed in CRC cells compared to normal cells. The overexpression of FABP6 was found to be related to poor prognosis in CRC patients' overall survival. The immunohistochemical results in the Human Protein Atlas showed that FABP1 and FABP6 exhibited strong staining in CRC tissues. An enrichment analysis showed that high expression of FABP6 was significantly correlated with the role of microRNAs in cell proliferation in the development of CRC through the insulin-like growth factor (IGF) signaling pathway. FABP6 functions as an intracellular bile-acid transporter in the ileal epithelium. We looked at FABP6 expression in CRC since bile acids are important in the carcinogenesis of CRC. In conclusion, high FABP6 expression is expected to be a potential biomarker for detecting CRC at the early stage.
Collapse
Affiliation(s)
- Fidelia Berenice Prayugo
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
| | - Tzu-Jen Kao
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-J.K.); (J.-Y.C.)
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-J.K.); (J.-Y.C.)
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Chia Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
17
|
Zembroski AS, Andolino C, Buhman KK, Teegarden D. Proteomic Characterization of Cytoplasmic Lipid Droplets in Human Metastatic Breast Cancer Cells. Front Oncol 2021; 11:576326. [PMID: 34141606 PMCID: PMC8204105 DOI: 10.3389/fonc.2021.576326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
One of the characteristic features of metastatic breast cancer is increased cellular storage of neutral lipid in cytoplasmic lipid droplets (CLDs). CLD accumulation is associated with increased cancer aggressiveness, suggesting CLDs contribute to metastasis. However, how CLDs contribute to metastasis is not clear. CLDs are composed of a neutral lipid core, a phospholipid monolayer, and associated proteins. Proteins that associate with CLDs regulate both cellular and CLD metabolism; however, the proteome of CLDs in metastatic breast cancer and how these proteins may contribute to breast cancer progression is unknown. Therefore, the purpose of this study was to identify the proteome and assess the characteristics of CLDs in the MCF10CA1a human metastatic breast cancer cell line. Utilizing shotgun proteomics, we identified over 1500 proteins involved in a variety of cellular processes in the isolated CLD fraction. Interestingly, unlike other cell lines such as adipocytes or enterocytes, the most enriched protein categories were involved in cellular processes outside of lipid metabolism. For example, cell-cell adhesion was the most enriched category of proteins identified, and many of these proteins have been implicated in breast cancer metastasis. In addition, we characterized CLD size and area in MCF10CA1a cells using transmission electron microscopy. Our results provide a hypothesis-generating list of potential players in breast cancer progression and offers a new perspective on the role of CLDs in cancer.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
18
|
Qin Q, Shou J, Li M, Gu M, Meng Z, Xu P, Meng H, Wang X. Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Rep 2021; 35:109161. [PMID: 34038725 DOI: 10.1016/j.celrep.2021.109161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/27/2020] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Adipose tissue macrophages (ATMs) regulate the occurrence of obesity and its related diseases. Here, we found that serine/threonine protein kinase 24 (Stk24) expression is downregulated significantly in ATMs in obese subjects or obese subjects with type 2 diabetes and mice fed a high-fat diet (HFD). We further identified that glucolipotoxicity downregulated Stk24 expression in ATMs. Stk24-deficient mice develop severe HFD-induced metabolic disorders and insulin insensitivity. Mechanistically, Stk24 intervenes in NLRP3 inflammasome assembly in ATMs by associating directly with NLRP3, decreasing interleukin-1β (IL-1β) secretion. Accordingly, Stk24 deficiency in the hematopoietic system promotes NLRP3 inflammasome activation, which contributes to exacerbation of metabolic disorders. Intriguingly, Stk24 expression correlates negatively with body mass index (BMI) and the levels of glucose, cholesterol, triglycerides, and low-density lipoprotein in human subjects. These findings provide insights into the function and clinical implications of Stk24 in obesity-mediated metabolic disorders.
