1
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
2
|
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym 2024; 324:121555. [PMID: 37985117 DOI: 10.1016/j.carbpol.2023.121555] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
The large-scale collections, screening and discovery of biologically active and pharmacologically significant marine-derived natural products have garnered tremendous attraction. Edible brown algae are rich in fucoidan. Importantly, fucoidan has been reported to inhibit carcinogenesis and metastasis mainly through the regulation of deregulated cell signaling pathways. This review summarizes the structural features of fucoidan, including monosaccharide type, sulfate content, and main chain structure. We have set spotlight on fucoidan-mediated tumor suppressive effects in cell cultures studies and tumor-bearing rodent models. Fucoidan exerts anti-tumor effects primarily through the inhibition of tumor cell viability, proliferation and metastatic dissemination of cancer cells from primary tumor sites to distant secondary sites. Fucoidan not only promotes immunological responses in tumor microenvironment but also induces apoptotic death in cancer cells. In addition, fucoidan can be used as a dietary supplement for preventive purposes, in combination with other drugs as complementary and alternative medicine or with nanoparticle modifications will be the future of fucoidan use. Cutting-edge research related to fucoidan has catalyzed the transition of fucoidan from preclinical studies to different phases of clinical trials. Rationally designed clinical trials for the critical evaluation of fucoidan against different cancers will be valuable to reap full benefits.
Collapse
Affiliation(s)
- Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Zueva AO, Ermakova SP. The Combined Metabolically Oriented Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Its Carboxymethylated Derivative with 2-Deoxy-D-Glucose on Human Melanoma Cells. Int J Mol Sci 2023; 24:12050. [PMID: 37569428 PMCID: PMC10418387 DOI: 10.3390/ijms241512050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity. This work aimed to assess the metabolically oriented effect and mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and its carboxymethylated derivative (ScFCM) in combination with 2-deoxy-D-glucose (2-DG) on the proliferation and colony formation of human melanoma cell lines SK-MEL-28, SK-MEL-5, and RPMI-7951. The metabolic profile of melanoma cells was determined by the glucose uptake and Lactate-GloTM assays. The effect of 2-DG, ScF, ScFCM, and their combination on the proliferation, colony formation, and activity of glycolytic enzymes was assessed by the MTS, soft agar, and Western blot methods, respectively. When applied separately, 2-DG (IC50 at 72 h = 8.7 mM), ScF (IC50 at 72 h > 800 µg/mL), and ScFCM (IC50 at 72 h = 573.9 μg/mL) inhibited the proliferation and colony formation of SK-MEL-28 cells to varying degrees. ScF or ScFCM enhanced the inhibiting effect of 2-DG at low, non-toxic concentrations via the downregulation of Glut 1, Hexokinase II, PKM2, LDHA, and pyruvate dehydrogenase activities. The obtained results emphasize the potential of the use of 2-DG in combination with algal fucoidan or its derivative as metabolic modifiers for inhibition of melanoma SK-MEL-28 cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
4
|
Malyarenko OS, Usoltseva RV, Rasin AB, Ermakova SP. The carboxymethylated derivative of laminaran from brown alga Saccharina cichorioides: Structure, anticancer and anti-invasive activities in 3D cell culture. Int J Biol Macromol 2023; 226:803-812. [PMID: 36442557 DOI: 10.1016/j.ijbiomac.2022.11.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Polysaccharides' derivatives are promising biologically active compounds for biotechnology, nutrition, industries, and are becoming increasingly important in medicine and pharmacy. Laminaran from brown alga Saccharina cichorioides (ScL) was chemically modified to obtain the carboxymethylated derivative (ScLCM) with improved structure and bioactivity. ScLCM was identified as (1 → 3)-β-D-glucan with -CH2-COOH groups at some positions 2, 4, and 6 of glucose residues. The anticancer activity of ScLCM was studied on the models of viability and invasion of 3D human melanoma SK-MEL-28, breast cancer T-47D, and colorectal carcinoma DLD-1 cells in comparison with native laminaran or its sulfated or aminated derivatives. ScLCM had the highest anticancer and anti-invasive effects among investigated polysaccharides. ScLCM significantly suppressed the viability and invasion of 3D SK-MEL-28 cells via the regulation of the activity of matrix metalloproteinase 9 (MMP 9) and protein kinases of ERK/MAPK signaling pathway. These findings may contribute to the reported anticancer effects of algal polysaccharides' derivatives.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| | - Anton B Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| |
Collapse
|
5
|
Zueva AO, Usoltseva RV, Malyarenko OS, Surits VV, Silchenko AS, Anastyuk SD, Rasin AB, Khanh HHN, Thinh PD, Ermakova SP. Structure and chemopreventive activity of fucoidans from the brown alga Alaria angusta. Int J Biol Macromol 2023; 225:648-657. [PMID: 36395953 DOI: 10.1016/j.ijbiomac.2022.11.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Six fucoidan fractions were isolated from the brown alga Alaria angusta. Structures of enzymatic hydrolysis products of the fraction 1AaF2 (Fuc:Gal ~ 1:1; 33 % of sulfates) by fucanase from Wenyingzhuangia fucanilytica were studied by chemical and instrumental (NMR spectroscopy and mass-spectrometry) methods. It was shown that 1AaF2 consisted of two structurally different fucoidans: a sulfated 1,3;1,4-α-L-fucan and an enzyme-resistant sulfated and acetylated complex fucogalactan (Fuc:Gal ~ 1:2; 19 % of sulfates) 1AaF2_HMP containing extended 1,3-linked fucose and 1,3/1,4-linked galactose fragments (up to 5 residues). The fractions 1AaF2 and 1AaF2_HMP were a non-cytotoxic, possessed dose-dependent chemopreventive effect on EGF-induced neoplastic cell transformation of mouse normal epidermal JB6 Cl41 cells and inhibited the colony formation of human melanoma SK-MEL-28 cells.
