1
|
Shi H, Xu Y, Song G, Qiu T. ADH1B regulates tumor stemness by activating the cAMP/PKA/CREB1 signaling axis to inhibit recurrence and metastasis of lung adenocarcinoma. Biochem Biophys Res Commun 2025; 760:151681. [PMID: 40157295 DOI: 10.1016/j.bbrc.2025.151681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer remains the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for approximately 85 % of cases. Despite advancements in diagnostics and therapies, tumor metastasis and drug-resistant recurrence present significant clinical challenges. This study evaluates the prognostic role of ADH1B in lung adenocarcinoma (LUAD) metastasis and recurrence. Analysis of tissue samples from 46 LUAD patients revealed that lower ADH1B expression correlates with increased metastasis and poorer overall survival. Kaplan-Meier survival analysis demonstrated that elevated ADH1B levels are significantly associated with longer overall survival and recurrence-free survival. In vitro experiments indicated that ADH1B overexpression inhibits proliferation, migration, and invasion in A549 and H1299 cell lines. Additionally, ADH1B expression was negatively correlated with tumor stemness markers, indicating its role in suppressing stem cell characteristics. Mechanistically, ADH1B activates the cAMP/PKA/CREB1 signaling pathway, enhancing SOX1 expression and inhibiting the ERK pathway, which contributes to reduced tumor stemness. In vivo studies confirmed that ADH1B overexpression decreases stem cell populations and tumor growth in xenograft models. Our findings suggest that ADH1B functions as a critical regulator of LUAD progression, with its low expression acting as a marker of poor prognosis while promoting metastasis and tumor stemness. This research identifies ADH1B as a potential therapeutic target, offering novel strategies to address the challenges of metastasis and recurrence in LUAD.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Tianzhu Qiu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Kalantari S, Saadat Varnosfaderani A, Ramezanali F, Amirchaghmaghi E, Shahhoseini M. Dynamic Regulation of CYP19A1 Promoter Region under Control of CREB Family Members in Endometrial Tissues of Women with Endometriosis: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2025; 19:151-156. [PMID: 40200772 PMCID: PMC11976882 DOI: 10.22074/ijfs.2024.2026438.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/26/2024] [Accepted: 10/05/2024] [Indexed: 04/10/2025]
Abstract
BACKGROUND Endometriosis is an estrogen-dependent disease. Cytochrome P450 aromatase which encoded by CYP19A1 is a key enzyme in the pathway of estrogen biosynthesis. cAMP response element (CRE) binding protein (CREB) and cAMP response element modulator (CREM), two members of the CREB family have important roles in the regulation of steroidogenic gene expression. CREB and CREM form homo and heterodimers for binding to the CRE sequence in the promoter of the CYP19A1 gene and regulate its expression. CREB regulated transcription coactivator 2 (CRTC2) is a CREB coactivator and regulates aromatase gene expression via binding to the CREB. Inducible cAMP early repressor (ICER) is one of CREM inhibitory isoforms that represses cAMP-induced transcription. Therefore, in this study, we decided to examine the expression levels of CREB, CREM, and CRTC2 genes and also the binding of ICER to the promoter II of the aromatase gene in endometriosis. MATERIALS AND METHODS In this case-control study, ectopic and eutopic endometrial tissues of women with endometriosis and endometrial control samples were collected. Real-time polymerase chain reaction (PCR) technique was used for quantitative gene expression of CREB, CREM, and CRTC2. For protein-DNA interaction analysis, soluble chromatin was extracted, and chromatin immunoprecipitation (ChIP) coupled with real-time PCR was performed to quantify the binding of ICER to CYP19A1 promoter II. RESULTS Gene expression levels of CREB, CREM, and CRTC2 were significantly increased in ectopic lesions compared with control endometrial samples. In addition, the binding of ICER to CYP19A1 promoter II was significantly decreased in ectopic and eutopic samples compared to the controls. CONCLUSION The overexpression of CREB, CREM, and CRTC2 in the endometriotic tissue samples and decreased binding of ICER to the CYP19A1 prompter II in ectopic and eutopic samples may contribute to the pathogenesis of endometriosis via their regulatory role in the expression of estrogen biosynthesis enzymes.
Collapse
Affiliation(s)
- Shadi Kalantari
- Department of Cell and Molecular Biology Science, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ameneh Saadat Varnosfaderani
- Department of Cell and Molecular Biology Science, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fariba Ramezanali
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Elham Amirchaghmaghi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cell and Molecular Biology Science, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Hong J, Wu Y, Li M, Man KF, Song D, Koh SB. cAMP response element-binding protein: A credible cancer drug target. J Pharmacol Exp Ther 2025; 392:103529. [PMID: 40157009 DOI: 10.1016/j.jpet.2025.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/22/2025] [Indexed: 04/01/2025] Open
Abstract
Despite advancements in radiotherapy, chemotherapy, endocrine therapy, targeted therapy, and immunotherapy, resistance to therapy remains a pervasive challenge in oncology, in part owing to tumor heterogeneity. Identifying new therapeutic targets is key to addressing this challenge because it can both diversify and enhance existing treatment options, particularly through combination regimens. The cAMP response element-binding protein (CREB) is a transcription factor involved in various biological processes. It is aberrantly activated in several aggressive cancer types, including breast cancer. Clinically, high CREB expression is associated with increased breast tumor aggressiveness and poor prognosis. Functionally, CREB promotes breast cancer cell proliferation, survival, invasion, metastasis, as well as therapy resistance by deregulating genes related to apoptosis, cell cycle, and metabolism. Targeting CREB with small molecule inhibitors has demonstrated promise in preclinical studies. This review summarizes the current understanding of CREB mechanisms and their potential as a therapeutic target. SIGNIFICANCE STATEMENT: cAMP response element-binding protein (CREB) is a master regulator of multiple biological processes, including neurodevelopment, metabolic regulation, and immune response. CREB is a putative proto-oncogene in breast cancer that regulates the cell cycle, apoptosis, and cellular migration. Preclinical development of CREB-targeting small molecules is underway.
Collapse
Affiliation(s)
- Jinghui Hong
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China; Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Yuheng Wu
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengxin Li
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ki-Fong Man
- Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Dong Song
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Siang-Boon Koh
- Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom; University Hospitals Bristol and Weston, National Health Service (NHS) Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
4
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
5
|
Zhao R, Zhou X, Zhao Z, Liu W, Lv M, Zhang Z, Wang C, Li T, Yang Z, Wan Q, Xu R, Cui Y. Farrerol Alleviates Cerebral Ischemia-Reperfusion Injury by Promoting Neuronal Survival and Reducing Neuroinflammation. Mol Neurobiol 2024; 61:7239-7255. [PMID: 38376762 DOI: 10.1007/s12035-024-04031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Ischemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Changxin Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Tianli Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zixiong Yang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Hu X, Wang W, Ma T, Zhang W, Tang X, Zheng Y, Zheng X. Long non-coding RNA SIX1-1 promotes proliferation of cervical cancer cells via negative transcriptional regulation of RASD1. Hum Cell 2024; 37:1446-1461. [PMID: 39014290 DOI: 10.1007/s13577-024-01104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Cervical cancer poses a significant health burden for women globally, and the rapid proliferation of cervical cancer cells greatly worsens patient prognosis. Long non-coding RNAs (lncRNAs) play a crucial role in regulating tumor cell proliferation. However, the involvement of lncRNAs in cervical cancer cell proliferation remains unclear. In this study, we investigated the lncRNA SIX1-1, which was found to be upregulated in cervical cancer tissues and cell lines. Functional assays revealed that knockdown of SIX1-1 inhibited cell proliferation in vitro and reduced tumor growth in vivo. Mechanistically, SIX1-1 was predominantly localized in the nucleus and could bind with DNMT1 protein. The expression of SIX1-1 enhanced the interaction of DNMT1 with RASD1 promoter, leading to the methylation of the promoter and decreased mRNA transcription. Then RASD1 downregulation activated the cAMP/PKA/CREB signaling pathway, promoting cell proliferation. Rescue experiments showed that knockdown of RASD1 restored the inhibited cell proliferation caused by decreased expression of SIX1-1, indicating that RASD1 acted as the functional mediator of SIX1-1. In conclusion, SIX1-1 promoted cervical cancer cell proliferation by modulating RASD1 expression. This suggests that targeting the SIX1-1/RASD1 axis could be a potential antitumor strategy for cervical cancer.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of the NCO School of Army Medical University (Third Military Medical University), Shijiazhuang, 050000, China
| | - Wan Wang
- Department of Medical Genetics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Teng Ma
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Wanqi Zhang
- The Teaching and Experiment Center, Basic Medicine College, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaohui Tang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China.
| | - Xiuhui Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
7
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Kousa YA, Singh S, Horvath A, Tomasso F, Nazarian J, Henderson L, Mansour TA. Transcriptomic Meta-analysis Identifies Long Non-Coding RNAs Mediating Zika's Oncolytic Impact in Glioblastoma Multiforme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.605859. [PMID: 39372798 PMCID: PMC11452190 DOI: 10.1101/2024.08.04.605859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal form of brain cancer with few effective treatments. In this context, Zika virus has emerged as a promising therapeutic agent due to its ability to selectively infect and kill GBM cells. To elucidate these mechanisms and expand the landscape of oncolytic virotherapy, we pursued a transcriptomic meta-analysis comparing the molecular signatures of Zika infection in GBM and neuroblastoma (NBM). Over-representation analysis of dysregulated coding genes showed significant enrichment of tumor necrosis factor (TNF), NF-κB, and p53 signaling pathways. A refined list of long non-coding RNAs consistently dysregulated in Zika-infected GBMs was also developed. Functional review of these candidates revealed their potential regulatory role in Zika-mediated oncolysis. We performed validation of the less-researched targets in adult and pediatric GBM cell lines and found significant differential regulation, as predicted. Altogether, our results provide novel insights into the molecular mechanisms underlying the effect of Zika on GBM. We highlight potential therapeutic targets that could be further interrogated to improve the efficacy of tumor cell death and the utility of Zika as an adjuvant virotherapy for GBM and other related cancers.
