1
|
ΔN63 suppresses the ability of pregnancy-identified mammary epithelial cells (PIMECs) to drive HER2-positive breast cancer. Cell Death Dis 2021; 12:525. [PMID: 34023861 PMCID: PMC8141055 DOI: 10.1038/s41419-021-03795-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
While pregnancy is known to reduce a woman's life-long risk of breast cancer, clinical data suggest that it can specifically promote HER2 (human EGF receptor 2)-positive breast cancer subtype (HER2+ BC). HER2+ BC, characterized by amplification of HER2, comprises about 20% of all sporadic breast cancers and is more aggressive than hormone receptor-positive breast cancer (the majority of cases). Consistently with human data, pregnancy strongly promotes HER2+ BC in genetic mouse models. One proposed mechanism of this is post-pregnancy accumulation of PIMECs (pregnancy-identified mammary epithelial cells), tumor-initiating cells for HER2+ BC in mice. We previously showed that p63, a homologue of the tumor suppressor p53, is required to maintain the post-pregnancy number of PIMECs and thereby promotes HER2+ BC. Here we set to test whether p63 also affects the intrinsic tumorigenic properties of PIMECs. To this end, we FACS-sorted YFP-labeled PIMECs from p63+/-;ErbB2 and control p63+/+;ErbB2 females and injected their equal amounts into immunodeficient recipients. To our surprise, p63+/- PIMECs showed increased, rather than decreased, tumorigenic capacity in vivo, i.e., significantly accelerated tumor onset and tumor growth, as well as increased self-renewal in mammosphere assays and proliferation in vitro and in vivo. The underlying mechanism of these phenotypes seems to be a specific reduction of the tumor suppressor TAp63 isoform in p63+/- luminal cells, including PIMECs, with concomitant aberrant upregulation of the oncogenic ΔNp63 isoform, as determined by qRT-PCR and scRNA-seq analyses. In addition, scRNA-seq revealed upregulation of several cancer-associated (Il-4/Il-13, Hsf1/HSP), oncogenic (TGFβ, NGF, FGF, MAPK) and self-renewal (Wnt, Notch) pathways in p63+/-;ErbB2 luminal cells and PIMECs per se. Altogether, these data reveal a complex role of p63 in PIMECs and pregnancy-associated HER2+ BC: maintaining the amount of PIMECs while suppressing their intrinsic tumorigenic capacity.
Collapse
|
2
|
Guo S, Wang Y, Rohr J, Shang L, Ma J. p63 expression is associated with high histological grade, aberrant p53 expression and TP53 mutation in HER2-positive breast carcinoma. J Clin Pathol 2020; 74:641-645. [PMID: 32873702 DOI: 10.1136/jclinpath-2020-206643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023]
Abstract
AIM p63, a member of the p53 family, is a myoepithelial cell marker usually expressed in metaplastic breast carcinoma and its expression suggests a myoepithelial phenotype. However, its expression and association with clinicopathological features of human epidermal growth factor receptor 2 (HER 2)-positive breast carcinoma is poorly investigated. MATERIALS AND METHODS Sixty-seven patients with oestrogen receptor-negative and progesterone receptor-negative, HER2-positive breast carcinoma who received anti-HER2-based neoadjuvant±adjuvant therapy was retrospectively analysed. RESULTS Twenty cases were p63-positive and 47 cases were p63-negative. The clinicopathological features and tumour responses after neoadjuvant therapy and outcomes were analysed. Among HER2-positive tumours, expression of p63 was significantly associated with younger age (42.5 vs 55.9; p=0.010). Expression of p63 was also significantly associated with histological grade 3 (11/20 (55%) vs 11/47 (23.4%); p=0.012) and negatively associated with grade 2 (9/20 (45%) vs 36/47 (76.6%); p=0.012). Intriguingly, p63-positive breast carcinomas showed significant aberrant p53 expression by immunohistochemistry (16/18 (88.9%) vs 29/47 (61.7%); p=0.03) and of TP53 mutation by Sanger sequencing (15/16 (93.8%) vs 12/22 (54.5%); p=0.009). No significant difference in tumour response after anti-HER2 neoadjuvant therapy nor in survival were found between p63-positive and p63-negative breast carcinomas. CONCLUSION Expression of p63 in HER2-positive breast carcinoma is significantly associated with younger age, poor differentiation, high histological grade and aberrant expression of p53 and of TP53 mutation. HER2-positive breast carcinoma with a myoepithelial immunophenotype shows distinctive clinicopathological features representing a distinct subtype of HER2-positive breast carcinoma. Further, these findings suggest an interaction between p63 and mutant p53 in the tumorigenesis of HER2-positive breast carcinomas.