Collapse
Affiliation(s)
- Qiang Qin
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia'nan Shou
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mengjie Li
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meidi Gu
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hua Meng
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Chen PS, Hsu HP, Phan NN, Yen MC, Chen FW, Liu YW, Lin FP, Feng SY, Cheng TL, Yeh PH, Omar HA, Sun Z, Jiang JZ, Chan YS, Lai MD, Wang CY, Hung JH. CCDC167 as a potential therapeutic target and regulator of cell cycle-related networks in breast cancer. Aging (Albany NY) 2021; 13:4157-4181. [PMID: 33461170 PMCID: PMC7906182 DOI: 10.18632/aging.202382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
According to cancer statistics reported in 2020, breast cancer constitutes 30% of new cancer cases diagnosed in American women. Histological markers of breast cancer are expressions of the estrogen receptor (ER), the progesterone receptor (PR), and human epidermal growth factor receptor (HER)-2. Up to 80% of breast cancers are grouped as ER-positive, which implies a crucial role for estrogen in breast cancer development. Therefore, identifying potential therapeutic targets and investigating their downstream pathways and networks are extremely important for drug development in these patients. Through high-throughput technology and bioinformatics screening, we revealed that coiled-coil domain-containing protein 167 (CCDC167) was upregulated in different types of tumors; however, the role of CCDC167 in the development of breast cancer still remains unclear. Integrating many kinds of databases including ONCOMINE, MetaCore, IPA, and Kaplan-Meier Plotter, we found that high expression levels of CCDC167 predicted poor prognoses of breast cancer patients. Knockdown of CCDC167 attenuated aggressive breast cancer growth and proliferation. We also demonstrated that treatment with fluorouracil, carboplatin, paclitaxel, and doxorubicin resulted in decreased expression of CCDC167 and suppressed growth of MCF-7 cells. Collectively, these findings suggest that CCDC167 has high potential as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Pin-Shern Chen
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 70101, Taiwan, Republic of China
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh 700000, Vietnam
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Feng-Wei Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Yu-Wei Liu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 70101, Taiwan, Republic of China
| | - Fang-Ping Lin
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 70101, Taiwan, Republic of China
| | - Sheng-Yao Feng
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 70101, Taiwan, Republic of China
| | - Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.,Orthopedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Pei-Hsiang Yeh
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 70101, Taiwan, Republic of China
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Clinical Sciences, College of Pharmacy, Ajman University, Ajman 23000, United Arab Emirates.,Department of Pharmacology, Faculty of Pharmacy, BeniSuef University, Beni-Suef 62511, Egypt
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, Berkeley, CA 94710, USA
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, People's Republic of China
| | - Yi-Shin Chan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, Republic of China.,PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 70101, Taiwan, Republic of China.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| |
Collapse
|
20
|
Active RAC1 Promotes Tumorigenic Phenotypes and Therapy Resistance in Solid Tumors. Cancers (Basel) 2020; 12:cancers12061541. [PMID: 32545340 PMCID: PMC7352592 DOI: 10.3390/cancers12061541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acting as molecular switches, all three members of the Guanosine triphosphate (GTP)-ase-family, Ras-related C3 botulinum toxin substrate (RAC), Rho, and Cdc42 contribute to various processes of oncogenic transformations in several solid tumors. We have reviewed the distribution of patterns regarding the frequency of Ras-related C3 botulinum toxin substrate 1 (RAC1)-alteration(s) and their modes of actions in various cancers. The RAC1 hyperactivation/copy-number gain is one of the frequently observed features in various solid tumors. We argued that RAC1 plays a critical role in the progression of tumors and the development of resistance to various therapeutic modalities applied in the clinic. With this perspective, here we interrogated multiple functions of RAC1 in solid tumors pertaining to the progression of tumors and the development of resistance with a special emphasis on different tumor cell phenotypes, including the inhibition of apoptosis and increase in the proliferation, epithelial-to-mesenchymal transition (EMT), stemness, pro-angiogenic, and metastatic phenotypes. Our review focuses on the role of RAC1 in adult solid-tumors and summarizes the contextual mechanisms of RAC1 involvement in the development of resistance to cancer therapies.