Collapse
|
9
|
Yin Z, Zhang X, Sun X, Huo Y, Ji N, Chen K. Mogrol-mediated enhancement of radiotherapy sensitivity in non-small cell lung cancer: a mechanistic study. Am J Physiol Cell Physiol 2024; 326:C1753-C1768. [PMID: 38682239 DOI: 10.1152/ajpcell.00684.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
This study investigated mogrol's impact on non-small cell lung cancer (NSCLC) radiosensitivity and underlying mechanisms, using various methods including assays, bioinformatics, and xenograft models. CCK-8, clonogenic, flow cytometry, TUNEL, and Western blot assays evaluated mogrol and radiation effects on NSCLC viability and apoptosis. Ubiquitin-specific protease 22 (USP22) expression in NSCLC patient tissues was determined by RT-qPCR and Western blot. A xenograft model validated mogrol's effects on tumor growth. Bioinformatics identified four ubiquitin-specific proteases, including USP22, in NSCLC. Kaplan-Meier analysis confirmed USP22's value in lung cancer survival. Human Protein Atlas (HPA) database analysis indicated higher USP22 expression in lung cancer tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis implicated ERK1/2 in NSCLC progression, and molecular docking showed stability between mogrol and ERK1/2. Further in vivo and in vitro experiments have demonstrated that mogrol enhances the inhibitory effect of radiation on NSCLC cell viability and clonogenic capacity. Cell viability and clonogenic capacity are reduced by >50%, and an increase in cellular apoptosis is observed, with apoptotic levels reaching 10%. USP22 expression was significantly elevated in NSCLC tissues, particularly in radiotherapy-resistant patients. Mogrol downregulated USP22 expression by inhibiting the ERK/CREB pathway, lowering COX2 expression. Mogrol also enhanced radiation's inhibition of tumor growth in mice. Mogrol enhances NSCLC radiosensitivity by downregulating USP22 via the ERK/CREB pathway, leading to reduced COX2 expression.NEW & NOTEWORTHY Mogrol enhances non-small cell lung cancer (NSCLC) cell sensitivity to radiotherapy by downregulating USP22 through the ERK/CREB pathway, reducing COX2 expression. These findings highlight mogrol's potential as an adjunct to improve NSCLC radiotherapy and open avenues for further research and clinical applications.
Collapse
Affiliation(s)
- Zhongbo Yin
- Department of Pathology, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xuedong Zhang
- Department of Pathology, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xiao Sun
- Master Degree Candidate, Affiliated Central Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yunlong Huo
- Department of Pathology, Shengjing Hospital affiliated to China Medical University, Shenyang, Liaoning, China
| | - Nan Ji
- Department of Docimasiology, Baoan Central Hospital of Shenzhen, China, Shenzhen, Guangdong, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
韩 齐, 叶 梦, 金 齐. [Demethylzeylasteral inhibits proliferation, migration and invasion and promotes apoptosis of non-small cell lung cancer cells by inhibiting the AKT/CREB signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:280-288. [PMID: 38501413 PMCID: PMC10954516 DOI: 10.12122/j.issn.1673-4254.2024.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the mechanism underlying the inhibitory effects of Demethylzeylasteral (T-96) on non-small cell lung cancer (NSCLC) cells. METHODS We first examined the effects of different concentrations (1, 3, 10, and 30 μmol/L) of demethylzeylasteral on morphology and cell number of A549 and H1299 cells. The changes in proliferation, cell viability, migration, invasion, and apoptosis of A549 and H1299 cells following demethylzeylasteral treatment were detected using clone formation, CCK-8, cell scratch, Transwell, and flow cytometric assays, and the effect of SC79 treatment against demethylzeylasteral-induced cell apoptosis was assessed. Western blotting was performed to detect the changes in expressions of E-cadherin, N-cadherin, vimentin, Bax, Bcl-2 and cleaved caspase-3 and phosphorylation of AKT/CREB in demethylzeylasteral-treated A549 and H1299 cells and the cellular expressions of apoptotic proteins following treatment with both demethylzeylasteral and SC79. RESULTS T-96 treatment caused elongation of the cell body and widening of the intercellular space and significantly inhibited cell viability, proliferation, migration and invasion of A549 and H1299 cells (P < 0.05). Flow cytometry showed that demethylzeylasteral induced apoptosis in both A549 and H1299 cells, whereas SC79 treatment obviously attenuated its pro-apoptotic effect (P < 0.05). Western blotting revealed up-regulated expressions of Bax and cleaved caspase-3 proteins and lowered Bcl-2 expression level in demethylzeylasteral-treated A549 and H1299 cells, but cotreatment with SC79 obviously attenuated the expressions of the apoptotic proteins. T-96 significantly up-regulated the expression level of E-cadherin, down-regulated the expressions of N-cadherin and vimentin, and inhibited the phosphorylation of AKT and CREB in the two cell lines (P < 0.05). CONCLUSION T-96 inhibits the proliferation, migration and invasion and induces apoptosis of NSCLC cells possibly by inhibiting the AKT/CREB signaling pathway.
Collapse
Affiliation(s)
- 齐齐 韩
- 蚌埠医科大学检验医学院,安徽 蚌埠 233030School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - 梦然 叶
- 蚌埠医科大学检验医学院,安徽 蚌埠 233030School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - 齐力 金
- 蚌埠医科大学检验医学院,安徽 蚌埠 233030School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
- 蚌埠医科大学第二附属医院检验科,安徽 蚌埠 233080Department of Laboratory Medicine, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233080, China
| |
Collapse
|
12
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Guan W, Ni MX, Gu HJ, Yang Y. CREB: A Promising Therapeutic Target for Treating Psychiatric Disorders. Curr Neuropharmacol 2024; 22:2384-2401. [PMID: 38372284 PMCID: PMC11451321 DOI: 10.2174/1570159x22666240206111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Mei-Xin Ni
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Hai-Juan Gu
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Yang Yang
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| |
Collapse
|
14
|
Feng G, Wang P, Zhang H, Cheng S, Xing Y, Wang Y. MEX3A induces the development of thyroid cancer via targeting CREB1. Cell Biol Int 2023; 47:1843-1853. [PMID: 37529875 DOI: 10.1002/cbin.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Thyroid cancer is a prevalent form of endocrine cancer, and its global incidence has been steadily increasing. MEX3A is a protein that is known to be highly expressed in various human malignant tumors, including thyroid cancer, and it has been linked to patient prognosis. However, the molecular mechanisms underlying MEX3A's tumorigenic capabilities in thyroid cancer are not fully understood. In this study, we aimed to investigate the role of MEX3A in thyroid cancer. We confirmed that MEX3A was overexpressed in both thyroid cancer tissues and cell lines. Additionally, we found a positive correlation between high levels of MEX3A and the AJCC stage. To further understand the functional significance of MEX3A in thyroid cancer, we depleted MEX3A expression in B-CPAP and TPC-1 cells. Interestingly, we observed a significant reduction in thyroid cancer cell proliferation and migration, as well as ameliorated cell apoptosis and arrested tumor growth upon MEX3A depletion. These findings strongly suggested that MEX3A played a critical role in the development of thyroid cancer. Furthermore, our study uncovered an important interaction between MEX3A and CREB1 (cAMP response element-binding protein 1). The interaction between MEX3A and CREB1 appeared to contribute to the tumor-promoting effects of MEX3A in thyroid cancer by directly targeting CREB1. Silencing CREB1 was observed to alleviate the malignant phenotypes promoted by MEX3A in thyroid cancer cells. Together, this study highlighted the importance of the MEX3A-CREB1 interaction in thyroid cancer development and suggested the therapeutic potential of targeting MEX3A for the treatment of this disease.