Collapse
Affiliation(s)
- Shuangping Guo
- Department of Pathology, The Basic Medicine Science and the First Affiliated Hospital of the Air Force Military Medical University, Xi'an, China .,State Key Laboratory of Oncobiology, Xi'an, China
| | - Yingmei Wang
- Department of Pathology, The Basic Medicine Science and the First Affiliated Hospital of the Air Force Military Medical University, Xi'an, China
| | - Joseph Rohr
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Li Shang
- Department of Vascular Intervention, the 9th Hospital of Xi'an, Xi'an, Shaan Xi, China
| | - Jing Ma
- Department of Pathology, The Basic Medicine Science and the First Affiliated Hospital of the Air Force Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Murphy A, Costa M. Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer. Cancer Lett 2020; 494:132-141. [PMID: 32835767 DOI: 10.1016/j.canlet.2020.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Nuclear protein 1 (NUPR1) also known as p8 and candidate of metastasis 1 (COM1) functions as a transcriptional regulator, and plays a role in cell cycle, DNA damage response, apoptosis, autophagy, and chromatin remodeling in response to various cellular stressors. Since it was first suggested to contribute to cancer development and progression in 1999, a number of studies have sought to reveal its function. However, NUPR1 and its biological relevance in cancer have proven difficult to pinpoint. Based on evidence of NUPR1 expression in cancers, its function extends from carcinogenesis and tumorigenesis to metastasis and chemotherapeutic resistance. A tumor suppressive function of NUPR1 has also been documented in multiple cancers. By and large, literature involving NUPR1 and cancer is confined to pancreatic and breast cancers, yet significant progress has been made with respect to NUPR1 expression and its function in lung, colorectal, blood, and prostate cancers, among others. Recent evidence strongly supports the notion that NUPR1 is key in chemotherapeutic resistance by mediating both anti-apoptotic activity and autophagy when challenged with anti-cancer compounds. Therefore, it is of significant importance to understand the broad range of molecular functions directed by NUPR1. In this review, NUPR1 expression and its role in breast, lung, and colorectal cancer development and progression will be addressed.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, USA.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, USA.
| |
Collapse
|
4
|
Chen J, Ko J, Kim JT, Cho JS, Qiu S, Kim GD, Auh JH, Lee HJ. β-Thujaplicin inhibits basal-like mammary tumor growth by regulating glycogen synthase kinase-3β/β-catenin signaling. Food Funct 2020; 10:2691-2700. [PMID: 31026007 DOI: 10.1039/c9fo00009g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β-Thujaplicin, a natural monoterpenoid, has been demonstrated to exert health beneficial activities in chronic diseases. However, it has not been studied in regulating estrogen receptor (ER) negative breast cancer. Here, we investigated the effect of β-thujaplicin on inhibiting ER-negative basal-like breast cancer and the underlying mechanism of action using an in vitro and in vivo xenograft animal model. β-Thujaplicin induced G0/G1 phase cell cycle arrest and regulated cell cycle mediators, cyclin D1, cyclin E, and cyclin-dependent kinase 4 (CDK 4), leading to the inhibition of the proliferation of ER-negative basal-like MCF10DCIS.com human breast cancer cells. It also modulated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase (GSK-3β) and the protein level of β-catenin. In an MCF10DCIS.com xenograft animal model, β-thujaplicin significantly inhibited tumor growth, reduced tumor weight, and regulated the expression of cell cycle proteins, phosphorylation of AKT and GSK-3β, and protein level of β-catenin in the tumor tissues. These results demonstrate that β-thujaplicin can suppress basal-like mammary tumor growth by regulating GSK-3β/β-catenin signaling, suggesting that β-thujaplicin may be a potent chemopreventive agent against the basal-like subtype of breast cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Nasr M, Farghaly M, Elsaba T, El-Mokhtar M, Radwan R, Elsabahy M, Abdelkareem A, Fakhry H, Mousa N. Resistance of primary breast cancer cells with enhanced pluripotency and stem cell activity to sex hormonal stimulation and suppression. Int J Biochem Cell Biol 2018; 105:84-93. [PMID: 30359767 DOI: 10.1016/j.biocel.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