Collapse
Affiliation(s)
- Anastasia O Zueva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Stanislav D Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Anton B Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Huynh Hoang Nhu Khanh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Pham Duc Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| |
Collapse
|
6
|
Srimongkol P, Songserm P, Kuptawach K, Puthong S, Sangtanoo P, Thitiprasert S, Thongchul N, Phunpruch S, Karnchanatat A. Sulfated polysaccharides derived from marine microalgae, Synechococcus sp. VDW, inhibit the human colon cancer cell line Caco-2 by promoting cell apoptosis via the JNK and p38 MAPK signaling pathway. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Díaz-Resendiz KJG, Toledo-Ibarra GA, Ruiz-Manzano R, Giron Perez DA, Covantes-Rosales CE, Benitez-Trinidad AB, Ramirez-Ibarra KM, Hermosillo Escobedo AT, González-Navarro I, Ventura-Ramón GH, Romero Castro A, Alam Escamilla D, Bueno-Duran AY, Girón-Pérez MI. Ex vivo treatment with fucoidan of mononuclear cells from SARS-CoV-2 infected patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2634-2652. [PMID: 34689674 DOI: 10.1080/09603123.2021.1982875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
COVID-19 is a worldwide health emergency, therapy for this disease is based on antiviral drugs and immunomodulators, however, there is no treatment to effectively reduce the COVID-19 mortality rate. Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, antiviral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for the recovery of COVID-19. This work aimed to determine the effects of ex-vivo treatment with fucoidan on cytotoxicity, apoptosis, necrosis, and senescence, besides functional parameters of calcium flux and mitochondrial membrane potential (ΔΨm) on human peripheral blood mononuclear cells isolated from SARS-CoV-2 infected, recovered and healthy subjects. Data suggest that fucoidan does not exert cytotoxicity or senescence, however, it induces the increment of intracellular calcium flux. Additionally, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered females. Data suggest that fucoidan could ameliorate the immune response in COVID-19 patients.
Collapse
Affiliation(s)
- K J G Díaz-Resendiz
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G A Toledo-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - R Ruiz-Manzano
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - D A Giron Perez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - C E Covantes-Rosales
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A B Benitez-Trinidad
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - K M Ramirez-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A T Hermosillo Escobedo
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - I González-Navarro
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G H Ventura-Ramón
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A Romero Castro
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - D Alam Escamilla
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - A Y Bueno-Duran
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| |
Collapse
|
8
|
Fu Y, Xie D, Zhu Y, Zhang X, Yue H, Zhu K, Pi Z, Dai Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front Med (Lausanne) 2022; 9:988507. [PMID: 36059851 PMCID: PMC9437318 DOI: 10.3389/fmed.2022.988507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They constitute a number of the most significant repositories of new therapeutic compounds for human use. Seaweed has been proven to possess diverse bioactive properties, which include anticancer properties. The present review focuses on colorectal cancer, which is a primary cause of cancer-related mortality in humans. In addition, it discusses various compounds derived from a series of seaweeds that have been shown to eradicate or slow the progression of cancer. Therapeutic compounds extracted from seaweed have shown activity against colorectal cancer. Furthermore, the mechanisms through which these compounds can induce apoptosis in vitro and in vivo were reviewed. This review emphasizes the potential utility of seaweeds as anticancer agents through the consideration of the capability of compounds present in seaweeds to fight against colorectal cancer.
Collapse
Affiliation(s)
- Yunhua Fu
- Changchun University of Chinese Medicine, Changchun, China
| | - Dong Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinghao Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Zhang
- Jilin Academy of Agricultural Machinery, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| | - Kai Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
- Zifeng Pi
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yulin Dai
| |
Collapse
|
9
|
Zhang H, Dong QQ, Shu HP, Tu YC, Liao QQ, Yao LJ. TOPK Activation Exerts Protective Effects on Cisplatin-induced Acute Kidney Injury. Curr Med Sci 2022; 42:742-753. [PMID: 35678915 DOI: 10.1007/s11596-022-2545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE T-LAK-cell-originated protein kinase (TOPK), a PSD95-Disc large-ZO1 (PDZ) binding kinase (PBK), is a novel member of the mitogen-activated protein kinase (MAPK) family. Studies have shown that TOPK plays a critical role in the function of tumor cells, including apoptosis and mitosis. However, little is known on the effect of TOPK in cisplatin-induced acute kidney injury (CP-AKI). This study aimed to investigate the role and mechanism of TOPK in CP-AKI. METHODS Cisplatin was administered to C57BL/6 mice and cultured kidney tubular epithelial cells (TECs) to establish the CP-AKI murine or cellular models. TECs were then stimulated with the specific inhibitor of TOPK OTS514 or transfected with the recombinant-activated plasmid TOPK-T9E to inhibit or activate TOPK. The TECs were treated with AKT inhibitor VIII following stimulation with OTS514 or cisplatin. Western blotting and flow cytometry were used to evaluate the cell cycle and apoptosis of TECs. RESULTS The analysis revealed that the TOPK activity was significantly suppressed by cisplatin, both in vivo and in vitro. Furthermore, the pharmacological inhibition of TOPK by OTS514, a specific inhibitor of TOPK, exacerbated the cisplatin-induced cell cycle arrest in the G2/M phase and apoptosis of cultured TECs. Moreover, the TOPK activation via the TOPK-T9E plasmid transfection could partially reverse the cell cycle arrest at the G2/M phase and apoptosis of cisplatin-treated TECs. In addition, AKT/protein kinase B (PKB), as a TOPK target protein, was inhibited by cisplatin in cultured TECs. The pharmaceutical inhibition of AKT further aggravated the apoptosis of TECs induced by cisplatin or TOPK inhibition. TOPK systematically mediated the apoptosis via the AKT pathway in the CP-AKI cell model. CONCLUSION These results indicate that TOPK activation protects against CP-AKI by ameliorating the G2/M cell cycle arrest and cell apoptosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing-Qing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Pan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian-Qian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Wang K, Wei J, Ma J, Jia Q, Liu Y, Chai J, Xu J, Xu T, Zhao D, Wang Y, Yan Q, Guo S, Guo X, Zhu F, Fan L, Li M, Wang Z. Phosphorylation of PBK/TOPK Tyr74 by JAK2 promotes Burkitt lymphoma tumor growth. Cancer Lett 2022; 544:215812. [PMID: 35780928 DOI: 10.1016/j.canlet.2022.215812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Burkitt lymphoma (BL), which is characterized by high invasiveness, is a subgroup of non-Hodgkin lymphoma. Although BL is regarded as a highly curable disease, especially for children, some patients unfortunately still do not respond adequately. The understanding of the etiology and molecular mechanisms of BL is still limited, and targeted therapies are still lacking. Here, we found that T-LAK cell-derived protein kinase (TOPK) and phosphorylated Janus kinase 2 (p-JAK2) are highly expressed in the tissues of BL patients. We report that TOPK directly binds to and is phosphorylated at Tyr74 by JAK2. Histone H3, one of the downstream targets of TOPK, is also phosphorylated in vivo and in vitro. Furthermore, we report that the phosphorylation of TOPK at Tyr74 by JAK2 plays a vital role in the proliferation of BL cells and promotes BL tumorigenesis in vivo. Phosphorylation of TOPK at Tyr74 by JAK2 enhances the stability of TOPK. Collectively, our results suggest that the JAK2/TOPK/histone H3 axis plays a key role in the proliferation of BL cells and BL tumorigenesis in vivo.