Collapse
Affiliation(s)
- Guoxun Feng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Ying Xing
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuan Wang
- Department of General Surgery, Peking University People Hospital, Beijing, China
| |
Collapse
|
15
|
Romero-Estrada JH, Montaño LF, Rendón-Huerta EP. Binding of YY1/CREB to an Enhancer Region Triggers Claudin 6 Expression in H. pylori LPS-Stimulated AGS Cells. Int J Mol Sci 2023; 24:13974. [PMID: 37762277 PMCID: PMC10531490 DOI: 10.3390/ijms241813974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant expression of the tight junction protein claudin 6 (CLDN6) is a hallmark of gastric cancer progression. Its expression is regulated by the cAMP response element-binding protein (CREB). In gastric cancer induced by Helicobacter pylori (H. pylori) there is no information regarding what transcription factors induce/upregulate the expression of CLDN6. We aimed to identify whether CREB and Yin Yang1 (YY1) regulate the expression of CLDN6 and the site where they bind to the promoter sequence. Bioinformatics analysis, H. pylori lipopolysaccharide (LPS), YY1 and CREB silencing, Western blot, luciferase assays, and chromatin immunoprecipitation experiments were performed using the stomach gastric adenocarcinoma cell line AGS. A gen reporter assay suggested that the initial 2000 bp contains the regulatory sequence associated with CLDN6 transcription; the luciferase assay demonstrated three different regions with transcriptional activity, but the -901 to -1421 bp region displayed the maximal transcriptional activity in response to LPS. Fragment 1279-1421 showed CREB and, surprisingly, YY1 occupancy. Sequential Chromatin Immunoprecipitation (ChIP) experiments confirmed that YY1 and CREB interact in the 1279-1421 region. Our results suggest that CLDN6 expression is regulated by the binding of YY1 and CREB in the 901-1421 enhancer, in which a non-described interaction of YY1 with CREB was established in the 1279-1421 region.
Collapse
Affiliation(s)
| | - Luis F. Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Erika P. Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
16
|
Li Y, Patterson MR, Morgan EL, Wasson CW, Ryder EL, Barba‐Moreno D, Scarth JA, Wang M, Macdonald A. CREB1 activation promotes human papillomavirus oncogene expression and cervical cancer cell transformation. J Med Virol 2023; 95:e29025. [PMID: 37565725 PMCID: PMC10952218 DOI: 10.1002/jmv.29025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Human papillomaviruses (HPVs) infect the oral and anogenital mucosa and can cause cancer. The high-risk (HR)-HPV oncoproteins, E6 and E7, hijack cellular factors to promote cell proliferation, delay differentiation and induce genomic instability, thus predisposing infected cells to malignant transformation. cAMP response element (CRE)-binding protein 1 (CREB1) is a master transcription factor that can function as a proto-oncogene, the abnormal activity of which is associated with multiple cancers. However, little is known about the interplay between HPV and CREB1 activity in cervical cancer or the productive HPV lifecycle. We show that CREB is activated in productively infected primary keratinocytes and that CREB1 expression and phosphorylation is associated with the progression of HPV+ cervical disease. The depletion of CREB1 or inhibition of CREB1 activity results in decreased cell proliferation and reduced expression of markers of epithelial to mesenchymal transition, coupled with reduced migration in HPV+ cervical cancer cell lines. CREB1 expression is negatively regulated by the tumor suppressor microRNA, miR-203a, and CREB1 phosphorylation is controlled through the MAPK/MSK pathway. Crucially, CREB1 directly binds the viral promoter to upregulate transcription of the E6/E7 oncogenes, establishing a positive feedback loop between the HPV oncoproteins and CREB1. Our findings demonstrate the oncogenic function of CREB1 in HPV+ cervical cancer and its relationship with the HPV oncogenes.
Collapse
Affiliation(s)
- Yigen Li
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | | | - Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and HealthUniversity of LeedsLeedsWest YorkshireUK
| | - Emma L. Ryder
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Diego Barba‐Moreno
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| |
Collapse
|
17
|
Lin W, Niu R, Park SM, Zou Y, Kim SS, Xia X, Xing S, Yang Q, Sun X, Yuan Z, Zhou S, Zhang D, Kwon HJ, Park S, Il Kim C, Koo H, Liu Y, Wu H, Zheng M, Yoo H, Shi B, Park JB, Yin J. IGFBP5 is an ROR1 ligand promoting glioblastoma invasion via ROR1/HER2-CREB signaling axis. Nat Commun 2023; 14:1578. [PMID: 36949068 PMCID: PMC10033905 DOI: 10.1038/s41467-023-37306-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Diffuse infiltration is the main reason for therapeutic resistance and recurrence in glioblastoma (GBM). However, potential targeted therapies for GBM stem-like cell (GSC) which is responsible for GBM invasion are limited. Herein, we report Insulin-like Growth Factor-Binding Protein 5 (IGFBP5) is a ligand for Receptor tyrosine kinase like Orphan Receptor 1 (ROR1), as a promising target for GSC invasion. Using a GSC-derived brain tumor model, GSCs were characterized into invasive or non-invasive subtypes, and RNA sequencing analysis revealed that IGFBP5 was differentially expressed between these two subtypes. GSC invasion capacity was inhibited by IGFBP5 knockdown and enhanced by IGFBP5 overexpression both in vitro and in vivo, particularly in a patient-derived xenograft model. IGFBP5 binds to ROR1 and facilitates ROR1/HER2 heterodimer formation, followed by inducing CREB-mediated ETV5 and FBXW9 expression, thereby promoting GSC invasion and tumorigenesis. Importantly, using a tumor-specific targeting and penetrating nanocapsule-mediated delivery of CRISPR/Cas9-based IGFBP5 gene editing significantly suppressed GSC invasion and downstream gene expression, and prolonged the survival of orthotopic tumor-bearing mice. Collectively, our data reveal that IGFBP5-ROR1/HER2-CREB signaling axis as a potential GBM therapeutic target.
Collapse
Affiliation(s)
- Weiwei Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Rui Niu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Seong-Min Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Songge Xing
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qingshan Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xinhong Sun
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zheng Yuan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuchang Zhou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hyung Joon Kwon
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Saewhan Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Harim Koo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Yang Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Haigang Wu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Jong Bae Park
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| | - Jinlong Yin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
18
|
Ben Guebila M, Wang T, Lopes-Ramos CM, Fanfani V, Weighill D, Burkholz R, Schlauch D, Paulson JN, Altenbuchinger M, Shutta KH, Sonawane AR, Lim J, Calderer G, van IJzendoorn DGP, Morgan D, Marin A, Chen CY, Song Q, Saha E, DeMeo DL, Padi M, Platig J, Kuijjer ML, Glass K, Quackenbush J. The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks. Genome Biol 2023; 24:45. [PMID: 36894939 PMCID: PMC9999668 DOI: 10.1186/s13059-023-02877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.
Collapse
Affiliation(s)
- Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Des Weighill
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebekka Burkholz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
| | - Daniel Schlauch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Genospace, LLC, Boston, MA, USA
| | - Joseph N Paulson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michael Altenbuchinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine H Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhijeet R Sonawane
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - James Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- Present Address: Monoceros Biosystems, LLC, San Diego, CA, USA
| | - Genis Calderer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - David G P van IJzendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Present Address: Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Daniel Morgan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: School of Biomedical Sciences, Hong Kong University, Pokfulam, Hong Kong
| | | | - Cho-Yi Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Present Address: Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Qi Song
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marieke L Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University, Leiden, The Netherlands
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
19
|
Nasimian A, Al Ashiri L, Ahmed M, Duan H, Zhang X, Rönnstrand L, Kazi JU. A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia. Int J Mol Sci 2023; 24:ijms24043830. [PMID: 36835239 PMCID: PMC9959897 DOI: 10.3390/ijms24043830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Hongzhi Duan
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Xiaoyue Zhang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence: ; Tel.: +46-462226407
| |
Collapse
|
20
|
Yan Y, Chen Y, Pan J, Xing W, Li Q, Wang Y, Gei L, Yuan Y, Xie J, Zeng W, Chen D. Dopamine receptor D3 is related to prognosis in human hepatocellular carcinoma and inhibits tumor growth. BMC Cancer 2022; 22:1248. [DOI: 10.1186/s12885-022-10368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Dopamine receptors have been reported to play important roles in cancer progression. However, the role of dopamine receptor D3 (DRD3) in hepatocellular carcinoma (HCC) remains unclear.
Methods
The expression of DRD3 was detected by immunohistochemistry and real-time qPCR. The prognostic value of DRD3 in patients was investigated by analyzing selected databases, including cBioPortal and Kaplan–Meier plotter. Cell growth was tested by CCK8 assay, and Transwell assays were performed to assess cancer cell migration and invasion. The cAMP/ERK/CREB signaling pathway was evaluated by Western blot analysis and ELISA. An HCC xenograft model was established for in vivo experiments.