Female sex steroid hormones have a fundamental role in breast cancer. Meanwhile, current evidence supports the contribution of breast cancer stem cells in carcinogenesis, metastasis, and resistance to cytotoxic chemotherapy. Nevertheless, the interaction between breast cancer stem cells with sex hormones or key hormonal antagonists remains elusive. OBJECTIVE To investigate the effect of diverse sex hormonal stimulation and suppression regimens on the proliferation of a primary human breast cancer cells with stem cell activity. METHODS Cells were exposed to estradiol, progesterone, letrozole, ulipristal acetate, or a combination of ulipristal acetate-letrozole, continually for 6 months. Additionally, nanoparticle-linked letrozole and ulipristal acetate formulations were included in a subsequent short-term exposure study. Phenotypic, pathologic, and functional characteristics of unexposed cells were investigated. RESULTS The proliferation of breast cancer cells was comparable among all hormonal stimulation and suppression groups (P= 0.8). In addition, the nanoparticle encapsulated hormonal antagonists were not able to overcome the observed resistance of cells. Cell characterization showed a mesenchymal-like phenotype overexpressing three master pluripotency markers (Oct 4, SOX2, and Nanog), and 92% of cells were expressing ALDH1A1. Notably, the CD44 high/CD24 low cell population presented only 0.97%-5.4% over repeat analyses. Most cells lacked the expression of mesenchymal markers; however, they showed differentiation into osteogenic and adipogenic lineages. Upon transfer to serum-free culture, the long-term maintained mesenchymal-like cancer cells showed remarkable morphologic plasticity as they switched promptly into an epithelial-like phenotype with significant mammosphere formation capacity (P= 0.008). CONCLUSION Breast cancer cells can develop a pluripotent program with enhanced stemness activity that may together contribute to universal resistance to sex hormonal stimulation or deprivation. Isolation and characterization of patient-derived breast cancer stem cells in large clinical studies is therefore crucial to identify new targets for endocrine therapies, potentially directed towards stemness and pluripotency markers. Such direction may help overcoming endocrine resistance and draw attention to breast cancer stem cells' behaviour under endogenous and exogenous sex hormones throughout a woman's reproductive life.
Collapse
Affiliation(s)
| | | | - Tarek Elsaba
- South Egypt Cancer Institute, Assiut University, Egypt
| | | | - Radwa Radwan
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Mahmoud Elsabahy
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt; Laboratory for Synthetic-Biologic Interactions, Department of Chemistry, Texas A&M University, College Station, TX, USA
| | | | | | - Noha Mousa
- Zewail City of Science and Technology, Egypt.
| |
Collapse
|
6
|
Abstract
Generation of intratumoral phenotypic and genetic heterogeneity has been attributed to clonal evolution and cancer stem cells that together give rise to a tumor with complex ecosystems. Each ecosystem contains various tumor cell subpopulations and stromal entities, which, depending upon their composition, can influence survival, therapy responses, and global growth of the tumor. Despite recent advances in breast cancer management, the disease has not been completely eradicated as tumors recur despite initial response to treatment. In this review, using data from clinically relevant breast cancer models, we show that the fates of tumor stem cells/progenitor cells in the individual tumor ecosystems comprising a tumor are predetermined to follow a limited (unipotent) and/or unlimited (multipotent) path of differentiation which create conditions for active generation and maintenance of heterogeneity. The resultant dynamic systems respond differently to treatments, thus disrupting the delicate stability maintained in the heterogeneous tumor. This raises the question whether it is better then to preserve stability by preventing takeover by otherwise dormant ecosystems in the tumor following therapy. The ultimate strategy for personalized therapy would require serial assessments of the patient's tumor for biomarker validation during the entire course of treatment that is combined with their three-dimensional mapping to the tumor architecture and landscape.
Collapse
|
7
|
Gonzalez-Guerrico AM, Espinoza I, Schroeder B, Park CH, Kvp CM, Khurana A, Corominas-Faja B, Cuyàs E, Alarcón T, Kleer C, Menendez JA, Lupu R. Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer. Oncotarget 2018; 7:71151-71168. [PMID: 27223424 PMCID: PMC5342069 DOI: 10.18632/oncotarget.9463] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies.