Collapse
|
21
|
Rac1 activation in human breast carcinoma as a prognostic factor associated with therapeutic resistance. Breast Cancer 2020; 27:919-928. [PMID: 32314182 DOI: 10.1007/s12282-020-01091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND RAS-related C3 botulinus toxin substrate 1 (Rac1) is a molecular switch fluctuating between GDP-bound inactive form (Rac1-GDP) and GTP-bound active form (Rac1-GTP) and involved in diverse function in both normal and malignant cells such as breast carcinoma cells. Although several studies have demonstrated immunolocalization of Rac1 protein in human breast carcinoma tissues, activation status of Rac1 still remains to be elucidated. METHODS We immunolocalized active form of Rac1 (Rac1-GTP) as well as total Rac1 using antibody specific for them in 115 invasive breast carcinoma tissues and correlated with clinicopathological parameters and clinical outcomes. RESULTS Rac1-GTP was frequently immunolocalized in the cytoplasm or cell membrane of breast carcinoma cells and it was positively correlated with Ki-67 labeling index and total Rac1 while negatively correlated with progesterone receptor. On the other hand, immunohistochemical Rac1-GTP status was significantly correlated with increased risk of recurrence and breast cancer-specific mortality of breast cancer patients and multivariate analyses did demonstrate Rac1-GTP as an independent worse prognostic factor for both disease-free and breast cancer-specific survival. In addition, Rac1-GTP was still correlated with worse prognosis in the patients who had received adjuvant chemotherapy or endocrine therapy. CONCLUSION These findings suggested Rac1 activation played pivotal roles in the progression and therapeutic resistance of breast cancers and Rac1 might be an important therapeutic target for improvement of the therapy for breast cancer patients.
Collapse
|
22
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
23
|
Rachman M, Bajusz D, Hetényi A, Scarpino A, Merő B, Egyed A, Buday L, Barril X, Keserű GM. Discovery of a novel kinase hinge binder fragment by dynamic undocking. RSC Med Chem 2020; 11:552-558. [PMID: 33479656 PMCID: PMC7593776 DOI: 10.1039/c9md00519f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
A virtual screening workflow for fragment-sized kinase inhibitors is presented, along with a newly identified and validated hinge binder fragment.
One of the key motifs of type I kinase inhibitors is their interactions with the hinge region of ATP binding sites. These interactions contribute significantly to the potency of the inhibitors; however, only a tiny fraction of the available chemical space has been explored with kinase inhibitors reported in the last twenty years. This paper describes a workflow utilizing docking with rDock and dynamic undocking (DUck) for the virtual screening of fragment libraries in order to identify fragments that bind to the kinase hinge region. We have identified 8-amino-2H-isoquinolin-1-one (MR1), a novel and potent hinge binding fragment, which was experimentally tested on a diverse set of kinases, and is hereby suggested for future fragment growing or merging efforts against various kinases, particularly MELK. Direct binding of MR1 to MELK was confirmed by STD-NMR, and its binding to the ATP-pocket was confirmed by a new competitive binding assay based on microscale thermophoresis.
Collapse
Affiliation(s)
- Moira Rachman
- Facultat de Farmàcia and Institut de Biomedicina , Universitat de Barcelona , Av. Joan XXIII 27-31 , 08028 Barcelona , Spain.,Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - Dávid Bajusz
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - Anasztázia Hetényi
- Department of Medical Chemistry , University of Szeged , Dóm tér 8 , H-6720 Szeged , Hungary
| | - Andrea Scarpino
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - Balázs Merő
- Signal Transduction and Functional Genomics Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary
| | - Attila Egyed
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| | - László Buday
- Signal Transduction and Functional Genomics Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary
| | - Xavier Barril
- Facultat de Farmàcia and Institut de Biomedicina , Universitat de Barcelona , Av. Joan XXIII 27-31 , 08028 Barcelona , Spain.,Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluís Companys 23 , 08010 Barcelona , Spain
| | - György M Keserű
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar Tudósok Körútja 2 , Budapest 1117 , Hungary .