Collapse
Affiliation(s)
- Kaijing Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jie Wei
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Junpeng Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Danhui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Qingguo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Xinjian Guo
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining City, Qinghai Province, China
| | - Feng Zhu
- Cancer Research Institute, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China.
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
11
|
Díaz-Resendiz KJG, Covantes-Rosales CE, Benítez-Trinidad AB, Navidad-Murrieta MS, Razura-Carmona FF, Carrillo-Cruz CD, Frias-Delgadillo EJ, Pérez-Díaz DA, Díaz-Benavides MV, Zambrano-Soria M, Ventura-Ramón GH, Romero-Castro A, Alam-Escamilla D, Girón-Pérez MI. Effect of Fucoidan on the Mitochondrial Membrane Potential (ΔΨm) of Leukocytes from Patients with Active COVID-19 and Subjects That Recovered from SARS-CoV-2 Infection. Mar Drugs 2022; 20:99. [PMID: 35200630 PMCID: PMC8878973 DOI: 10.3390/md20020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, anti-viral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for COVID-19 recovery. This work aimed to determine the ex-vivo effects of treatment with fucoidan (20 µg/mL) on mitochondrial membrane potential (ΔΨm, using a cationic cyanine dye, 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)) on human peripheral blood mononuclear cells (HPBMC) isolated from healthy control (HC) subjects, COVID-19 patients (C-19), and subjects that recently recovered from COVID-19 (R1, 40 ± 13 days after infection). In addition, ex-vivo treatment with fucoidan (20 and 50 µg/mL) was evaluated on ΔΨm loss induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 150 µM) in HPBMC isolated from healthy subjects (H) and recovered subjects at 11 months post-COVID-19 (R2, 335 ± 20 days after infection). Data indicate that SARS-CoV-2 infection induces HPBMC loss of ΔΨm, even 11 months after infection, however, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered subjects. Therefore, fucoidan may be a potential treatment to diminish long-term sequelae from COVID-19, using mitochondria as a therapeutic target for the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Karina Janice Guadalupe Díaz-Resendiz
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Alma Betsaida Benítez-Trinidad
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Migdalia Sarahy Navidad-Murrieta
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Francisco Fabian Razura-Carmona
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Christian Daniel Carrillo-Cruz
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Edwin Jaime Frias-Delgadillo
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Daniela Alejandra Pérez-Díaz
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Matxil Violeta Díaz-Benavides
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Mercedes Zambrano-Soria
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Guadalupe Herminia Ventura-Ramón
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| | - Aurelio Romero-Castro
- División de Ciencias de la Salud, Universidad de Quintana Roo, Av. Erik Paolo Martínez S/N. Esquina Av. 4 de Marzo, Col. Magisterial, Chetumal 77039, Quintana Roo, Mexico;
| | - David Alam-Escamilla
- Departamento de Investigation, Desarrollo e Inovación, Earth and Life University, Selvamar, Paseo Selvamar, Playa del Carmen 77727, Quintana Roo, Mexico;
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N. Colonia. Cd. Industrial, Tepic 63173, Nayarit, Mexico; (K.J.G.D.-R.); (C.E.C.-R.); (A.B.B.-T.); (M.S.N.-M.); (F.F.R.-C.); (C.D.C.-C.); (E.J.F.-D.); (D.A.P.-D.); (M.V.D.-B.); (M.Z.-S.); (G.H.V.-R.)
| |
Collapse
|
12
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
13
|
Dyshlovoy SA. Recent Updates on Marine Cancer-Preventive Compounds. Mar Drugs 2021; 19:md19100558. [PMID: 34677457 PMCID: PMC8537284 DOI: 10.3390/md19100558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
The natural compounds derived from marine organisms often exhibit unique chemical structures and potent biological activities. Cancer-preventive activity is one of the rather new activities that has emerged and been extensively studied over the last decades. This review summarizes the recent updates on the marine chemopreventive compounds covering the relevant literature published in 2013-2021 and following the previous comprehensive review by Stonik and Fedorov (Marine Drugs 2014, 12, 636-671). In the current article, only the molecules having an effect on malignant transformation (or related pathway and molecules), cancer stem cells, or carcinogen-induced in vivo tumor development were considered to be "true" cancer-preventive compounds and were, therefore, reviewed. Additionally, particular attention has been given to the molecular mechanisms of chemoprevention, executed by the reported marine compounds.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
14
|
Malyarenko OS, Malyarenko TV, Usoltseva RV, Surits VV, Kicha AA, Ivanchina NV, Ermakova SP. Combined Anticancer Effect of Sulfated Laminaran from the Brown Alga Alaria angusta and Polyhydroxysteroid Glycosides from the Starfish Protoreaster lincki on 3D Colorectal Carcinoma HCT 116 Cell Line. Mar Drugs 2021; 19:540. [PMID: 34677439 PMCID: PMC8538801 DOI: 10.3390/md19100540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is one of the most frequent types of malignancy in the world. The search for new approaches of increasing the efficacy of cancer therapy is relevant. This work was aimed to study individual, combined anticancer effects, and molecular mechanism of action of sulfated laminaran AaLs of the brown alga Alaria angusta and protolinckiosides A (PL1), B (PL2), and linckoside L1 (L1) of the starfish Protoreaster lincki using a 3D cell culture model. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), soft agar, 3D spheroids invasion, and Western blotting assays were performed to determine the effect and mechanism of the action of investigated compounds or their combinations on proliferation, colony formation, and the invasion of 3D HCT 116 spheroids. AaLs, PL1, PL2, and L1 individually inhibited viability, colony growth, and the invasion of 3D HCT 116 spheroids in a variable degree with greater activity of linckoside L1. AaLs in combination with L1 exerted synergism of a combined anticancer effect through the inactivation of protein kinase B (AKT) kinase and, consequently, the induction of apoptosis via the regulation of proapoptotic/antiapoptotic proteins balance. The obtained data about the efficacy of the combined anticancer effect of a laminaran derivative of brown algae and polyhydroxysteroid glycosides of starfish open up prospects for the development of new therapeutic approaches for colorectal cancer treatment.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia; (T.V.M.); (R.V.U.); (V.V.S.); (A.A.K.); (N.V.I.); (S.P.E.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Malyarenko OS, Malyarenko TV, Usoltseva RV, Silchenko AS, Kicha AA, Ivanchina NV, Ermakova SP. Fucoidan from brown algae Fucus evanescens potentiates the anti-proliferative efficacy of asterosaponins from starfish Asteropsis carinifera in 2D and 3D models of melanoma cells. Int J Biol Macromol 2021; 185:31-39. [PMID: 34144063 DOI: 10.1016/j.ijbiomac.2021.06.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023]
Abstract
This study was aimed to determine the efficacy of combination of fucoidan from the brown algae Fucus evanescens (FeF) or its derivatives with thornasteroside A (ThA) or asteropsiside A (AsA) from the starfish Asteropsis carinifera in combating human melanoma cells. In vitro MTS and soft agar methods were performed to determine effect of FeF, its derivatives, ThA, AsA or their combination on proliferation and colony formation of SK-MEL-28 cells in 2D and 3D culture. Desulfation of FeF, but not deacetylation, led decreasing of its Mw and anti-proliferative activity. The combinatorial effect of FeF with ThA and AsA depended on the sequences of treatment by compounds. There was additive anticancer effect of FeF with ThA or AsA during simultaneous treatment of cells. ThA and AsA were not active against SK-MEL-28 cells after their pre-treatment with FeF. Potential synergism of action was identified only when SK-MEL-28 cells were pre-treated with ThA and AsA and then by FeF. This process going through the regulation of MEK1/2/ERK1/2/MSK1 pathway and expression of the cell cycle proteins as determined by Western Blot. Thus, the combination of fucoidan with the asterosaponins opens up the prospects for the development of effective combined chemotherapeutic methods for melanoma treatment.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| | - Timofey V Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation; Far Eastern Federal University, Sukhanova str. 8, 690000 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation
| | - Alla A Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| | - Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russian Federation.