Collapse
Affiliation(s)
- Anatilde M Gonzalez-Guerrico
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ingrid Espinoza
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barbara Schroeder
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cheol Hong Park
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Chandra Mohan Kvp
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ashwani Khurana
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bruna Corominas-Faja
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Tomás Alarcón
- Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,ICREA (Institució Catalana d'Estudis i Recerca Avançats), Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - Celina Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| |
Collapse
|
8
|
Sorrentino L, Sartani A, Bossi D, Amadori R, Nebuloni M, Truffi M, Bonzini M, Riggio E, Foschi D, Corsi F. Sentinel node biopsy in ductal carcinoma in situ of the breast: Never justified? Breast J 2017; 24:325-333. [PMID: 29024241 DOI: 10.1111/tbj.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Sentinel lymph node biopsy for ductal carcinoma in situ (DCIS) of the breast is not standard of care. However, nodal involvement for DCIS patients is reported. Aim of our study was to identify preoperative features predictive of nodal involvement in DCIS patients. We have retrospectively reviewed 175 patients with a preoperative diagnosis of DCIS following a vacuum-assisted breast biopsy, and undergoing surgery with sentinel node biopsy. Variables distribution was compared between patients upstaged to invasive cancer at final pathology and patients with a confirmed DCIS, and between positive vs negative sentinel node patients. Univariate and multivariate analyses were performed for risk of a positive node. Lymph node biopsy was positive in 13 (7.4%) patients, with 8 (61.5%) macrometastases and 5 (38.5%) micrometastases. In these patients, Breast Imaging Reporting and Data System (BI-RADS) index >4 (OR 4.69, 95% CI 1.282-17.224, P = .02), lesion extension ≥20 mm (OR 4.25, 95% CI 1.255-14.447, P = .02), multifocal disease (OR 4.12, 95% CI 0.987-17.174, P = .05), comedo type (OR 3.54, 95% CI 1.044-11.969, P = .04), and upstaging (OR 4.56, 95% CI 1.080-19.249, P = .04) were all predictive of nodal involvement, although upstaging could not be predicted preoperatively. By multivariate analysis, the only independent factor predictive for positive sentinel node was multifocal disease (OR 5.14, 95% CI 1.015-26.066, P < .05). A preoperative diagnosis of DCIS, also including advanced biopsy systems such as vacuum-assisted breast biopsy, may be not always sufficient to exclude patients from sentinel node biopsy. DCIS patients with associated BI-RADS >4, lesion extension ≥20 mm, comedo type, and above all multifocal disease should be considered for axillary evaluation.
Collapse
Affiliation(s)
- Luca Sorrentino
- Surgery Division, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milano, Italy
| | - Alessandra Sartani
- Surgery Division, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milano, Italy
| | - Daniela Bossi
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB, Pavia, Italy
| | - Rosella Amadori
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB, Pavia, Italy
| | - Manuela Nebuloni
- Service of Pathology, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milano, Italy.,Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, Milano, Italy
| | - Marta Truffi
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, Milano, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Eliana Riggio
- Surgery Division, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milano, Italy
| | - Diego Foschi
- Surgery Division, ASST Fatebenefratelli-Sacco, Luigi Sacco University Hospital, Milano, Italy.,Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, Milano, Italy
| | - Fabio Corsi
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB, Pavia, Italy.,Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, Milano, Italy
| |
Collapse
|
9
|
Different Biological Action of Oleic Acid in ALDHhigh and ALDHlow Subpopulations Separated from Ductal Carcinoma In Situ of Breast Cancer. PLoS One 2016; 11:e0160835. [PMID: 27589390 PMCID: PMC5010246 DOI: 10.1371/journal.pone.0160835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying breast cancer progression of ductal carcinoma in situ (DCIS) associated with fatty acids are largely unknown. In the present study, we compared the action of oleic acid (OA) on two human DCIS cell lines, MCF10DCIS.COM (ER/PR/HER2-negative) and SUM225 (HER2 overexpressed). OA led to a significant increase in proliferation, migration, lipid accumulation and the expression of lipogenic proteins, such as SREBP-1, FAS and ACC-1, in MCF10DCIS.COM cells but not SUM225 cells. The ALDHhigh subpopulation analyzed by the ALDEFLUOR assay was approximately 39.2±5.3% of MCF10DCIS.COM cells but was small (3.11±0.9%) in SUM225 cells. We further investigated the different biological action of OA in the distinct ALDHlow and ALDHhigh subpopulations of MCF10DCIS.COM cells. OA led to an increase in the expression of ALDH1A1, ALDH1A2 and ALDH1A3 in MCF10DCIS.COM cells. SREBP-1 and ACC-1 were highly expressed in ALDHhigh cells relative to ALDHlow cells, whereas FAS was higher in ALDHlow cells. In the presence of OA, ALDHhigh cells were more likely to proliferate and migrate and displayed significantly high levels of SREBP-1 and FAS and strong phosphorylation of FAK and AKT relative to ALDHlow cells. This study suggests that OA could be a critical risk factor to promote the proliferation and migration of ALDHhigh cells in DCIS, leading to breast cancer progression.