Results
DRD3 mRNA expression was significantly higher in nontumor tissues than in tumor tissues. Lower protein expression of DRD3 was related to poor recurrence-free survival (RFS) and overall survival (OS). Kaplan–Meier plotter analysis showed that higher expression of DRD3 mRNA was associated with better OS, RFS, disease-specific survival (DSS), and progression-free survival (PFS). cBioPortal analysis revealed that the alteration group, which harbored genetic mutations in DRD3, exhibited poor OS, RFS, DSS and PFS. According to CCK8 and Transwell assays, stable DRD3 overexpression cell line (ex-DRD3-SK-HEP-1) showed weaker proliferation, migration and invasion behaviors. PD128907, a DRD3 agonist, suppressed proliferation, migration and invasion in HCC cell lines, while U99194, a DRD3 antagonist, enhanced proliferation, migration and invasion in HCC cell lines. Western blot analysis and ELISA revealed that stable DRD3 knock-down cell line (sh-DRD3-PLC/PRF/5) and U99194 both increased the protein levels of cAMP, p-ERK and p-CREB; on the other hand, ex-DRD3-SK-HEP-1 and PD128907 decreased the protein levels of cAMP, p-ERK and p-CREB. SCH772984, an ERK antagonist, abolished the effect of U99194 on the malignant biological behaviors of HCC cells. In vivo, PD128907 suppressed tumor growth, and U99194 enhanced tumor growth.
Conclusion
Our results suggest that down-regulation of DRD3 is strongly involved in the progression of HCC, and DRD3 might be consider as an independent prognostic factor for HCC. Furthermore, DRD3 agonists may be a promising strategy for HCC therapy.
Collapse
|
21
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
22
|
Biotin Enhances Testosterone Production in Mice and Their Testis-Derived Cells. Nutrients 2022; 14:nu14224761. [PMID: 36432448 PMCID: PMC9697070 DOI: 10.3390/nu14224761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Late-onset hypogonadism, a male age-related syndrome characterized by a decline in testosterone production in the testes, is commonly treated with testosterone replacement therapy, which has adverse side effects. Therefore, an alternative treatment is highly sought. Supplementation of a high dosage of biotin, a water-soluble vitamin that functions as a coenzyme for carboxylases involved in carbohydrate, lipid, and amino acid metabolism, has been shown to influence testis functions. However, the involvement of biotin in testis steroidogenesis has not been well clarified. In this study, we examined the effect of biotin on testosterone levels in mice and testis-derived cells. In mice, intraperitoneal treatment with biotin (1.5 mg/kg body weight) enhanced testosterone levels in the serum and testes, without elevating serum levels of pituitary luteinizing hormone. To investigate the mechanism in which biotin increased the testosterone level, mice testis-derived I-10 cells were used. The cells treated with biotin increased testosterone production in a dose- and time-dependent manner. Biotin treatment elevated intracellular cyclic adenosine monophosphate levels via adenylate cyclase activation, followed by the activation of protein kinase A and testosterone production. These results suggest that biotin may have the potential to improve age-related male syndromes associated with declining testosterone production.
Collapse
|
23
|
Mehra S, Singh S, Nagathihalli N. Emerging Role of CREB in Epithelial to Mesenchymal Plasticity of Pancreatic Cancer. Front Oncol 2022; 12:925687. [PMID: 35800049 PMCID: PMC9253527 DOI: 10.3389/fonc.2022.925687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid malignancy with a high rate of metastasis and therapeutic resistance as its major hallmarks. Although a defining mutational event in pancreatic cancer initiation is the presence of oncogenic KRAS, more advanced PDAC lesions accumulate additional genomic alterations, including loss of tumor suppressor gene TP53. Co-occurrence of mutant KRAS and TP53 in PDAC promotes hyperactivation of cancer cell signaling pathways driving epithelial to mesenchymal plasticity (EMP). The cellular process of EMP influences the biological behavior of cancer cells by increasing their migratory and invasive properties, thus promoting metastasis. Our previous work has demonstrated that oncogenic KRAS-mediated activation of cyclic AMP response element-binding protein 1 (CREB) is one of the critical drivers of PDAC aggressiveness. The therapeutic approach of targeting this key transcription factor attenuates tumor burden in genetically engineered mouse models (GEMMs) of this disease. Herein, we discuss the significant role of CREB in perpetuating disease aggressiveness and therapeutic resistance through the EMP process. Furthermore, this review updates the therapeutic implications of targeting CREB, highlighting the challenges and emerging approaches in PDAC.
Collapse
Affiliation(s)
- Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nagaraj Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
- *Correspondence: Nagaraj Nagathihalli,
| |
Collapse
|
24
|
Naz F, Malik A, Riaz M, Mahmood Q, Mehmood MH, Rasool G, Mahmood Z, Abbas M. Bromocriptine Therapy: Review of mechanism of action, safety and tolerability. Clin Exp Pharmacol Physiol 2022; 49:903-922. [DOI: 10.1111/1440-1681.13678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy University of the Punjab Lahore Pakistan
| | - Abdul Malik
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Qaisar Mahmood
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Government College University Faisalabad Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Zahed Mahmood
- Department of Biochemistry Government College University Faisalabad Pakistan
| | - Mazhar Abbas
- Department of Biochemistry College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences (Jhang Campus) Lahore Pakistan
| |
Collapse
|
25
|
Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Petővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. SPOCK1 Promotes the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:819883. [PMID: 35186754 PMCID: PMC8853618 DOI: 10.3389/fonc.2022.819883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.
Collapse
Affiliation(s)
- Lóránd Váncza
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Dezső
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Schaff
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Ilona Kovalszky, ;
| |
Collapse
|
26
|
Li ML, Peng Y, An Y, Li GY, Lan Y. LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia. Brain Behav 2022; 12:e2466. [PMID: 35025141 PMCID: PMC8865150 DOI: 10.1002/brb3.2466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Synaptic N-methyl-d-aspartate receptor subtype 2B(NR2B) is significantly reduced in prefrontal cortex (PFC) in the neurodevelopmental methylazoxymethanol (MAM) model of schizophrenia (SCZ). Recent research has shown that LY395756 can effectively restore NR2B levels and improve cognitive performance in juvenile MAM mice model. However, the underlying mechanisms of these beneficial effects remain unclear. MATERIALS AND METHODS Juvenile MAM mice model of SCZ is used in our study. Synaptic membrane protein levels were examined by western blotting under different treatment conditions. Interaction of cAMP-response element binding protein (CREB) and the promoter of NR2B was detected by the chromatin immunoprecipitation (ChIP) assay. Further examination of signaling pathway that mediates NR2B expression was also investigated by western blotting. RESULTS In the PFC of the juvenile MAM mice schizophrenia model, CREB was found to directly bind with the promoter of NR2B. LY395756 activated the phosphorylation of AKT. Phosphorylated AKT subsequently induced the phosphorylation of CREB, and the activated CREB promoted the expression of NR2B. Subsequent experiments showed that the dephosphorylation of CREB induced by protein phosphatase 1 (PP1) can inhibit NR2B levels. Taken together, these findings support that the AKT/CREB signaling pathway is essential for the promoting effect of LY395756 on synaptic NR2B in PFC in juvenile MAM mice SCZ model. CONCLUSIONS Our investigation has identified a novel mechanism by which LY395756 increases NR2B expression in juvenile MAM mice SCZ model. The AKT/CREB signaling pathway warrants further research as a potential direction for clinical treatment of SCZ.