| |
Collapse
|
24
|
Kosok M, Alli-Shaik A, Bay BH, Gunaratne J. Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer. iScience 2020; 23:100868. [PMID: 32058975 PMCID: PMC7015993 DOI: 10.1016/j.isci.2020.100868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer lacking targeted therapies. This is attributed to its high heterogeneity that complicates elucidation of its molecular aberrations. Here, we report identification of specific proteome expression profiles pertaining to two TNBC subclasses, basal A and basal B, through in-depth proteomics analysis of breast cancer cells. We observed that kinases and proteases displayed unique expression patterns within the subclasses. Systematic analyses of protein-protein interaction and co-regulation networks of these kinases and proteases unraveled dysregulated pathways and plausible targets for each TNBC subclass. Among these, we identified kinases AXL, PEAK1, and TGFBR2 and proteases FAP, UCHL1, and MMP2/14 as specific targets for basal B subclass, which represents the more aggressive TNBC cell lines. Our study highlights intricate mechanisms and distinct targets within TNBC and emphasizes that these have to be exploited in a subclass-specific manner rather than a one-for-all TNBC therapy. Proteome profiling reveals functionally distinct subclasses within TNBC Kinases and proteases underlie unique functional signatures among the subclasses Kinase-protease-centric networks highlight subclass-specific molecular rewiring Protein association dysregulations reveal TNBC subclass-specific protein targets
Collapse
Affiliation(s)
- Max Kosok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Asfa Alli-Shaik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
25
|
Luo F, Zhou J, Wang S, Sun Z, Han Q, Bai C. microRNA-222 promotes colorectal cancer cell migration and invasion by targeting MST3. FEBS Open Bio 2019; 9:901-913. [PMID: 31034165 PMCID: PMC6487838 DOI: 10.1002/2211-5463.12623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Metastasis is one of the major causes of death in colorectal cancer (CRC) patients. MiR-222 has been reported to be an oncogene in many types of cancer. However, its role in CRC cell invasion and migration as well as CRC downstream signaling pathways remains largely unknown. Our study found that miR-222 overexpression promotes the migration and invasion of CRC cell lines, and miR-222 interference results, as expected, in inhibition of migration and invasion. Bioinformatic analysis and dual luciferase reporter assay showed that mammalian STE20-like protein kinase 3 (MST3) may be the target gene of miR-222. Down-expression of MST3 in CRC cell lines enhanced their migration and invasion, but overexpression of MST3 could attenuate miR-222 overexpression in the promotion of migration and invasion in colorectal cell lines. HCT116 cell lines overexpressing miR-222 were transplanted into nude mice resulting in more lung metastases than in the control group. Further study found that MST3 may play a role in paxillin phosphorylation to reduce adhesion, or increase the invadopodia. These findings demonstrate that miR-222 modulates MST3 and therefore plays a critical role in regulating CRC cell migration and invasion. Thus, miR-222 may be a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Fei Luo
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianfeng Zhou
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Ali NM, Niada S, Brini AT, Morris MR, Kurusamy S, Alholle A, Huen D, Antonescu CR, Tirode F, Sumathi V, Latif F. Genomic and transcriptomic characterisation of undifferentiated pleomorphic sarcoma of bone. J Pathol 2018; 247:166-176. [PMID: 30281149 DOI: 10.1002/path.5176] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Undifferentiated pleomorphic sarcoma of bone (UPSb) is a rare primary bone sarcoma that lacks a specific line of differentiation. There is very little information about the genetic alterations leading to tumourigenesis or malignant transformation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, can be challenging due to overlapping features. To explore the genomic and transcriptomic landscape of UPSb tumours, whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) were performed on UPSb tumours. All tumours lacked hotspot mutations in IDH1/2 132 or 172 codons, thereby excluding the diagnosis of dedifferentiated chondrosarcoma. Recurrent somatic mutations in TP53 were identified in four of 14 samples (29%). Moreover, recurrent mutations in histone chromatin remodelling genes, including H3F3A, ATRX and DOT1L, were identified in five of 14 samples (36%), highlighting the potential role of deregulated chromatin remodelling pathways in UPSb tumourigenesis. The majority of recurrent mutations in chromatin remodelling genes identified here are reported in COSMIC, including the H3F3A G34 and K36 hotspot residues. Copy number alteration analysis identified gains and losses in genes that have been previously altered in UPSb or UPS of soft tissue. Eight somatic gene fusions were identified by RNA-Seq, two of which, CLTC-VMP1 and FARP1-STK24, were reported previously in multiple cancers. Five