| |
Collapse
|
16
|
Fonseca RJC, Mourão PAS. Pharmacological Activities of Sulfated Fucose-Rich Polysaccharides after Oral Administration: Perspectives for the Development of New Carbohydrate-Based Drugs. Mar Drugs 2021; 19:425. [PMID: 34436263 PMCID: PMC8400256 DOI: 10.3390/md19080425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Marine organisms are a source of active biomolecules with immense therapeutic and nutraceutical potential. Sulfated fucose-rich polysaccharides are present in large quantities in these organisms with important pharmacological effects in several biological systems. These polysaccharides include sulfated fucan (as fucoidan) and fucosylated chondroitin sulfate. The development of these polysaccharides as new drugs involves several important steps, among them, demonstration of the effectiveness of these compounds after oral administration. The oral route is the more practical, comfortable and preferred by patients for long-term treatments. In the past 20 years, reports of various pharmacological effects of these polysaccharides orally administered in several animal experimental models and some trials in humans have sparked the possibility for the development of drugs based on sulfated polysaccharides and/or the use of these marine organisms as functional food. This review focuses on the main pharmacological effects of sulfated fucose-rich polysaccharides, with an emphasis on the antidislipidemic, immunomodulatory, antitumor, hypoglycemic and hemostatic effects.
Collapse
Affiliation(s)
- Roberto J. C. Fonseca
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro 21941-913, Brazil;
- Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A. S. Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro 21941-913, Brazil;
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
17
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Ermakova SP. Aminated laminaran from brown alga Saccharina cichorioides: Synthesis, structure, anticancer, and radiosensitizing potential in vitro. Carbohydr Polym 2020; 250:117007. [PMID: 33049875 DOI: 10.1016/j.carbpol.2020.117007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Laminarans are currently the focus of attention in regard to the selection of prospective agents for the prevention and treatment of cancer. Laminaran from Saccharina cichorioides was aminated to heighten anticancer and radiosensitizing activities and elucidate its molecular mode of action. Aminated laminaran, ScLNH2, was identified as 1,3-β-d-glucan with -CH2-CH(OH)-CH2-NH2 group at the C6 of branches. ScLNH2 selectively inhibited the viability and colony formation in the MDA-MB-231 cell line of triple negative breast cancer cells. ScLNH2 possessed synergism with radiation, resulting in a decreased number of colonies of MDA-MB-231 cells. The mechanism underling the radiosensitizing effect of ScLNH2 was associated with apoptosis induction via regulation of caspases 9 and 3 and PARP enzyme, preventing the repair of DNA damage in irradiated cells. These findings confirmed that combination therapy by aminated laminaran and radiation might play a role in the optimization of therapy for an aggressive form of human breast cancer.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Roza V Usoltseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Artem S Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| |
Collapse
|
18
|
Barreca M, Spanò V, Montalbano A, Cueto M, Díaz Marrero AR, Deniz I, Erdoğan A, Lukić Bilela L, Moulin C, Taffin-de-Givenchy E, Spriano F, Perale G, Mehiri M, Rotter A, P. Thomas O, Barraja P, Gaudêncio SP, Bertoni F. Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Mar Drugs 2020; 18:md18120619. [PMID: 33291602 PMCID: PMC7761941 DOI: 10.3390/md18120619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, 38206 Tenerife, Spain;
| | - Ana R. Díaz Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), La Laguna, 38200 Tenerife, Spain;
| | - Irem Deniz
- Department of Bioengineering, Faculty of Engineering, Manisa Celal Bayar University, 45119 Manisa, Turkey;
| | - Ayşegül Erdoğan
- Research Center for Testing and Analysis (EGE MATAL), Ege University Application, 35100 İzmir, Turkey;
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Corentin Moulin
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Elisabeth Taffin-de-Givenchy
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Filippo Spriano
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Mohamed Mehiri
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Olivier P. Thomas
- Marine Biodiscovery Laboratory, School of Chemistry and Ryan Institute, National University of Ireland, Galway (NUI Galway), H91TK33 Galway, Ireland;
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Susana P. Gaudêncio
- UCIBIO—Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, Faculty of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Correspondence: (S.P.G.); (F.B.); Tel.: +351-21-2948300 (S.P.G.); +41-91-8200367 (F.B.)
| | - Francesco Bertoni
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
- Correspondence: (S.P.G.); (F.B.); Tel.: +351-21-2948300 (S.P.G.); +41-91-8200367 (F.B.)
| |
Collapse
|
19
|
Isolation, structures and biological activities of polysaccharides from Chlorella: A review. Int J Biol Macromol 2020; 163:2199-2209. [DOI: 10.1016/j.ijbiomac.2020.09.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
|
20
|
Kim H, Lim CY, Lee DB, Seok JH, Kim KH, Chung MS. Inhibitory Effects of Laminaria japonica Fucoidans Against Noroviruses. Viruses 2020; 12:E997. [PMID: 32906822 PMCID: PMC7552056 DOI: 10.3390/v12090997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
Norovirus is the leading cause of nonbacterial foodborne disease outbreaks. Human noroviruses (HuNoVs) bind to histo-blood group antigens as the host receptor for infection. In this study, the inhibitory effects of fucoidans from brown algae, Laminaria japonica (LJ), Undaria pinnatifida and Undaria pinnatifida sporophyll, were evaluated against murine norovirus (MNoV), feline calicivirus (FCV) and HuNoV. Pretreatment of MNoV or FCV with the fucoidans at 1 mg/mL showed high antiviral activities, with 1.1 average log reductions of viral titers in plaque assays. They also showed significant inhibition on the binding of the P domains of HuNoV GII.4 and GII.17 to A- or O-type saliva and the LJ fucoidan was the most effective, reaching 54-72% inhibition at 1 mg/mL. In STAT1-/- mice infected with MNoV, oral administration of the LJ fucoidan, composed of mainly sulfated fucose and minor amounts of glucose and galactose, improved the survival rates of mice and significantly reduced the viral titers in their feces. Overall, these results provide the LJ fucoidan can be used to reduce NoV outbreaks.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea; (H.K.); (C.Y.L.)
| | - Chae Yeon Lim
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea; (H.K.); (C.Y.L.)
| | - Dan Bi Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea; (D.B.L.); (J.H.S.)
| | - Jong Hyeon Seok
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea; (D.B.L.); (J.H.S.)
| | - Kyung Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea; (D.B.L.); (J.H.S.)