Collapse
Affiliation(s)
- Meng-Lin Li
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Peng
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying An
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guo-Yan Li
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Contreras-Sanzón E, Palma-Flores C, Flores-Pérez A, M Salinas-Vera Y, B Silva-Cázares M, A Marchat L, G Avila-Bonilla R, N Hernández de la Cruz O, E Álvarez-Sánchez M, Pérez-Plasencia C, D Campos-Parra A, López-Camarillo C. MicroRNA-204/CREB5 axis regulates vasculogenic mimicry in breast cancer cells. Cancer Biomark 2022; 35:47-56. [PMID: 35662106 DOI: 10.3233/cbm-210457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vasculogenic mimicry (VM) is characterized by formation of three-dimensional (3D) channels-like structures by tumor cells, supplying the nutrients needed for tumor growth. VM is stimulated by hypoxic tumor microenvironment, and it has been associated with increased metastasis and clinical poor outcome in cancer patients. cAMP responsive element (CRE)-binding protein 5 (CREB5) is a hypoxia-activated transcription factor involved in tumorigenesis. However, CREB5 functions in VM and if its regulated by microRNAs remains unknown in breast cancer. OBJECTIVE We aim to study the functional relationships between VM, CREB5 and microRNA-204-5p (miR-204) in breast cancer cells. METHODS CREB5 expression was evaluated by mining the public databases, and using RT-qPCR and Western blot assays. CREB5 expression was silenced using short-hairpin RNAs in MDA-MB-231 and MCF-7 breast cancer cells. VM formation was analyzed using matrigel-based cultures in hypoxic conditions. MiR-204 expression was restored in cancer cells by transfection of RNA mimics. Luciferase reporter assays were performed to evaluate the binding of miR-204 to 3'UTR of CREB5. RESULTS Our data showed that CREB5 mRNA expression was upregulated in a set of breast cancer cell lines and clinical tumors, and it was positively associated with poor prognosis in lymph nodes positive and grade 3 basal breast cancer patients. Silencing of CREB5 impaired the hypoxia-induced formation of 3D channels-like structures representative of the early stages of VM in MDA-MB-231 cells. In contrast, VM formation was not observed in MCF-7 cells. Interestingly, we found that CREB5 expression was negatively regulated by miR-204 mimics in breast cancer cells. Functional analysis confirmed that miR-204 binds to CREB5 3'-UTR indicating that it's an ulterior effector. CONCLUSIONS Our findings suggested that CREB5 could be a potential biomarker of disease progression in basal subtype of breast cancer, and that perturbations of the miR-204/CREB5 axis plays an important role in VM development in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | - Yarely M Salinas-Vera
- Departamento de Bioquimica, Centro de Investigacion y Estudios Avanzados del Instituto Politécnico Nacional, CDMX, Mexico
| | - Macrina B Silva-Cázares
- Coordinación Academica Región Altiplano, Universidad Autónoma de San Luis Potosí. San Luis Potosí, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología. Instituto Politécnico Nacional. CDMX, Mexico
| | - Rodolfo G Avila-Bonilla
- Programa en Biomedicina Molecular y Red de Biotecnología. Instituto Politécnico Nacional. CDMX, Mexico
| | | | | | | | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, CDMX, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, CDMX, Mexico
| |
Collapse
|
28
|
Therapeutic potential of the PI3K inhibitor LY294002 and PARP inhibitor Talazoparib combination in BRCA-deficient triple negative breast cancer cells. Cell Signal 2021; 91:110229. [PMID: 34958867 DOI: 10.1016/j.cellsig.2021.110229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors provide a promising therapeutic strategy for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, acquire resistance mechanisms and genetic alterations limit the clinical efficacy of PARP inhibitors. The aberrant activation of phosphatidylinositol 3-kinase (PI3K) is a significant problem for cancer development and thus the inhibition of PI3K by PI3K inhibitors is a novel targeted therapy in advanced breast cancer. Here, we, for the first time, investigated that the combined inhibition of PARP by Talazoparib (TAL) and PI3K by LY294002 synergistically inhibited proliferation of BRCA1 mutant HCC1937 TNBC cells through apoptosis, G0/G1 arrest, oxidative stress and increased DNA damage compared to drug alone. Additionally, TAL and LY294002 combination could be a promising strategy for overcoming TAL resistance. Co-treatment of TAL with LY294002 considerably suppressed the activation of PI3K, Akt1 and mTOR expression and phosphorylated protein levels in TNBC cells and caused changes in the multiple kinase phosphorylation. Our findings revealed that the dual inhibition of PARP and PI3K might represent an effective therapeutic strategy for TNBC and potentially overcome TAL resistance.
Collapse
|
29
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
30
|
Banhasasim-Tang Ameliorates Spatial Memory by Suppressing Oxidative Stress through Regulation of ERK/p38 Signaling in Hippocampus of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6970578. [PMID: 34900088 PMCID: PMC8660254 DOI: 10.1155/2021/6970578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.
Collapse
|
31
|
Zheng T, Huang J, Xiang X, Li S, Yu J, Qu K, Xu Z, Han P, Dong Z, Liu Y, Xu F, Yang H, Jäättelä M, Luo Y, Liu B. Systematical analysis reveals a strong cancer relevance of CREB1-regulated genes. Cancer Cell Int 2021; 21:530. [PMID: 34641874 PMCID: PMC8507136 DOI: 10.1186/s12935-021-02224-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
The transcription factor cyclic-AMP response element-binding protein 1 (CREB1) responds to cAMP level and controls the expression of target genes, which regulates nutrition partitioning. The promoters of CREB1-targeted genes responsive to cAMP have been extensively investigated and characterized with the presence of both cAMP response element and TATA box. Compelling evidence demonstrates that CREB1 also plays an essential role in promoting tumor development. However, only very few genes required for cell survival, proliferation and migration are known to be constitutively regulated by CREB1 in tumors. Their promoters mostly do not harbor any cAMP response element. Thus, it is very likely that CREB1 regulates the expressions of distinct sets of target genes in normal tissues and tumors. The whole gene network constitutively regulated by CREB1 in tumors has remained unrevealed. Here, we employ a systematical and integrative approach to decipher this gene network in the context of both tissue cultured cancer cells and patient samples. We combine transcriptomic, Rank-Rank Hypergeometric Overlap, and Chipseq analysis, to define and characterize CREB1-regulated genes in a multidimensional fashion. A strong cancer relevance of those top-ranked targets, which meet the most stringent criteria, is eventually verified by overall survival analysis of cancer patients. These findings strongly suggest the importance of genes constitutively regulated by CREB1 for their implicative involvement in promoting tumorigenesis.
Collapse
Affiliation(s)
- Tianyu Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jinrong Huang
- BGI-Shenzhen, Shenzhen, China, 518083.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Siyuan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jiaying Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,BGI-Shenzhen, Shenzhen, China, 518083
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,BGI-Shenzhen, Shenzhen, China, 518083
| | | | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China. .,BGI-Shenzhen, Shenzhen, China, 518083. .,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark. .,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
32
|
Crouchet E, Bandiera S, Fujiwara N, Li S, El Saghire H, Fernández-Vaquero M, Riedl T, Sun X, Hirschfield H, Jühling F, Zhu S, Roehlen N, Ponsolles C, Heydmann L, Saviano A, Qian T, Venkatesh A, Lupberger J, Verrier ER, Sojoodi M, Oudot MA, Duong FHT, Masia R, Wei L, Thumann C, Durand SC, González-Motos V, Heide D, Hetzer J, Nakagawa S, Ono A, Song WM, Higashi T, Sanchez R, Kim RS, Bian CB, Kiani K, Croonenborghs T, Subramanian A, Chung RT, Straub BK, Schuppan D, Ankavay M, Cocquerel L, Schaeffer E, Goossens N, Koh AP, Mahajan M, Nair VD, Gunasekaran G, Schwartz ME, Bardeesy N, Shalek AK, Rozenblatt-Rosen O, Regev A, Felli E, Pessaux P, Tanabe KK, Heikenwälder M, Schuster C, Pochet N, Zeisel MB, Fuchs BC, Hoshida Y, Baumert TF. A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nat Commun 2021; 12:5525. [PMID: 34535664 PMCID: PMC8448834 DOI: 10.1038/s41467-021-25468-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.
Collapse
Grants
- K01 CA140861 NCI NIH HHS
- R21 CA209940 NCI NIH HHS
- R01 DK099558 NIDDK NIH HHS
- R03 AI131066 NIAID NIH HHS
- R01 CA233794 NCI NIH HHS
- ERC CoG grant (HepatoMetaboPath) and EOS grant and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 272983813 – TRR 179, and Project-ID 314905040 SFB TR209.
- NIH CA140861
- NIH DK099558 Irma T. Hirschl/Monique Weill-Caulier Trust
- This work was supported by ARC, Paris and Institut Hospitalo-Universitaire, Strasbourg (TheraHCC1.0 and 2.0 IHUARC IHU201301187 and IHUARC2019 to T.F.B.), the European Union (ERC-AdG-2014-671231-HEPCIR to T.F.B. and Y.H., EU H2020-667273-HEPCAR to T.F.B. and M.H., INTERREG-IV-Rhin Supérieur-FEDER-Hepato-Regio-Net 2012 to T.F.B. and M.B.Z), ANRS, Paris (2013/108 and ECTZ103701 to T.F.B), NIH (DK099558 to Y. H. and CA233794 to Y.H. and T. F. B; CA140861 to B.C.F., CA209940, R21CA209940 and R03AI131066 to N.P. and T.F.B.), Cancer Prevention and Research Institute of Texas (RR180016 to Y.H), US Department of Defense (W81XWH-16-1-0363 to T.F.B. and Y.H.), the Irma T. Hirschl/Monique Weill-Caulier Trust (Y.H.) and the Foundation of the University of Strasbourg (HEPKIN to T. F. B. and Y. H.) and the Institut Universitaire de France (IUF; T. F. B.). M.H. is supported by an ERC CoG grant (HepatoMetaboPath) and EOS grant and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –Project-ID 272983813 – TRR 179, and Project-ID 314905040 SFB TR209. This work has been published under the framework of the LABEX ANR-10-LABX-0028_HEPSYS and Inserm Plan Cancer and benefits from funding from the state managed by the French National Research Agency as part of the Investments for the future program.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shen Li
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Xiaochen Sun
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natascha Roehlen
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Clara Ponsolles
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Antonio Saviano
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anu Venkatesh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - François H T Duong
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lan Wei
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Thumann
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Victor González-Motos
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Shigeki Nakagawa
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| | - Roberto Sanchez
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rosa S Kim
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - C Billie Bian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Karun Kiani
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- KU Leuven Technology Campus Geel, AdvISe, Geel, Belgium
| | | | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beate K Straub
- Institute of Pathology, University Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology and Research Center for Immunotherapy (FZI), Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maliki Ankavay
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, Lille, France
| | - Laurence Cocquerel
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, Lille, France
| | - Evelyne Schaeffer
- CNRS UPR3572 Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School, Cambridge St. CPZN 4216, Boston, MA, USA
| | - Alex K Shalek
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering Science & Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Emanuele Felli
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Patrick Pessaux
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Kenneth K Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), Lyon, France
| | - Bryan C Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Ferring Pharmaceuticals Inc 4245 Sorrento Valley Blvd, San Diego, CA, USA.