gene fusions were genomically characterised. Hierarchical clustering analysis, using RNA-Seq data, distinctly clustered UPSb tumours from osteosarcoma and other sarcomas, thus molecularly distinguishing UPSb from other sarcomas. RNA-Seq expression profiling analysis and quantitative reverse transcription-polymerase chain reaction showed an elevated expression in FGF23, which can be a potential molecular biomarker for UPSb. To our knowledge, this study represents the first comprehensive WES and RNA-Seq analysis of UPSb tumours revealing novel protein-coding recurrent gene mutations, gene fusions and identifying a potential UPSb molecular biomarker, thereby broadening the understanding of the pathogenic mechanisms and highlighting the possibility of developing novel targeted therapeutics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Naser M Ali
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Anna T Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mark R Morris
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Sathishkumar Kurusamy
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Abdullah Alholle
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David Huen
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Tirode
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, Lyon, France
| | - Vaiyapuri Sumathi
- Department of Musculoskeletal Pathology, The Royal Orthopaedic Hospital, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Lee KT, Chang CL, Li CY, Song H, Shan YS, Lai MD. The oncogenic role of MST3 in human gastric cancer. Am J Cancer Res 2018; 8:2130-2139. [PMID: 30416862 PMCID: PMC6220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023] Open
Abstract
MST3 (mammalian STE20-like kinase) is one of the protein kinase of the GCK III subfamily STE 20, and is known to play a role in cell growth and apoptosis. Our laboratory has demonstrated that MST3 promotes tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. In this report, we further investigated the potential oncogenic role of MST3 in gastric cancer. Examination of tissue samples from 101 gastric cancer patients revealed that higher expression of MST3 was observed in tumor part with immunohistochemistry. Furthermore, high expression of MST3 predicts poor prognosis in gastric cancer patients. To investigate the function of MST3 in vitro, MKN45 and NCI-N87 cell lines were transfected with the MST3 shRNA and stable clones were established. Downregulation of MST3 inhibited cell proliferation. The p21 expression was enhanced by MST3 shRNA in MKN45 gastric cancer cell line. Finally, downregulation of MST3 attenuated the anchorage-independent growth in soft agar and tumor growth in NOD/SCID mice. Altogether, our results indicate that MST3 potentially plays an oncogenic role in gastric cancer.
Collapse
Affiliation(s)
- Kuo-Ting Lee
- Department of Surgery, National Cheng Kung University HospitalTainan, Taiwan, ROC
| | - Chia-Lin Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan, ROC
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan, ROC
| | - Hsianglin Song
- Taiwan University Hospital Hsin Chu BranchHsin Chu, Taiwan, ROC
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University HospitalTainan, Taiwan, ROC
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan, ROC
| |
Collapse
|
28
|
Chen M, Zhang H, Shi Z, Li Y, Zhang X, Gao Z, Zhou L, Ma J, Xu Q, Guan J, Cheng Y, Jiao S, Zhou Z. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer. J Biol Chem 2018; 293:14455-14469. [PMID: 30072378 DOI: 10.1074/jbc.ra118.003279] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian STE20-like protein kinase 1 (MST1)-MOB kinase activator 1 (MOB1) complex has been shown to suppress the oncogenic activity of Yes-associated protein (YAP) in the mammalian Hippo pathway, which is involved in the development of multiple tumors, including pancreatic cancer (PC). However, it remains unclear whether other MST-MOB complexes are also involved in regulating Hippo-YAP signaling and have potential roles in PC. Here, we report that mammalian STE20-like kinase 4 (MST4), a distantly related ortholog of the MST1 kinase, forms a complex with MOB4 in a phosphorylation-dependent manner. We found that the overall structure of the MST4-MOB4 complex resembles that of the MST1-MOB1 complex, even though the two complexes exhibited opposite biological functions in PC. In contrast to the tumor-suppressor effect of the MST1-MOB1 complex, the MST4-MOB4 complex promoted growth and migration of PANC-1 cells. Moreover, expression levels of MST4 and MOB4 were elevated in PC and were positively correlated with each other, whereas MST1 expression was down-regulated. Because of divergent evolution of key interface residues, MST4 and MOB4 could disrupt assembly of the MST1-MOB1 complex through alternative pairing and thereby increased YAP activity. Collectively, these findings identify the MST4-MOB4 complex as a noncanonical regulator of the Hippo-YAP pathway with an oncogenic role in PC. Our findings highlight that although MST-MOB complexes display some structural conservation, they functionally diverged during their evolution.