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea; (H.K.); (C.Y.L.)
| |
Collapse
|
21
|
Bae H, Lee JY, Yang C, Song G, Lim W. Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis. Mar Drugs 2020; 18:E45. [PMID: 31936539 PMCID: PMC7024155 DOI: 10.3390/md18010045] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Marine organisms are sources of several natural compounds with potential clinical use. However, only a few marine-based pharmaceuticals have been approved for use due to limited knowledge on their biological activities. Here, we identified the functional role of fucoidan extracted from Fucus vesiculosus on ovarian cancer. Fucoidan increased the death of ES-2 and OV-90 cells, through a reduction in proliferation, cell cycle arrest, releases of cytochrome c, reactive oxygen species (ROS) generation, and endoplasmic reticulum (ER) stress. Additionally, fucoidan increased the concentration of cytosolic and mitochondrial calcium in both cells. The decrease of cell proliferation was controlled by the inactivation of PI3K and MAPK signaling cascades in ES-2 and OV-90 cells. In a toxicity assay with normal zebrafish larvae, fucoidan did not induce toxicity, cardiotoxicity, development, kinesis, and apoptosis at different concentrations. However, it disrupted tumor formation and vascular development in a zebrafish xenograft model and angiogenesis transgenic (Tg, fli1-eGFP) model, respectively. Collectively, the results indicate that fucoidan may be a novel pharmaceutical for the management of human ovarian cancer.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Changwon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
22
|
You L, Gong Y, Li L, Hu X, Brennan C, Kulikouskaya V. Beneficial effects of three brown seaweed polysaccharides on gut microbiota and their structural characteristics: An overview. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lijun You
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640China
| | - Yufeng Gong
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300China
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln, Canterbury 7608New Zealand
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials National Academy of Sciences of Belarus 36F. Skaryna str. Minsk 220141Belarus
| |
Collapse
|
23
|
Degraded fucoidan fractions and β-1,3-glucan sulfates inhibit CXCL12-induced Erk1/2 activation and chemotaxis in Burkitt lymphoma cells. Int J Biol Macromol 2019; 143:968-976. [PMID: 31726164 DOI: 10.1016/j.ijbiomac.2019.09.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Fucoidans are natural polysaccharides with pronounced antitumoral activities. Their modes of action include the antagonization of the chemokine CXCL12, which plays a central role in tumor development and metastasis. However, the usually high molecular mass (Mw) of fucoidans represents an obstacle to their medical application. We therefore investigated two series of degraded fucoidan fractions with regard to their CXCL12 binding and inhibition of CXCL12-induced effects in Raji cells. In addition, semisynthetic β-1,3-glucan sulfates were examined to get more information about the impact of Mw and degree of sulfation (DS). Degradation of the fucoidans from Saccharina latissima (S.l.-SP; 481-77.0 kDa) and Fucus vesiculosus (F.v.-SP; 38.2-20.6 kDa) did not affect the respective binding capacity to CXCL12. Both the Mw independence and the DS dependence were confirmed by the β-1,3-glucan sulfates having significantly higher affinity to CXCL12. The chemokine binding resulted in reduced CXCL12-induced Erk1/2 signaling and chemotaxis of Raji cells which was also independent of the Mw. Solely the oxidatively degraded fucoidan fraction displayed a significantly reduced chemotaxis inhibition. In conclusion, degradation of fucoidans to obtain biopharmaceutically more favorable Mw is possible without impairing their activities targeting CXCL12. Moreover, the β-1,3-glucan sulfates should also be considered as promising candidates for further development.
Collapse
|
24
|
Structure, antiproliferative and cancer preventive properties of sulfated α-d-fucan from the marine bacterium Vadicella arenosi. Carbohydr Polym 2019; 221:120-126. [DOI: 10.1016/j.carbpol.2019.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
|
25
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 435] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
26
|
Sajadimajd S, Momtaz S, Haratipour P, El-Senduny FF, Panah AI, Navabi J, Soheilikhah Z, Farzaei MH, Rahimi R. Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides. Curr Pharm Des 2019; 25:1210-1235. [DOI: 10.2174/1381612825666190425155126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Background:
Algal polysaccharide and oligosaccharide derivatives have been shown to possess a
variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar
monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent
progress of algal polysaccharides’ therapeutic applications as anticancer agents, as well as underlying cellular and
molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides
with anticancer activities were illustrated.
Methods:
Electronic databases including “Scopus”, “PubMed”, and “Cochrane library” were searched using the
keywords “cancer”, or “tumor”, or “malignancy” in title/abstract, along with “algae”, or “algal” in the whole text
until July 2018. Only English language papers were included.
Results:
The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans,
Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo.
The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest,
modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation
of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/
CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular
signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides
against oncogenesis.
Conclusion:
Algal polysaccharides play a crucial role in the management of cancer and may be considered the
next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy
and safety of algal polysaccharides in patients with cancer.