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France.
| |
Collapse
|
33
|
Koh M, Takahashi T, Kurokawa Y, Kobayashi T, Saito T, Ishida T, Serada S, Fujimoto M, Naka T, Wada N, Yamashita K, Tanaka K, Miyazaki Y, Makino T, Nakajima K, Yamasaki M, Eguchi H, Doki Y. Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis. Gastric Cancer 2021; 24:1037-1049. [PMID: 33782804 DOI: 10.1007/s10120-021-01184-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite improvements in gastric cancer treatment, the mortality associated with advanced gastric cancer is still high. The activation of β-adrenergic receptors by stress has been shown to accelerate the progression of several cancers. Accordingly, increasing evidence suggests that the blockade of β-adrenergic signaling can inhibit tumor growth. However, the effect of β-blockers, which target several signaling pathways, on gastric cancer remains to be elucidated. This study aimed to investigate the anti-tumor effects of propranolol, a non-selective β-blocker, on gastric cancer. METHODS We explored the effect of propranolol on the MKN45 and NUGC3 gastric cancer cell lines. Its efficacy and the mechanism by which it exerts anti-tumor effects were examined using several assays (e.g., cell proliferation, cell cycle, apoptosis, and wound healing) and a xenograft mouse model. RESULTS We found that propranolol inhibited tumor growth and induced G1-phase cell cycle arrest and apoptosis in both cell lines. Propranolol also decreased the expression of phosphorylated CREB-ATF and MEK-ERK pathways; suppressed the expression of matrix metalloproteinase-2, 9 and vascular endothelial growth factor; and inhibited gastric cancer cell migration. In the xenograft mouse model, propranolol treatment significantly inhibited tumor growth, and immunohistochemistry revealed that propranolol led to the suppression of proliferation and induction of apoptosis. CONCLUSIONS Propranolol inhibits the proliferation of gastric cancer cells by inducing G1-phase cell cycle arrest and apoptosis. These findings indicate that propranolol might have an opportunity as a new drug for gastric cancer.
Collapse
Affiliation(s)
- Masahiro Koh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teruyuki Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomo Ishida
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Serada
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Minoru Fujimoto
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Noriko Wada
- Department of Surgery, Ikeda City Hospital, Ikeda, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
35
|
Genome-wide DNA methylation profiling and gut flora analysis in intestinal polyps patients. Eur J Gastroenterol Hepatol 2021; 33:1071-1081. [PMID: 34213504 DOI: 10.1097/meg.0000000000002181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The intestinal polyp is the precancerous lesion of colorectal cancer. DNA methylation and intestinal microbiota may play an important role in the development of intestinal polyp. MATERIALS AND METHODS In this study, we included 10 patients with intestinal polyps who received the colonoscopy examination. We applied the Illumina Human Methylation 850K array to investigate the epigenome-wide DNA methylation patterns. Then, we filtered out the hub genes in the protein-protein interaction networks using functional epigenetic modules analysis. We also analyzed the colonizing bacteria on the surface of polyps compared with those in normal colonic mucosal epithelium with 16S ribosomal DNA sequencing. RESULTS We identified 323 hypermethylated sites and 7992 hypomethylated sites between intestinal polyps and normal samples. Five hub genes, including CREB1, LPA, SVIL and KRT18, were identified in five modules. Hypomethylation of CREB1 is a candidate marker of colorectal adenoma. Gut microbiota analysis showed that Butyricicoccus was significantly decreased in the intestinal polyp groups. CONCLUSION In conclusion, we identified DNA methylation disparities in intestinal polyps compared with normal tissue, of which methylation of CREB1 may hold clinical significance in colorectal cancer progress. Colonizing bacteria in the colonic epithelium might be related to the formation of intestinal polyps.
Collapse
|
36
|
Network Pharmacology/Metabolomics-Based Validation of AMPK and PI3K/AKT Signaling Pathway as a Central Role of Shengqi Fuzheng Injection Regulation of Mitochondrial Dysfunction in Cancer-Related Fatigue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5556212. [PMID: 34326918 PMCID: PMC8302405 DOI: 10.1155/2021/5556212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Chinese herbal medicines have multiple targets and properties, and their use in multidisciplinary cancer therapies has consequently received increasing attention. Here, we have investigated the possible active ingredients associated with cancer-related fatigue (CRF) in the Shengqi Fuzheng Injection (SFI). In vitro cell models were used to measure the regulation effects of SFI on CRF. Metabolomic analysis was used to identify the potential genes and pathways in C2C12 mouse myoblasts treated with SFI, and the interaction of compounds and CRF targets was predicted using network pharmacology and molecular docking analyses. The putative pathways were further verified using immuno-blotting assays. The results showed that SFI significantly inhibited muscle cell apoptosis and increased the mitochondrial membrane potential of muscle cells. The network pharmacology analysis results identified 36 candidate compounds, and 244 potential targets were yielded by SFI, and they shared 10 key targets associated with cancer-related fatigue. According to the enrichment analysis and experimental validation, SFI might ameliorate muscle cell mitochondrial function by activating AMPK and inhibiting the PI3K/Akt signaling pathways, and the expression changes of mitochondrial metabolic enzymes MnSOD and apoptosis-associated proteins Bax and Bcl-2 were also triggered. The functions and mechanisms of SFI in anticancer-related fatigue were found here to be at least partly due to the targeting of the AMPK and PI3K/Akt signaling pathways, and this has highlighted new potential applications for network pharmacology when researching Chinese Medicines.
Collapse
|
37
|
Ebrahimi Sadrabadi A, Bereimipour A, Jalili A, Gholipurmalekabadi M, Farhadihosseinabadi B, Seifalian AM. The risk of pancreatic adenocarcinoma following SARS-CoV family infection. Sci Rep 2021; 11:12948. [PMID: 34155232 PMCID: PMC8217230 DOI: 10.1038/s41598-021-92068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
COVID 19 disease has become a global catastrophe over the past year that has claimed the lives of over two million people around the world. Despite the introduction of vaccines against the disease, there is still a long way to completely eradicate it. There are concerns about the complications following infection with SARS-CoV-2. This research aimed to evaluate the possible correlation between infection with SARS-CoV viruses and cancer in an in-silico study model. To do this, the relevent dataset was selected from GEO database. Identification of differentially expressed genes among defined groups including SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 were screened where the |Log FC| ≥ 1and p < 0.05 were considered statistically significant. Later, the pathway enrichment analysis and gene ontology (GO) were used by Enrichr and Shiny GO databases. Evaluation with STRING online was applied to predict the functional interactions of proteins, followed by Cytoscape analysis to identify the master genes. Finally, analysis with GEPIA2 server was carried out to reveal the possible correlation between candidate genes and cancer development. The results showed that the main molecular function of up- and down-regulated genes was "double-stranded RNA binding" and actin-binding, respectively. STRING and Cytoscape analysis presented four genes, PTEN, CREB1, CASP3, and SMAD3 as the key genes involved in cancer development. According to TCGA database results, these four genes were up-regulated notably in pancreatic adenocarcinoma. Our findings suggest that pancreatic adenocarcinoma is the most probably malignancy happening after infection with SARS-CoV family.
Collapse
Affiliation(s)
- Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Research Centre, Royan Institute, Tehran, Iran
- Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Mazaher Gholipurmalekabadi
- Cellular and Molecular Research Centre, Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
38
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
39
|
Watson MJ, Berger PL, Banerjee K, Frank SB, Tang L, Ganguly SS, Hostetter G, Winn M, Miranti CK. Aberrant CREB1 activation in prostate cancer disrupts normal prostate luminal cell differentiation. Oncogene 2021; 40:3260-3272. [PMID: 33846571 PMCID: PMC10760404 DOI: 10.1038/s41388-021-01772-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The molecular mechanisms of luminal cell differentiation are not understood well enough to determine how differentiation goes awry during oncogenesis. Using RNA-Seq analysis, we discovered that CREB1 plays a central role in maintaining new luminal cell survival and that oncogenesis dramatically changes the CREB1-induced transcriptome. CREB1 is active in luminal cells, but not basal cells. We identified ING4 and its E3 ligase, JFK, as CREB1 transcriptional targets in luminal cells. During luminal cell differentiation, transient induction of ING4 expression is followed by a peak in CREB1 activity, while JFK increases concomitantly with CREB1 activation. Transient expression of ING4 is required for luminal cell induction; however, failure to properly down-regulate ING4 leads to luminal cell death. Consequently, blocking CREB1 increased ING4 expression, suppressed JFK, and led to luminal cell death. Thus, CREB1 is responsible for the suppression of ING4 required for luminal cell survival and maintenance. Oncogenic transformation by suppressing PTEN resulted in constitutive activation of CREB1. However, the tumor cells could no longer fully differentiate into luminal cells, failed to express ING4, and displayed a unique CREB1 transcriptome. Blocking CREB1 in tumorigenic cells suppressed tumor growth in vivo, rescued ING4 expression, and restored luminal cell formation, but ultimately induced luminal cell death. IHC of primary prostate tumors demonstrated a strong correlation between loss of ING4 and loss of PTEN. This is the first study to define a molecular mechanism whereby oncogenic loss of PTEN, leading to aberrant CREB1 activation, suppresses ING4 expression causing disruption of luminal cell differentiation.