Collapse
Affiliation(s)
- Min Chen
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Hui Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Zhubing Shi
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Yehua Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Xiaoman Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Ziyang Gao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Li Zhou
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, and
| | - Jian Ma
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Qi Xu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Jingmin Guan
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Yunfeng Cheng
- the Department of Hematology and Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi Jiao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031,
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, .,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, and
| |
Collapse
|
29
|
Jiang Y, Tian M, Lin W, Wang X, Wang X. Protein Kinase Serine/Threonine Kinase 24 Positively Regulates Interleukin 17-Induced Inflammation by Promoting IKK Complex Activation. Front Immunol 2018; 9:921. [PMID: 29760709 PMCID: PMC5936754 DOI: 10.3389/fimmu.2018.00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Interleukin 17 (IL-17) is a key inflammatory cytokine that plays a critical role in tissue inflammation and autoimmune diseases. However, its signaling remains poorly understood. In this study, we identified serine/threonine kinase 24 (Stk24) as a positive modulator of IL-17-mediated signaling and inflammation. Stk24 deficiency or knockdown markedly inhibited IL-17-induced phosphorylation of NF-κB and impaired IL-17-induced chemokines and cytokines expression. Stk24 overexpression greatly enhanced IL-17-induced NF-κB activation and expression of chemokines and cytokines in a kinase activity-independent manner. The IL-17-induced inflammatory response was significantly reduced in Stk24-deficient mice. In addition, the severity of experimental autoimmune encephalomyelitis was markedly reduced in mice with a deficiency of Stk24 in non-hematopoietic cells. We further demonstrated that Stk24 directly interacts with TAK1 and IKKβ and promotes the formation of TAK1/IKK complexes, leading to enhanced IKKβ/NF-κB activation and downstream cytokines and chemokines induction. Collectively, our findings suggest that Stk24 plays an important role in controlling IL-17-triggered inflammation and autoimmune diseases and provides new insight into the therapeutic targets of IL-17-mediated inflammatory disease.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Miao Tian
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Wenlong Lin
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Xinyuan Wang
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Xiaojian Wang
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Deng Y, He R, Zhang R, Gan B, Zhang Y, Chen G, Hu X. The expression of HOXA13 in lung adenocarcinoma and its clinical significance: A study based on The Cancer Genome Atlas, Oncomine and reverse transcription-quantitative polymerase chain reaction. Oncol Lett 2018; 15:8556-8572. [PMID: 29805592 PMCID: PMC5950532 DOI: 10.3892/ol.2018.8381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Previous studies have investigated the association between HOXA13 and non-small cell lung cancer. However, the role of HOXA13 expression in the occurrence and progression of lung adenocarcinoma (LUAD) has not yet been investigated. In the present study, HOXA13-related data mining of The Cancer Genome Atlas (TCGA), polymerase chain reaction (PCR) data from our cases and the case information in Oncomine was conducted for validation. The expression data of HOXA13 in lung cancer cell lines were also collected from the Cancer Cell Line Encyclopedia (CCLE) database for further verification. A comprehensive meta-analysis of the expression of HOXA13 was also performed, integrating the data of TCGA, in-house PCR and Oncomine. Genes that were co-expressed with HOXA13 were subsequently identified through cBioPortal and Multi Experiment Matrix (MEM), and the potential role and mechanism of HOXA13 in LUAD was investigated. The expression value of HOXA13 in the LUAD group, which comprised 237 cases, was 3.74±2.694, significantly higher than its expression value in the non-cancerous group (0.92±0.608, P<0.001). The pooled SMD for HOXA13 was 0.346 (95% CI, 0.052–0.640; P=0.068; I2=51.3%; P=0.021), The meta-analysis of diagnostic tests revealed that the area under the summary receiver operating characteristic curve (SROC) was 0.78 (95% CI, 0.75–0.82). The results demonstrated that HOXA13 is highly expressed in LUAD. In addition to the studies on HOXA13 expression in tissues, the expression data of HOXA13 in lung cancer cell lines were also collected from the CCLE database for further verification of these conclusions. Genes that were co-expressed with HOXA13 were identified for pathway analysis. The most enriched Gene Ontology terms in the genes co-expressed with HOXA13 were positive regulation of transcription from RNA polymerase II promoter, signal transduction and positive regulation of GTPase activity in biological process; cytoplasm, integral component of membrane and plasma membrane in cellular component; and significantly involved in protein binding, transcription factor activity, sequence-specific DNA binding and sequence-specific DNA binding in molecular function. Kyoto Encyclopedia of Genes and Genomes analysis revealed that these target genes were clearly involved in Pathways in cancer, Proteoglycans in cancer and cAMP signaling pathway. The hub genes obtained from the four protein-protein interaction networks were associated with HOXA13. The results of the bioinformatics research in the present study revealed that HOXA13 may influence the expression of these hub genes in such a way as to promote the occurrence and development of LUAD. In conclusion, the expression of HOXA13 in patients with LUAD and its potential clinical value were analyzed comprehensively in the present study using data from a variety of sources. Through bioinformatics analysis, evidence that HOXA13 may promote the occurrence and development of LUAD was obtained.