Collapse
|
10
|
Russell TD, Jindal S, Agunbiade S, Gao D, Troxell M, Borges VF, Schedin P. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3076-89. [PMID: 26343330 PMCID: PMC4630168 DOI: 10.1016/j.ajpath.2015.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 11/20/2022]
Abstract
We describe a preclinical model that investigates progression of early-stage ductal carcinoma in situ (DCIS) and report that compromised myoepithelial cell differentiation occurs before transition to invasive disease. Human breast cancer MCF10DCIS.com cells were delivered into the mouse mammary teat by intraductal injection in the absence of surgical manipulations and accompanying wound-healing confounders. DCIS-like lesions developed throughout the mammary ducts with full representation of human DCIS histologic patterns. Tumor cells were incorporated into the normal mammary epithelium, developed ductal intraepithelial neoplasia and DCIS, and progressed to invasive carcinoma, suggesting the model provides a rigorous approach to study early stages of breast cancer progression. Mammary glands were evaluated for myoepithelium integrity with immunohistochemical assays. Progressive loss of the myoepithelial cell differentiation markers p63, calponin, and α-smooth muscle actin was observed in the mouse myoepithelium surrounding DCIS-involved ducts. p63 loss was an early indicator, calponin loss intermediate, and α-smooth muscle actin a later indicator of compromised myoepithelium. Loss of myoepithelial calponin was specifically associated with gain of the basal marker p63 in adjacent tumor cells. In single time point biopsies obtained from 16 women diagnosed with pure DCIS, a similar loss in myoepithelial cell markers was observed. These results suggest that further research is warranted into the role of myoepithelial cell p63 and calponin expression on DCIS progression to invasive disease.
Collapse
Affiliation(s)
- Tanya D Russell
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sonali Jindal
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Samiat Agunbiade
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dexiang Gao
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Megan Troxell
- Department of Pathology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Virginia F Borges
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; University of Colorado Cancer Center, Aurora, Colorado
| | - Pepper Schedin
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
11
|
Melino S, Bellomaria A, Nepravishta R, Paci M, Melino G. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch. Cell Cycle 2015; 13:3207-17. [PMID: 25485500 DOI: 10.4161/15384101.2014.951285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.
Collapse
Key Words
- CXCR4, chemokine receptor
- E3 ubiquitin ligases
- HECT, Homologous E6-AP Carboxyl Terminus
- IPTG, isopropyl-β-D-thiogalactoside
- Itch
- Pin1
- Ppep63, phosphorylated pep63
- RHS, Rapp-Hodgkin syndrome
- RP-HPLC, reverse phase high performance chromatography
- TFE, 2, 2, 2-trifluoroethanol
- TNF, tumor necrosis factor
- TRAF6, TNF receptor-associated factor 6
- cPpep63, cyclic phosphorylated pep63
- p53 family
- p63
- pep63, p63(534–551) peptide
- proline isomerization
- ubiquitynation
Collapse
Affiliation(s)
- Sonia Melino
- a Dipartimento di Scienze e Tecnologie Chimiche ; University of Rome "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
12
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
13
|
Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, Irondelle M, Lagoutte E, Vacher S, Bonsang-Kitzis H, Glukhova M, Reyal F, Bièche I, Vincent-Salomon A, Chavrier P. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 2015; 35:344-57. [PMID: 25893299 DOI: 10.1038/onc.2015.87] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/29/2015] [Accepted: 02/22/2015] [Indexed: 01/01/2023]
Abstract
The transition of ductal carcinoma in situ (DCIS) to invasive breast carcinoma requires tumor cells to cross the basement membrane (BM). However, mechanisms underlying BM transmigration are poorly understood. Here, we report that expression of membrane-type 1 (MT1)-matrix metalloproteinase (MMP), a key component of the BM invasion program, increases during breast cancer progression at the in situ to invasive breast carcinoma transition. In the intraductal xenograft model, MT1-MMP is required for BM transmigration of MCF10DCIS.com breast adenocarcinoma cells and is overexpressed in cell clusters overlying focal BM disruptions and at the invasive tumor front. Mirrored upregulation of p63 and MT1-MMP is observed at the edge of MCF10DCIS.com xenograft tumors and p63 is required for induction of MT1-MMP-dependent invasive program in response to microenvironmental signals. Immunohistochemistry and analysis of public database reveal that p63 and MT1-MMP are upregulated in human basal-like breast tumors suggesting that p63/MT1-MMP axis contributes to progression of basal-like breast cancers with elevated p63 and MT1-MMP levels.