Collapse
Affiliation(s)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fardous F. El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amin Iran Panah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Navabi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Soheilikhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran
| |
Collapse
|
27
|
Zhao R, Huang H, Choi BY, Liu X, Zhang M, Zhou S, Song M, Yin F, Chen H, Shim JH, Bode AM, Dong Z, Lee MH. Cell growth inhibition by 3-deoxysappanchalcone is mediated by directly targeting the TOPK signaling pathway in colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152813. [PMID: 31035049 DOI: 10.1016/j.phymed.2018.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most common causes of cancer death worldwide. Unfortunately, chemotherapies are limited due to many complications and development of resistance and recurrence. The T-lymphokine-activated killer cell-originated protein kinase (TOPK) is highly expressed and activated in colon cancer, and plays an important role in inflammation, proliferation, and survival of cancer cells. Therefore, suppressing TOPK activity and its downstream signaling cascades is considered to be a rational therapeutic/preventive strategy against colon cancers. PURPOSE 3-Deoxysappanchalcone (3-DSC), a component of Caesalpinia sappan L., is a natural oriental medicine. In this study, we investigated the effects of 3-DSC on colon cancer cell growth and elucidated its underlying molecular mechanism of targeting TOPK. STUDY DESIGN AND METHODS To evaluate the effects of 3-DSC against colon cancer, we performed cell proliferation assays, propidium iodide- and annexin V-staining analyses and Western blotting. Targeting TOPK by 3-DSC was identified by a kinase-binding assay and computational docking models. RESULTS 3-DSC inhibited the kinase activity of TOPK, but not mitogen-activated protein kinase (MEK). The direct binding of 3-DSC with TOPK was explored using a computational docking model and binding assay in vitro and ex vivo. 3-DSC inhibited colon cancer cell proliferation and anchorage-independent cell growth, and induced G2/M cell cycle arrest and apoptosis. Treatment of colon cancer cells with 3-DSC induced expression of protein that are involved in cell cycle (cyclin B1) and apoptosis (cleaved-PARP, cleaved-caspase-3, and cleaved-caspase-7), and suppressed protein expressions of extracellular signal-regulated kinase (ERK)-1/2, ribosomal S6 kinase (RSK), and c-Jun, which are regulated by the upstream kinase, TOPK. CONCLUSION 3-DSC suppresses colon cancer cell growth by directly targeting the TOPK- mediated signaling pathway.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Hai Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, South Korea
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Man Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Silei Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 58554, South Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China; The Hormel Institute, University of Minnesota, Austin MN55912, USA; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.
| |
Collapse
|
28
|
Zhang J, Liu L, Chen F. Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol 2019; 134:976-983. [DOI: 10.1016/j.ijbiomac.2019.05.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
|
29
|
Zhang J, Liu L, Ren Y, Chen F. Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biol Macromol 2019; 128:761-767. [DOI: 10.1016/j.ijbiomac.2019.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 02/08/2023]
|
30
|
Malyarenko OS, Usoltseva RV, Zvyagintseva TN, Ermakova SP. Laminaran from brown alga Dictyota dichotoma and its sulfated derivative as radioprotectors and radiosensitizers in melanoma therapy. Carbohydr Polym 2019; 206:539-547. [PMID: 30553355 DOI: 10.1016/j.carbpol.2018.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
The laminarans are neutral water-soluble β-D-glucans of brown algae possessing potent immunomodulating, radioprotective, and anticancer activities. The aim of the present study was to investigate in vitro anticancer, radioprotective, and radiosensitizing activities of laminaran from brown alga Dictyota dichotoma and its sulfated derivative. The native and sulfated laminarans by themselves at non-toxic doses possessed significant anticancer activity against melanoma cells. Both polysaccharides protected normal epidermal cells, while only sulfated laminaran was able to sensitize melanoma cells to X-rays irradiation resulting in significant inhibition of cell proliferation, colony formation, and migration of cancer cells. The molecular mechanism of this action was related to the inhibition of MMP-2 and MMP-9 proteinases activity as well as down-regulation of kinases' phosphorylation of ERK1/2 signaling cascade. Taken together, the combination of sulfated derivative of laminaran from D. dichotoma with X-ray may serve as a potential treatment strategy for human melanoma.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Roza V Usoltseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Tatyana N Zvyagintseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| |
Collapse
|
31
|
Malyarenko OS, Zdobnova EV, Silchenko AS, Kusaykin MI, Ermakova SP. Radiosensitizing effect of the fucoidan from brown alga Fucus evanescens and its derivative in human cancer cells. Carbohydr Polym 2019; 205:465-471. [PMID: 30446129 DOI: 10.1016/j.carbpol.2018.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023]
Abstract
Fucoidan from brown alga Fucus evanescens and its product of enzymatic hydrolysis have precisely established structure and possess significant biological activities. The aim of present study was to determine radiosensitizing activity of fucoidan from brown alga F. evanescens and its derivative in human melanoma, breast adenocarcinoma, and colorectal carcinoma cell lines and elucidate mechanism of their action. The fucoidan from F. evanescens and its derivative had a comparable radiosensitizing activity and increased the inhibiting effect of X-ray radiation on proliferation and colony formation of human cancer cells, with significant inhibition of melanoma cells. The molecular mechanism of this action was associated with the induction of apoptosis by activating the initiator and effector caspases, suppressing the expression of the anti-apoptotic protein, and enhancing the fragmentation of DNA. The obtained data confirm the prospects of using fucoidan's derivative in combination with radiation therapy for the improvement of the schemes of cancer therapy.
Collapse
Affiliation(s)
- O S Malyarenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - E V Zdobnova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - A S Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - M I Kusaykin
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - S P Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| |
Collapse
|
32
|
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019; 17:E32. [PMID: 30621045 PMCID: PMC6356449 DOI: 10.3390/md17010032] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure⁻activity relationship of fucoidan from the most promising seaweed species.
Collapse
Affiliation(s)
- Geert van Weelden
- Faculty of Science, (Medical) Biology, Radboud University, 6525 XZ Nijmegen, The Netherlands.
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | - Johanna M A Pijnenborg
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
33
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Lu J, Shi KK, Chen S, Wang J, Hassouna A, White LN, Merien F, Xie M, Kong Q, Li J, Ying T, White WL, Nie S. Fucoidan Extracted from the New Zealand Undaria pinnatifida-Physicochemical Comparison against Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Cell Lines. Mar Drugs 2018; 16:E461. [PMID: 30469516 PMCID: PMC6316445 DOI: 10.3390/md16120461] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Fucoidan, the complex fucose-containing sulphated polysaccharide varies considerably in structure, composition, and bioactivity, depending on the source, species, seasonality, and extraction method. In this study, we examined five fucoidans extracted from the same seaweed species Undaria pinnatifida but from different geological locations, and compared them to the laboratory-grade fucoidan from Sigma (S). The five products differed in molecular composition. The amount of over 2 kDa low molecular weight fraction (LMWF) of the New Zealand crude fucoidan (S1) was larger than that of S, and this fraction was unique, compared to the other four fucoidans. The difference of molecular compositions between S and S1 explained our previous observation that S1 exhibited different anticancer profile in some cancer cell lines, compared with S. Since we observed this unique LMWF, we compared the cytotoxic effects of a LMWF and a high molecular weight fucoidan (HMWF) in two breast cancer cell lines-MCF-7 and MDA-MB-231. Results indicated that the molecular weight is a critical factor in determining the anti-cancer potential of fucoidan, from the New Zealand U. pinnatifida, as the LMWF exhibited a dose-dependent inhibition on the proliferation of breast cancer cells, significantly better than the HMWF, in both cell lines. A time-dependent inhibition was only observed in the MCF-7. Induction of caspase-dependent apoptosis was observed in the MDA-MB-231 cells, through the intrinsic apoptosis pathway alone, or with the extrinsic pathway. LMWF stimulated a dose-dependent NOS activation in the MDA-MB-231 cells. In conclusion, the fucoidan extracted from the New Zealand U. pinnatifida contains a unique LMWF, which could effectively inhibit the growth of breast cancer cell lines. Therefore, the LMWF from New Zealand U. pinnatifida could be used as a supplement cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Keyu Kally Shi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shuping Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt.