Collapse
Affiliation(s)
- Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Binliang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaohua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
31
|
Huang N, Lin W, Shi X, Tao T. STK24 expression is modulated by DNA copy number/methylation in lung adenocarcinoma and predicts poor survival. Future Oncol 2018; 14:2253-2263. [PMID: 29557182 DOI: 10.2217/fon-2018-0126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To explore the independent prognostic value of STK24 expression in terms of overall survival and recurrence-free survival and the potential mechanisms of its dysregulation in non-small-cell lung adenocarcinoma. PATIENTS & METHODS Data were from the Cancer Genome Atlas-lung adenocarcinoma. RESULTS Increased STK24 expression was an independent prognostic indicator of unfavorable overall survival (Hazard ratio: 1.478; 95% CI: 1.149-1.901; p < 0.002) and recurrence-free survival (Hazard ratio: 1.855; 95% CI: 1.399-2.458; p < 0.001). DNA amplification was associated with significantly upregulated STK24 expression. There was a weak negative correlation between STK24 expression and its DNA methylation (Pearson's r = -0.32). CONCLUSION Aberrant STK24 expression was an independent prognostic indicator in lung adenocarcinoma patients. Its dysregulation was associated with its DNA copy number alteration and methylation.
Collapse
Affiliation(s)
- Ningyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Wenbo Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Xiuyu Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Tao Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
32
|
Transcription factor CUX1 is required for intestinal epithelial wound healing and targets the VAV2-RAC1 Signalling complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2347-2355. [DOI: 10.1016/j.bbamcr.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023]
|
33
|
Wang CY, Li CY, Hsu HP, Cho CY, Yen MC, Weng TY, Chen WC, Hung YH, Lee KT, Hung JH, Chen YL, Lai MD. PSMB5 plays a dual role in cancer development and immunosuppression. Am J Cancer Res 2017; 7:2103-2120. [PMID: 29218236 PMCID: PMC5714741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023] Open
Abstract
Tumor progression and metastasis are dependent on the intrinsic properties of tumor cells and the influence of microenvironment including the immune system. It would be important to identify target drug that can inhibit cancer cell and activate immune cells. Proteasome β subunits (PSMB) family, one component of the ubiquitin-proteasome system, has been demonstrated to play an important role in tumor cells and immune cells. Therefore, we used a bioinformatics approach to examine the potential role of PSMB family. Analysis of breast TCGA and METABRIC database revealed that high expression of PSMB5 was observed in breast cancer tissue and that high expression of PSMB5 predicted worse survival. In addition, high expression of PSMB5 was observed in M2 macrophages. Based on our bioinformatics analysis, we hypothesized that PSMB5 contained immunosuppressive and oncogenic characteristics. To study the effects of PSMB5 on the cancer cell and macrophage in vitro, we silenced PSMB5 expression with shRNA in THP-1 monocytes and MDA-MB-231 cells respectively. Knockdown of PSMB5 promoted human THP-1 monocyte differentiation into M1 macrophage. On the other hand, knockdown PSMB5 gene expression inhibited MDA-MB-231 cell growth and migration by colony formation assay and boyden chamber. Collectively, our data demonstrated that delivery of PSMB5 shRNA suppressed cell growth and activated defensive M1 macrophages in vitro. Furthermore, lentiviral delivery of PSMB5 shRNA significantly decreased tumor growth in a subcutaneous mouse model. In conclusion, our bioinformatics study and functional experiments revealed that PSMB5 served as novel cancer therapeutic targets. These results also demonstrated a novel translational approach to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, College of Medicine, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan, R.O.C
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Kuo-Ting Lee
- Department of Surgery, College of Medicine, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and ScienceTainan, Taiwan, R.O.C
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and ScienceTainan, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung UniversityTainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, National Cheng Kung UniversityTainan, Taiwan, R.O.C
| |
Collapse
|
34
|
李 勇, 檀 碧. Vav基因家族的分子调控机制及其与消化系恶性肿瘤的关系. Shijie Huaren Xiaohua Zazhi 2017; 25:2102-2108. [DOI: 10.11569/wcjd.v25.i23.2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vav基因家族包括Vav1、Vav2、Vav3基因, 在生理及病理过程中都发挥着重要的调控作用. 近年来发现Vav基因家族成员与消化系恶性肿瘤有较为密切的关系, 已取得了一些研究成果. 但迄今为止有关Vav基因家族成员与消化系恶性肿瘤关系的研究还不全面, 且有一些结果不一致. 因此, 总结Vav基因家族成员的调控机制并分析其在消化系恶性肿瘤中发挥的作用有可能对阐明发病机制、提出新的治疗靶点有益. 故本文对Vav基因家族的分子功能、调控机制及在消化系恶性肿瘤中的作用进行了综述及总结, 并对该基因家族的潜在价值进行了预测.