Collapse
Affiliation(s)
- C Lodillinsky
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - E Infante
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - A Guichard
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - R Chaligné
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, Paris, France
| | - L Fuhrmann
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - J Cyrta
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - M Irondelle
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - E Lagoutte
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - S Vacher
- Department of Genetics, Institut Curie, Paris, France
| | - H Bonsang-Kitzis
- RT2Lab Team, Translational Research Department, Institut Curie, Paris, France
| | - M Glukhova
- Molecular Mechanisms of Mammary Gland Development Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| | - F Reyal
- RT2Lab Team, Translational Research Department, Institut Curie, Paris, France
| | - I Bièche
- Department of Genetics, Institut Curie, Paris, France
| | - A Vincent-Salomon
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, Paris, France.,Pathology Department, Institut Curie, Paris, France
| | - P Chavrier
- Membrane and Cytoskeleton Dynamics Group, Cell Dynamics and Compartmentalization Unit, Institut Curie, Centre National de la Recherche Scientifique UMR144, Paris, France
| |
Collapse
|
14
|
Tunon-de-Lara C, Chauvet MP, Baranzelli MC, Baron M, Piquenot J, Le-Bouédec G, Penault-Llorca F, Garbay JR, Blanchot J, Mollard J, Maisongrosse V, Mathoulin-Pélissier S, MacGrogan G. The Role of Sentinel Lymph Node Biopsy and Factors Associated with Invasion in Extensive DCIS of the Breast Treated by Mastectomy: The Cinnamome Prospective Multicenter Study. Ann Surg Oncol 2015; 22:3853-60. [PMID: 25777085 PMCID: PMC4595535 DOI: 10.1245/s10434-015-4476-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 11/18/2022]
Abstract
Background When invasive components are discovered at mastectomy for vacuum-assisted biopsy (VAB)-diagnosed ductal carcinoma in situ (DCIS), the only option available is axillary lymph node dissection (ALND). The primary aim of this prospective multicenter trial was to determine the benefit of performing upfront sentinel lymph node (SLN) biopsy for these patients. The secondary aim was to determine DCIS factors associated with microinvasion or invasion. Methods The SLN procedure was performed during mastectomy, and for positive SLN an ALND was performed during the same intervention. A tissue microarray containing DCIS lesions from the mastectomy specimens was subsequently performed. Results From May 2008 to December 2010, 228 patients were enrolled from 14 French cancer centers, including 192 eligible patients with pure DCIS on VAB and successful SLN procedures. ALND was avoided for 51 [67 %; 95 % confidence interval (CI), 56–77 %] of all the patients who had microinvasive DCIS or DCIS associated with invasive carcinoma at mastectomy and a negative SLN. Of the 192 patients, 76 (39 %) with VAB-diagnosed DCIS were upgraded after mastectomy to micro (n = 20) or invasive disease (n = 56). The rate of positive SLN for patients with DCIS on VAB was 14 %. High nuclear grade of DCIS was associated with greater risk of microinvasion and invasion, and HER2-amplified DCIS was associated with greater risk of invasion. Conclusions Underestimation of invasive components is high when DCIS is diagnosed by VAB in patients undergoing mastectomy. Upfront SLN for patients with VAB-diagnosed extensive DCIS avoids unnecessary ALND for two-thirds of patients with micro or invasive disease on mastectomy. Electronic supplementary material The online version of this article (doi:10.1245/s10434-015-4476-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Marc Baron
- Department of Surgery, Centre Henri Becquerel, Rouen, France
| | - Jean Piquenot
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | | | | - Jean-Rémi Garbay
- Department of Surgery, Institut Gustave Roussy, Villejuif, France
| | - Jérôme Blanchot
- Department of Surgery, Centre Eugène Marquis, Rennes, France
| | - Joëlle Mollard
- Department of Surgery, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | | | - Simone Mathoulin-Pélissier
- University of Bordeaux, Bordeaux, France.,Clinical and Epidemiological Research Unit, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France.,INSERM U897, CIC-EC07, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Gaëtan MacGrogan
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| |
Collapse
|
15
|