| | - Loretta Nicole White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Fabrice Merien
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qingjun Kong
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
35
|
Yang X, Wang S, Trangle SS, Li Y, White WL, Li J, Ying T, Kong Q, Zhao Y, Lu J. Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida in Combination with GroA Therapy in Prostate Cancer Cell Lines. Mar Drugs 2018; 16:E454. [PMID: 30453677 PMCID: PMC6266598 DOI: 10.3390/md16110454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (<10 kDa) and compared it with laboratory grade Fucoidan purchased from Sigma (FS), all extracted from the same seaweed species U. pinnatifida. We found that LMWF significantly improved the anti-proliferative effect of GroA, as it decreased cancer cell growth and viability and increased cell death. This research may provide the foundation for LMWF to be used against prostate cancers as a supplement therapy in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Sheng Wang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | | | - Yan Li
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
36
|
Catarino MD, Silva AMS, Cardoso SM. Phycochemical Constituents and Biological Activities of Fucus spp. Mar Drugs 2018; 16:E249. [PMID: 30060505 PMCID: PMC6117670 DOI: 10.3390/md16080249] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022] Open
Abstract
Seaweeds are known to be a good supply of key nutrients including carbohydrates, protein, minerals, polyunsaturated lipids, as well as several other health-promoting compounds capable of acting on a wide spectrum of disorders and/or diseases. While these marine macroalgae are deeply rooted in the East Asian culture and dietary habits, their major application in Western countries has been in the phycocolloid industry. This scenario has however been gradually changing, since seaweed consumption is becoming more common worldwide. Among the numerous edible seaweeds, members of the genus Fucus have a high nutritional value and are considered good sources of dietary fibers and minerals, especially iodine. Additionally, their wealth of bioactive compounds such as fucoidan, phlorotannins, fucoxanthin and others make them strong candidates for multiple therapeutic applications (e.g., antioxidant, anti-inflammatory, anti-tumor, anti-obesity, anti-coagulant, anti-diabetes and others). This review presents an overview of the nutritional and phytochemical composition of Fucus spp., and their claimed biological activities, as well as the beneficial effects associated to their consumption. Furthermore, the use of Fucus seaweeds and/or their components as functional ingredients for formulation of novel and enhanced foods is also discussed.
Collapse
Affiliation(s)
- Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
37
|
Ishikawa C, Senba M, Mori N. Mitotic kinase PBK/TOPK as a therapeutic target for adult T‑cell leukemia/lymphoma. Int J Oncol 2018; 53:801-814. [PMID: 29901068 DOI: 10.3892/ijo.2018.4427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/03/2018] [Indexed: 11/06/2022] Open
Abstract
Adult T‑cell leukemia/lymphoma (ATLL) is a disorder involving human T-cell leukemia virus type 1 (HTLV‑1)-infected T‑cells characterized by increased clonal neoplastic proliferation. PDZ-binding kinase (PBK) [also known as T‑lymphokine-activated killer cell-originated protein kinase (TOPK)] is a serine/threonine kinase expressed in proliferative cells and is phosphorylated during mitosis. In this study, the expression and phosphorylation of PBK/TOPK were examined by western blot analysis and RT‑PCR. We found that PBK/TOPK was upregulated and phosphorylated in HTLV‑1-transformed T‑cell lines and ATLL‑derived T‑cell lines. Notably, CDK1/cyclin B1, which phosphorylates PBK/TOPK, was overexpressed in these cells. HTLV‑1 infection upregulated PBK/TOPK expression in peripheral blood mononuclear cells (PBMCs) in co-culture assays. The potent PBK/TOPK inhibitors, HI‑TOPK‑032, and fucoidan from brown algae, decreased the proliferation and viability of these cell lines in a dose‑dependent manner. By contrast, the effect of HI‑TOPK‑032 on PBMCs was less pronounced. Treatment with HI‑TOPK‑032 resulted in G1 cell cycle arrest, and decreased CDK6 expression and pRb phosphorylation, which are critical determinants of progression through the G1 phase. In addition, HI‑TOPK‑032 induced apoptosis, as evidenced by morphological changes, the cleavage of poly(ADP-ribose) polymerase with the activation of caspase‑3, -8 and -9, and an increase in the sub‑G1 cell population and APO2.7-positive cells. Moreover, HI‑TOPK‑032 inhibited the expression of cellular inhibitor of apoptosis 2 (c-IAP2), X-linked inhibitor of apoptosis protein (XIAP), survivin and myeloid cell leukemia‑1 (Mcl‑1), and induced the expression of Bak and interferon-induced protein with tetratricopeptide repeats (IFIT)1, 2 and 3. It is noteworthy that the use of this inhibitor led to the inhibition of the phosphorylation of IκB kinase (IKK)α, IKKβ, IκBα, phosphatase and tensin homolog (PTEN) and Akt, and to the decreased protein expression of JunB and JunD, suggesting that PBK/TOPK affects the nuclear factor-κB, Akt and activator protein‑1 signaling pathways. In vivo, the administration of HI‑TOPK‑032 suppressed tumor growth in an ATLL xenograft model. Thus, on the whole, this study on the identification and functional analysis of PBK/TOPK suggests that this kinase is a promising molecular target for ATLL treatment.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
38
|
Atashrazm F, Lowenthal RM, Dickinson JL, Holloway AF, Woods GM. Fucoidan enhances the therapeutic potential of arsenic trioxide and all-trans retinoic acid in acute promyelocytic leukemia, in vitro and in vivo. Oncotarget 2018; 7:46028-46041. [PMID: 27329592 PMCID: PMC5216779 DOI: 10.18632/oncotarget.10016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
The morbidity and mortality associated with current therapies for acute promyelocytic leukemia (APL) remain a significant clinical concern, despite improvements in patient survival. Consequently, the development of adjuvant therapies that increase efficacy while reducing morbidities is important. Reducing the concentration of the toxic drugs in adjuvant therapy has the potential to reduce unwanted side effects. Therefore, this study aimed to determine the synergistic effects of fucoidan, an anti-tumor agent, with current APL therapies.When the human APL cell line, NB4, was treated in vitro with fucoidan plus ATO and ATRA at therapeutic and sub-therapeutic doses, there was an increase in sub-G0/G1 cells, annexin V/PI-positive-apoptotic cells and DNA fragmentation. This reduction in proliferation and increase in apoptosis was accompanied by enhanced myeloid differentiation as indicated by an increased expression of CD11b. This was not observed with the AML cell line Kasumi-1, suggesting specificity for APL.In vivo treatment of APL-bearing mice with fucoidan+ATRA or fucoidan+ATO delayed tumor growth, induced differentiation and increased tumor volume doubling time. The differentiated APL cells derived from the excised tumor mass exhibited decreased CD44 expression in fucoidan+ATRA treated mice. This could translate to decreased cell migration in APL patients.Our findings provide evidence supporting the use of fucoidan as an adjuvant therapeutic agent in the treatment of APL.