Collapse
|
35
|
Melzer C, Hass R, von der Ohe J, Lehnert H, Ungefroren H. The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell Commun Signal 2017; 15:19. [PMID: 28499439 PMCID: PMC5429551 DOI: 10.1186/s12964-017-0175-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
This article focusses on the role of TGF-β and its signaling crosstalk with the RHO family GTPases RAC1 and RAC1b in the progression of breast and pancreatic carcinoma. The aggressive nature of these tumor types is mainly due to metastatic dissemination. Metastasis is facilitated by desmoplasia, a peculiar tumor microenvironment and the ability of the tumor cells to undergo epithelial-mesenchymal transition (EMT) and to adopt a motile and invasive phenotype. These processes are controlled entirely or in part by TGF-β and the small RHO GTPase RAC1 with both proteins acting as tumor promoters in late-stage cancers. Data from our and other studies point to signaling crosstalk between TGF-β and RAC1 and the related isoform, RAC1b, in pancreatic and mammary carcinoma cells. Based on the exciting observation that RAC1b functions as an endogenous inhibitor of RAC1, we propose a model on how the relative abundance or activity of RAC1 and RAC1b in the tumor cells may determine their responses to TGF-β and, ultimately, the metastatic capacity of the tumor.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Hendrik Lehnert
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Hendrik Ungefroren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of General and Thoracic Surgery, UKSH, Campus Kiel, Kiel, Germany
| |
Collapse
|
36
|
Yen MC, Kan JY, Hsieh CJ, Kuo PL, Hou MF, Hsu YL. Association of long-chain acyl-coenzyme A synthetase 5 expression in human breast cancer by estrogen receptor status and its clinical significance. Oncol Rep 2017; 37:3253-3260. [PMID: 28498416 DOI: 10.3892/or.2017.5610] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
The lipid metabolic enzymes are considered candidate therapeutic targets for breast cancer. Long-chain acyl-coenzyme A (CoA) synthase (ACSL) is one of lipid metabolic enzymes and converts free-fatty acid to fatty acid-CoA. Five ACSL isoforms including ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6 are identified in human. High ACSL4 expression has been observed in aggressive breast cancer phenotype. However, the role of other isoforms is still little-known. We therefore, analyzed the expression of ACSL isoforms in each subtype of breast cancer within METABRIC dataset and cancer cell line encyclopedia dataset. The expression levels of ACSL1, ACSL4 and ACSL5 in estrogen receptor (ER)-negative group were higher than that in ER-positive group. Similar expression pattern was detected among breast cancer cell lines MCF-7 (ER-positive) and MDA-MB-231 (ER-negative). Treatment of ACSL inhibitor triacsin C which inhibited enzyme activity of ACSL 1, 3, 4 and 5 suppressed cell growth of MCF-7 and MDA-MB-231. Our results further showed that high ACSL5 expression was associated with good prognosis in patients with both ER-positive and ER-negative breast cancer through KM plotter analysis. These results suggest that ACSL1, ACSL4 and ACSL5 expression is regulated by ER signaling pathways and ACSL5 is a potential novel biomarker for predicting prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Jung-Yu Kan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chia-Jung Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|