Assefnia S, Kang K, Groeneveld S, Yamaji D, Dabydeen S, Alamri A, Liu X, Hennighausen L, Furth PA. Trp63 is regulated by STAT5 in mammary tissue and subject to differentiation in cancer. Endocr Relat Cancer 2014; 21:443-57. [PMID: 24692510 PMCID: PMC4073690 DOI: 10.1530/erc-14-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Transformation-related protein 63 (Trp63), the predominant member of the Trp53 family, contributes to epithelial differentiation and is expressed in breast neoplasia. Trp63 features two distinct promoters yielding specific mRNAs encoding two major TRP63 isoforms, a transactivating transcription factor and a dominant negative isoform. Specific TRP63 isoforms are linked to cell cycle arrest, apoptosis, survival, and epithelial mesenchymal transition (EMT). Although TRP63 overexpression in cultured cells is used to elucidate functions, little is known about Trp63 regulation in normal and cancerous mammary tissues. This study used ChIP-seq to interrogate transcription factor binding and histone modifications of the Trp63 locus in mammary tissue and RNA-seq and immunohistochemistry to gauge gene expression. H3K4me2 and H3K4me3 marks coincided only with the proximal promoter, supporting RNA-seq data showing the predominance of the dominant negative isoform. STAT5 bound specifically to the Trp63 proximal promoter and Trp63 mRNA levels were elevated upon deleting Stat5 from mammary tissue, suggesting its role as a negative regulator. The dominant negative TRP63 isoform was localized to nuclei of basal mammary epithelial cells throughout reproductive cycles and retained in a majority of the triple-negative cancers generated from loss of full-length Brca1. Increased expression of dominant negative isoforms was correlated with developmental windows of increased progesterone receptor binding to the proximal Trp63 promoter and decreased expression during lactation was correlated with STAT5 binding to the same region. TRP63 is present in the majority of triple-negative cancers resulting from loss of Brca1 but diminished in less differentiated cancer subtypes and in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Shahin Assefnia
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Keunsoo Kang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
- Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Svenja Groeneveld
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department Pharmazie, Ludwig-Maximilians-Universität München, Germany
| | - Daisuke Yamaji
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
| | - Sarah Dabydeen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Ahmad Alamri
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- College of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
| | - Priscilla A. Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Corresponding author: Priscilla A. Furth, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Research Bldg., Room 520A, Washington, DC 20057 USA
| |
Collapse
|
16
|
Caballero OL, Shousha S, Zhao Q, Simpson AJG, Coombes RC, Neville AM. Expression of Cancer/Testis genes in ductal carcinoma in situ and benign lesions of the breast. Oncoscience 2013; 1:14-20. [PMID: 25593980 PMCID: PMC4295763 DOI: 10.18632/oncoscience.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023] Open
Abstract
Cancer/testis (CT) genes represent a unique class of genes, which are expressed by germ cells, normally silenced in somatic cells, but activated in various cancers. CT proteins can elicit spontaneous immune responses in cancer patients and this feature makes them attractive targets for immunotherapy-based approaches. We have previously reported that CTs are relatively commonly expressed in estrogen receptor (ER) negative, high risk carcinomas. In this study, we examined the expression of selected CT genes in ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS) and benign proliferative lesions of the breast. ER negative DCIS were found to be associated with significant CT gene expression together with HER2 positivity and a marked stromal immune response.
Collapse
Affiliation(s)
- Otavia L Caballero
- Ludwig Collaborative Laboratory, Ludwig Institute for Cancer Research, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sami Shousha
- Imperial College Healthcare NHS Trust & Imperial College, London, Charing Cross Hospital
| | - Qi Zhao
- Ludwig Collaborative Laboratory, Ludwig Institute for Cancer Research, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew J G Simpson
- Ludwig Institute for Cancer Research, New York, NY., USA.,Current affiliation: Orygen Biotecnologia, São Paulo, Brazil
| | - R Charles Coombes
- Imperial College Healthcare NHS Trust & Imperial College, London, Charing Cross Hospital
| | | |
Collapse
|