Collapse
Affiliation(s)
- M J Watson
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - P L Berger
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - K Banerjee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S B Frank
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - L Tang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S S Ganguly
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - G Hostetter
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - M Winn
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - C K Miranti
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
40
|
Lee SY, Yen IC, Lin JC, Chung MC, Liu WH. 4-Acetylantrocamol LT3 Inhibits Glioblastoma Cell Growth and Downregulates DNA Repair Enzyme O 6-Methylguanine-DNA Methyltransferase. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:983-999. [PMID: 33827387 DOI: 10.1142/s0192415x21500476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.
Collapse
Affiliation(s)
- Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Jang-Chun Lin
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Chieh Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Neurological Surgery Tri-Service General Hospital and National Defense Medical Center, No. 325, Sec. 2 Cheng-Kung Road Taipei 11490, Taiwan
| |
Collapse
|
41
|
Phelan DE, Mota C, Lai C, Kierans SJ, Cummins EP. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021; 11:20200033. [PMID: 33633832 PMCID: PMC7898142 DOI: 10.1098/rsfs.2020.0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.
Collapse
Affiliation(s)
- D. E. Phelan
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Mota
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Lai
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S. J. Kierans
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - E. P. Cummins
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
42
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
43
|
Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M, Nicoletti C, Capalbo C, De Smaele E, Di Marcotullio L, Giannini G, Battistini L, Goffredo BM, Iorio E, Agostinelli E, Maroder M, Canettieri G. Phenformin Inhibits Hedgehog-Dependent Tumor Growth through a Complex I-Independent Redox/Corepressor Module. Cell Rep 2021; 30:1735-1752.e7. [PMID: 32049007 DOI: 10.1016/j.celrep.2020.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
The antidiabetic drug phenformin displays potent anticancer activity in different tumors, but its mechanism of action remains elusive. Using Shh medulloblastoma as model, we show here that at clinically relevant concentrations, phenformin elicits a significant therapeutic effect through a redox-dependent but complex I-independent mechanism. Phenformin inhibits mitochondrial glycerophosphate dehydrogenase (mGPD), a component of the glycerophosphate shuttle, and causes elevations of intracellular NADH content. Inhibition of mGPD mimics phenformin action and promotes an association between corepressor CtBP2 and Gli1, thereby inhibiting Hh transcriptional output and tumor growth. Because ablation of CtBP2 abrogates the therapeutic effect of phenformin in mice, these data illustrate a biguanide-mediated redox/corepressor interplay, which may represent a relevant target for tumor therapy.
Collapse
Affiliation(s)
- Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Simona Manni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Cairoli
- Division of Metabolism and Research Unit of metabolic Biochemistry, Children's Hospital and Research Institute Bambino Gesù IRCCS, 00146 Rome, Italy
| | - Manolo Sambucci
- IRCCS Santa Lucia Foundation, Neuroimmunology Unit, 00143 Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Marta Moretti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Battistini
- IRCCS Santa Lucia Foundation, Neuroimmunology Unit, 00143 Rome, Italy
| | - Bianca Maria Goffredo
- Division of Metabolism and Research Unit of metabolic Biochemistry, Children's Hospital and Research Institute Bambino Gesù IRCCS, 00146 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy; International Polyamines Foundation-ONLUS, 00159 Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; International Polyamines Foundation-ONLUS, 00159 Rome, Italy.
| |
Collapse
|
44
|
Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, Zhu W, Ni Z, Jin F, Wang Y, Hu Z, Chen X, Ren M, Zhang H, Zha X. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis 2021; 12:172. [PMID: 33568640 PMCID: PMC7876135 DOI: 10.1038/s41419-021-03433-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
As evidenced by the behavior of loss-of-function mutants of PTEN in the context of a gain-of-function mutation of AKT1, the PTEN-AKT1 signaling pathway plays a critical role in human cancers. In this study, we demonstrated that a deficiency in PTEN or activation of AKT1 potentiated the expression of platelet-derived growth factor receptor α (PDGFRα) based on studies on Pten-/- mouse embryonic fibroblasts, human cancer cell lines, the hepatic tissues of Pten conditional knockout mice, and human cancer tissues. Loss of PTEN enhanced PDGFRα expression via activation of the AKT1-CREB signaling cascade. CREB transactivated PDGFRα expression by direct binding of the promoter of the PDGFRα gene. Depletion of PDGFRα attenuated the tumorigenicity of Pten-null cells in nude mice. Moreover, the PI3K-AKT signaling pathway has been shown to positively correlate with PDGFRα expression in multiple cancers. Augmented PDGFRα was associated with poor survival of cancer patients. Lastly, combination treatment with the AKT inhibitor MK-2206 and the PDGFR inhibitor CP-673451 displayed synergistic anti-tumor effects. Therefore, activation of the AKT1-CREB-PDGFRα signaling pathway contributes to the tumor growth induced by PTEN deficiency and should be targeted for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Laboratory, Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fuqiang Huang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Wanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhaofei Ni
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yani Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Ren
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| |
Collapse
|
45
|
Raschdorf A, Sünderhauf A, Skibbe K, Ghebrehiwet B, Peerschke EI, Sina C, Derer S. Heterozygous P32/ C1QBP/ HABP1 Polymorphism rs56014026 Reduces Mitochondrial Oxidative Phosphorylation and Is Expressed in Low-grade Colorectal Carcinomas. Front Oncol 2021; 10:631592. [PMID: 33628739 PMCID: PMC7897657 DOI: 10.3389/fonc.2020.631592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (C1QBP/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues. We recently demonstrated high levels of non-mitochondrial p32 to be associated with high-grade colorectal carcinoma. Mutations in human p32 are likely to disrupt proper mitochondrial function giving rise to various diseases including cancer. Hence, we aimed to investigate the impact of the most common single nucleotide polymorphism (SNP) rs56014026 in the coding sequence of p32 on tumor cell metabolism. In silico homology modeling of the resulting p.Thr130Met mutated p32 revealed that the single amino acid substitution potentially induces a strong conformational change in the protein, mainly affecting the mitochondrial targeting sequence (MTS). In vitro experiments confirmed an impaired mitochondrial import of mutated p32-T130M, resulting in reduced OXPHOS activity and a shift towards a low metabolic phenotype. Overexpression of p32-T130M maintained terminal differentiation of a goblet cell-like colorectal cancer cell line compared to p32-wt without affecting cell proliferation. Sanger sequencing of tumor samples from 128 CRC patients identified the heterozygous SNP rs56014026 in two well-differentiated, low proliferating adenocarcinomas, supporting our in vitro data. Together, the SNP rs56014026 reduces metabolic activity and proliferation while promoting differentiation in tumor cells.
Collapse
Affiliation(s)
- Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
46
|
Perdikopanis N, Georgakilas GK, Grigoriadis D, Pierros V, Kavakiotis I, Alexiou P, Hatzigeorgiou A. DIANA-miRGen v4: indexing promoters and regulators for more than 1500 microRNAs. Nucleic Acids Res 2021; 49:D151-D159. [PMID: 33245765 PMCID: PMC7778932 DOI: 10.1093/nar/gkaa1060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Deregulation of microRNA (miRNA) expression plays a critical role in the transition from a physiological to a pathological state. The accurate miRNA promoter identification in multiple cell types is a fundamental endeavor towards understanding and characterizing the underlying mechanisms of both physiological as well as pathological conditions. DIANA-miRGen v4 (www.microrna.gr/mirgenv4) provides cell type specific miRNA transcription start sites (TSSs) for over 1500 miRNAs retrieved from the analysis of >1000 cap analysis of gene expression (CAGE) samples corresponding to 133 tissues, cell lines and primary cells available in FANTOM repository. MiRNA TSS locations were associated with transcription factor binding site (TFBSs) annotation, for >280 TFs, derived from analyzing the majority of ENCODE ChIP-Seq datasets. For the first time, clusters of cell types having common miRNA TSSs are characterized and provided through a user friendly interface with multiple layers of customization. DIANA-miRGen v4 significantly improves our understanding of miRNA biogenesis regulation at the transcriptional level by providing a unique integration of high-quality annotations for hundreds of cell specific miRNA promoters with experimentally derived TFBSs.