Collapse
Affiliation(s)
- Farzaneh Atashrazm
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Ray M Lowenthal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Adele F Holloway
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia.,School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
39
|
Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym 2017; 177:451-459. [PMID: 28962791 DOI: 10.1016/j.carbpol.2017.09.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022]
Abstract
In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016.
Collapse
Affiliation(s)
- K K Asanka Sanjeewa
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Suck Lee
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Republic of Korea.
| | - Won-Suck Kim
- College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
40
|
Ishikawa C, Mori N. In vitro and in vivo anti-primary effusion lymphoma activities of fucoidan extracted from Cladosiphon okamuranus Tokida. Oncol Rep 2017; 38:3197-3204. [PMID: 29048633 DOI: 10.3892/or.2017.5978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 11/05/2022] Open
Abstract
Primary effusion lymphoma (PEL) caused by Kaposi's sarcoma-associated herpesvirus (KSHV) is characterized by lymphomatous effusion in body cavities and poor prognosis. There is still no effective treatment for PEL. Fucoidan, a major sulfated polysaccharide isolated from brown seaweeds, has an attractive array of bioactivities such as cancer inhibition. However, the effects of fucoidan on PEL cells remain unclear. We investigated the anti-PEL effects of fucoidan obtained from Cladosiphon okamuranus Tokida cultivated in Okinawa. Fucoidan dose-dependently inhibited the proliferation of KSHV-infected PEL cell lines, and provoked G1 cell cycle arrest, which was accompanied by CDK4 and CDK6 downregulation. Fucoidan also induced apoptosis of PEL cells through caspase-3, -8 and -9 activation; this occurred partly through the downregulation of anti-apoptotic Bcl-xL, Mcl-1 and XIAP proteins. Fucoidan also suppressed nuclear factor-κB, activator protein-1 (AP-1), and T-lymphokine-activated killer cell-originated protein kinase (TOPK) signaling pathways through inhibition of phosphorylation of IκBα and TOPK, and the expression of AP-1 family proteins, JunB and JunD. Oral administration of fucoidan effectively inhibited the development of PEL cells and ascites in a xenograft SCID mouse model, with minimal serious adverse effects. Notably, native fucoidan exhibited a more efficient anti-PEL effect than nanoparticle fucoidan. These preclinical findings highlight the anti-PEL actions of fucoidan, suggesting it could be potentially useful for the prevention and treatment of PEL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
41
|
Malyarenko OS, Dyshlovoy SA, Kicha AA, Ivanchina NV, Malyarenko TV, Carsten B, Gunhild VA, Stonik VA, Ermakova SP. The Inhibitory Activity of Luzonicosides from the Starfish Echinaster luzonicus against Human Melanoma Cells. Mar Drugs 2017; 15:E227. [PMID: 28718806 PMCID: PMC5532669 DOI: 10.3390/md15070227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023] Open
Abstract
Malignant melanoma is the most dangerous form of skin cancer, with a rapidly increasing incidence rate. Despite recent advances in melanoma research following the approval of several novel targeted and immuno-therapies, the majority of oncological patients will ultimately perish from the disease. Thus, new effective drugs are still required. Starfish steroid glycosides possess different biological activities, including antitumor activity. The current study focused on the determination of the in vitro inhibitory activity and the mechanism of action of cyclic steroid glycosides isolated from the starfish Echinaster luzonicus-luzonicoside A (LuzA) and luzonicoside D (LuzD)-in human melanoma RPMI-7951 and SK-Mel-28 cell lines. LuzA inhibited proliferation, the formation of colonies, and the migration of SK-Mel-28 cells significantly more than LuzD. Anti-cancer activity has been ascribed to cell cycle regulation and apoptosis induction. The molecular mechanism of action appears to be related to the regulation of the activity of cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP), along with Survivin, Bcl-2, p21 and cyclin D1 level. Overall, our findings support a potential anti-cancer efficacy of luzonicosides A and D on human melanoma cells.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Sergey A Dyshlovoy
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
- School of Natural Sciences, Far East Federal University, Vladivostok 690922, Russia.
| | - Alla A Kicha
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Natalia V Ivanchina
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Timofey V Malyarenko
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Natural Sciences, Far East Federal University, Vladivostok 690922, Russia.
| | - Bokemeyer Carsten
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | - von Amsberg Gunhild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | - Valentin A Stonik
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Natural Sciences, Far East Federal University, Vladivostok 690922, Russia.
| | - Svetlana P Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
42
|
The T-LAK Cell-originated Protein Kinase Signal Pathway Promotes Colorectal Cancer Metastasis. EBioMedicine 2017; 18:73-82. [PMID: 28412249 PMCID: PMC5405196 DOI: 10.1016/j.ebiom.2017.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 01/28/2023] Open
Abstract
Approximately 90% of all cancer deaths arise from the metastatic dissemination of primary tumors. Metastasis is the most lethal attribute of colorectal cancer. New data regarding the molecules contributing to the metastatic phenotype, the pathways they control and the genes they regulate are very important for understanding the processes of metastasis prognosis and prevention in the clinic. The purpose of this study was to investigate the role of T-LAK cell-originated protein kinase (TOPK) in the promotion of colorectal cancer metastasis. TOPK is highly expressed in human metastatic colorectal cancer tissue compared with malignant adenocarcinoma. We identified p53-related protein kinase (PRPK) as a new substrate of TOPK. TOPK binds with and phosphorylates PRPK at Ser250 in vitro and ex vivo. This site plays a critical role in the function of PRPK. Cell lines stably expressing mutant PRPK (S250A), knockdown TOPK, knockdown PRPK or knockdown of both TOPK and PRPK significantly inhibited liver metastasis of human HCT116 colon cancer cells in a xenograft mouse model. Therefore, we conclude that TOPK directly promotes metastasis of colorectal cancer by modulating PRPK. Thus, these findings may assist in the prediction of prognosis or development of new therapeutic strategies against colon cancer.
Collapse
|