Collapse
Affiliation(s)
- Nikos Perdikopanis
- Hellenic Pasteur Institute, Athens 11521, Greece.,Department of Electrical and Computer Engineering, University of Thessaly, Volos 38221, Greece.,Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Georgios K Georgakilas
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 62500 Brno, Czech Republic
| | - Dimitris Grigoriadis
- Hellenic Pasteur Institute, Athens 11521, Greece.,Department of Computer Science and Biomedical Informatics, University of Thessaly, Greece
| | - Vasilis Pierros
- Hellenic Pasteur Institute, Athens 11521, Greece.,Department of Electrical and Computer Engineering, University of Thessaly, Volos 38221, Greece
| | - Ioannis Kavakiotis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Greece
| | - Panagiotis Alexiou
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 62500 Brno, Czech Republic
| | - Artemis Hatzigeorgiou
- Hellenic Pasteur Institute, Athens 11521, Greece.,Department of Electrical and Computer Engineering, University of Thessaly, Volos 38221, Greece.,Department of Computer Science and Biomedical Informatics, University of Thessaly, Greece
| |
Collapse
|
47
|
Multi-parametric analysis of 57 SYNGAP1 variants reveal impacts on GTPase signaling, localization, and protein stability. Am J Hum Genet 2021; 108:148-162. [PMID: 33308442 DOI: 10.1016/j.ajhg.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
SYNGAP1 is a neuronal Ras and Rap GTPase-activating protein with important roles in regulating excitatory synaptic plasticity. While many SYNGAP1 missense and nonsense mutations have been associated with intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder (ASD), whether and how they contribute to individual disease phenotypes is often unknown. Here, we characterize 57 variants in seven assays that examine multiple aspects of SYNGAP1 function. Specifically, we used multiplex phospho-flow cytometry to measure variant impact on protein stability, pERK, pGSK3β, pp38, pCREB, and high-content imaging to examine subcellular localization. We find variants ranging from complete loss-of-function (LoF) to wild-type (WT)-like in their regulation of pERK and pGSK3β, while all variants retain at least partial ability to dephosphorylate pCREB. Interestingly, our assays reveal that a larger proportion of variants located within the disordered domain of unknown function (DUF) comprising the C-terminal half of SYNGAP1 exhibited higher LoF, compared to variants within the better studied catalytic domain. Moreover, we find protein instability to be a major contributor to dysfunction for only two missense variants, both located within the catalytic domain. Using high-content imaging, we find variants located within the C2 domain known to mediate membrane lipid interactions exhibit significantly larger cytoplasmic speckles than WT SYNGAP1. Moreover, this subcellular phenotype shows both correlation with altered catalytic activity and unique deviation from signaling assay results, highlighting multiple independent molecular mechanisms underlying variant dysfunction. Our multidimensional dataset allows clustering of variants based on functional phenotypes and provides high-confidence, multi-functional measures for making pathogenicity predictions.
Collapse
|
48
|
Sagini MN, Hotz-Wagenblatt A, Berger MR. A subgroup of lactosyl-Sepharose binding proteins requires calcium for affinity and galactose for anti-proliferation. Chem Biol Interact 2020; 334:109354. [PMID: 33309620 DOI: 10.1016/j.cbi.2020.109354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Lactosyl-Sepharose binding proteins (LSBPs) were recently described in human pancreatic ductal adenocarcinoma (PDAC) Suit2-007 cells regarding their lectin-like properties and role in metastasis. This study further investigated how calcium and galactose influence the binding of LSBPs to the lactosyl resin as well as their anti-proliferative effect in Suit2-007 cells. Altered binding of LSBPs to the lactosyl resin was evaluated by affinity chromatography and mass spectrometry. Calcium binding EF-hand proteins were aligned and identified with a motif derived from the Uniprot protein database. The antiproliferative effects of LSBPs and monosaccharides were determined by MTT assay. In addition, LSBPs and galactose effects were investigated by chip array and tumor take in nude rats. LSBPs reduced Suit2-007 cells' proliferation with an IC50 of 125 μg/mL. Coincubation of LSBPs with EGTA decreased the number of LSBPs binding to the lactosyl resin by ~50%. Ca2+ -sensitive LSBPs included subgroups of galactose-sensitive (10%) and EF-hand calcium binding motifs containing (2.5%) proteins. In vitro, the combination of LSBPs with monosaccharides including galactose synergistically decreased cell proliferation compared to single agents (p < 0.05). In addition, LSBPs in combination with galactose prevented the tumor growth of Suit2-007 cells in nude rats, as opposed to single treatments. At mRNA level, the combination treatment modulated 5% of Ca2+ -sensitive LSBPs and downregulated 216 genes, 18% of which were up-regulated during PDAC progression. This study highlights the importance of calcium and galactose in modulating the affinity and anti-proliferative activity of LSBPs and their potential application as therapeutic agents for metastatic PDAC.
Collapse
Affiliation(s)
- Micah N Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Agnes Hotz-Wagenblatt
- Genomics and Proteomics Core Facility, Bioinformatics-Husar Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Nabergoj S, Markovič T, Avsec D, Gobec M, Podgornik H, Jakopin Ž, Mlinarič-Raščan I. EP4 receptor agonist L-902688 augments cytotoxic activities of ibrutinib, idelalisib, and venetoclax against chronic lymphocytic leukemia cells. Biochem Pharmacol 2020; 183:114352. [PMID: 33278351 DOI: 10.1016/j.bcp.2020.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Treatment of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) has significantly improved more recently with the approval of several new agents, including ibrutinib, idelalisib, and venetoclax. Despite the outstanding efficacies observed with these agents, these treatments are sometimes discontinued due to toxicity, unresponsiveness, transformation of the disease and/or resistance. Constitutive NF-κB activation that protects CLL cells from apoptotic stimuli represents one of molecular mechanisms that underlie the emergence of drug resistance. As prostaglandin E (EP)4 receptor agonists have been shown to successfully inhibit the NF-κB pathway in B-cell lymphoma cells, we investigated the potential of the highly specific EP4 receptor agonist L-902688 for the potential treatment of patients with CLL. We show here that low micromolar concentrations of L-902688 can indeed induce selective cytotoxicity towards several B-cell malignancies, including CLL. Moreover, L-902688-mediated activation of the EP4 receptor in patient derived CLL cells resulted in inhibition of the NF-κB pathway, cell proliferation, and induction of apoptosis. Most importantly, we show for the first time that in combination with ibrutinib, idelalisib, or venetoclax, L-902688 induces synergistic cytotoxic activity against patient derived CLL cells. To conclude, the modulation of NF-κB activity by EP4 receptor agonists represents an innovative approach to improve the treatment of patients with CLL. In particular, EP4 receptor agonists appear to represent promising adjuncts to the already existing therapies for patients with CLL due to these promising synergistic activities.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adult
- Antineoplastic Agents/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Apoptosis/physiology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Piperidines/administration & dosage
- Purines/administration & dosage
- Pyrrolidinones/administration & dosage
- Quinazolinones/administration & dosage
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sulfonamides/administration & dosage
- Tetrazoles/administration & dosage
- U937 Cells
Collapse
Affiliation(s)
- Sanja Nabergoj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tijana Markovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Department of Haematology, Ljubljana, Slovenia
| | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
50
|
Awaad AK, Kamel MA, Mohamed MM, Helmy MH, Youssef MI, Zaki EI, Essawy MM, Hegazy MGA. The role of hepatic transcription factor cAMP response element-binding protein (CREB) during the development of experimental nonalcoholic fatty liver: a biochemical and histomorphometric study. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Several molecular mechanisms contribute to the initiation and progression of nonalcoholic fatty liver disease (NAFLD); however, the exact mechanism is not completely understood. Cyclic adenosine monophosphate (cAMP) is one of the most promising pathways that regulates various cellular functions including lipid and carbohydrate metabolism. cAMP induces gene transcription through phosphorylation of the transcription factor, cAMP response element-binding protein (CREB). The action of cAMP is tightly regulated by its level and repression. Among the repressors, Inducible cAMP Early Repressor (ICER) is the only inducible CRE-binding protein. The present study aimed to evaluate the role of hepatic CREB level in the development of experimental NAFLD model to clarify the pathogenesis of the disease. NAFLD 35 male Wistar rats fed a high fat diet for a period of 14 weeks were studied compared with 35 control rats fed a standard diet. Five fasting rats were sacrificed each 2 weeks intervals for a period of 14 weeks.
Results
NAFLD group revealed a remarkable duration—dependent elevation in cAMP and CREB levels in the liver tissue compared to control group (P value < 0.004, P value < 0.006, respectively). In contrast, ICER gene expression, as a dominant-negative regulator of CREB, was downregulated in the liver of NAFLD group compared to control group. We also demonstrated that CREB levels were positively correlated with liver function tests, and glucose homeostasis parameters.
Conclusions
Our results indicate that cAMP/CREB pathway provides an early signal in the progression to NAFLD representing a noninvasive biomarker that can early detect NAFLD and a promising therapeutic target for the treatment of the disease as well.
Collapse
|