1
|
Zhao X, Zhang L, Yu N, Shu M. Identification of potential SPHK1 inhibitors based on structural optimization by molecular simulation. J Biomol Struct Dyn 2025:1-10. [PMID: 40126063 DOI: 10.1080/07391102.2025.2479849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/22/2024] [Indexed: 03/25/2025]
Abstract
Sphingosine Kinase 1 (SPHK1), observed to be overexpressed in an array of human malignancies, plays a pivotal role in modulating essential cellular activities throughout the process of tumor formation. Consequently, SPHK1 represents a promising therapeutic target, offering novel approaches to tumor treatment. Here, the structure-activity relationship was researched by using CoMFA and CoMSIA models. Both CoMFA (q2=0.621; n = 10; r2=0.992) and CoMSIA (q2=0.585; n = 7; r2=0.967) demonstrated satisfactory predictive capabilities. The structure-activity relationship of the compounds was analyzed by the counter maps of various fields. Further on, the compounds were interfaced with SPHK1 using the Surfex-Dock method to elucidate their interactive characteristics. Findings reveal that the binding is predominantly reliant on van der Waals, carbon-hydrogen bonds and hydrophobic interactions. Furthermore, the potential activities and ADME/T properties of six novel compounds were predicted utilizing 3D-QSAR models and online tools. The newly designed compounds were validated to have better activities and suitable ADME/T properties. In addition, molecular dynamics (MD) simulation further revealed that key residues, such as Ala339, Ala170, Ala115, Asp81, Gly342, Phe288 Ser164, Phe188, Ile170, etc. This study offers a roadmap to the discovery and design of innovative SPHK1 inhibitors.
Collapse
Affiliation(s)
- Xuemin Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Lu Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Na Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
2
|
Mizoo T, Oka T, Sugahara O, Minato T, Higa T, Nakayama KI. GPLD1+ cancer stem cells contribute to chemotherapy resistance and tumour relapse in intestinal cancer. J Biochem 2025; 177:105-119. [PMID: 39743241 DOI: 10.1093/jb/mvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025] Open
Abstract
Cancer stem cells (CSCs) play a central role in cancer progression, therapy resistance, and disease recurrence. With the use of a quadruple-mutant mouse intestinal cancer organoid model and single-cell RNA-sequencing analysis, we have now identified glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1), an enzyme that catalyzes the cleavage of glycosylphosphatidylinositol (GPI) anchors of membrane proteins, as a marker of slowly cycling CSCs. Ablation of Gpld1+ cells in combination with 5-fluorouracil treatment greatly attenuated cell viability in and regrowth of the intestinal cancer organoids. In addition, we identified serine protease 8 (PRSS8) as a key substrate of GPLD1 in human colorectal cancer cells. GPLD1 cleaves the GPI anchor of PRSS8 and thereby mediates release of the protease from the plasma membrane, resulting in the activation of Wnt signalling and promotion of the epithelial-mesenchymal transition (EMT) in the cancer cells. Pharmacological inhibition of GPLD1 suppressed Wnt signalling activity and EMT in association with upregulation of the amount of functional PRSS8 at the plasma membrane. Our findings suggest that targeting of GPLD1 in colorectal cancer might contribute to a new therapeutic strategy that is based on suppression of Wnt signalling and EMT-related cancer progression driven by CSCs.
Collapse
Affiliation(s)
- Taisuke Mizoo
- Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Takeru Oka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Osamu Sugahara
- Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Takafumi Minato
- Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Tsunaki Higa
- Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Lundgren JG, Flynn MG, List K. GPI-anchored serine proteases: essential roles in development, homeostasis, and disease. Biol Chem 2025; 406:1-28. [PMID: 40094301 DOI: 10.1515/hsz-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored serine proteases, prostasin and testisin, have essential roles in diverse physiological functions including development, reproduction, homeostasis and barrier function of epithelia, angiogenesis, coagulation, and fibrinolysis. Important functions in pathological conditions such as cancer, kidney disease and cardiovascular disease have also been reported. In this review, we summarize current knowledge of the cellular and in vivo roles of prostasin and testisin in physiology and pathophysiology and explore the underlying molecular mechanisms. We discuss how new insights of their role in cancer and cardiovascular disease may facilitate translation into clinical settings in the future.
Collapse
Affiliation(s)
- Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Michael G Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Morang S, Thapliyal S, Upadhyay V, Khichi S, Mamgain M, Gogoi T, Bisht M, Handu S. Is Sphingosine Kinase 1 Associated with Hematological Malignancy? A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2024; 25:2605-2613. [PMID: 39205557 PMCID: PMC11495463 DOI: 10.31557/apjcp.2024.25.8.2605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sphingosine kinase 1 (SphK1) is a lipid enzyme whose role in the etiology of cancer has been well explored. Here, a systematic review and meta-analysis were conducted to evaluate the association of SphK1 expression with hematological malignancy. MATERIALS AND METHODS Relevant studies were identified through electronic databases (PubMed, Scopus, Embase, and OVID) and evaluated based on predefined inclusion and exclusion criteria. Quality assessment using the Newcastle-Ottawa Scale (NOS) was conducted, and pooled odds ratio (OR) was calculated to assess the association between SphK1 expression and hematological malignancy. RESULTS Nine studies meeting the inclusion criteria were included in the systematic review. These studies utilized various techniques to assess SphK1 expression in hematological malignancies. The quality assessment reported that the included studies were of moderate quality. Meta-analysis of eligible studies revealed a positive association between SphK1 expression and hematological malignancies at the protein level (OR = 52.37, 95% CI = 10.10 to 271.47, and P = 0.00001). The funnel plot indicated no publication bias among the included studies. However, the certainty of the evidence was low according to the GRADE assessment. CONCLUSION Our study's findings support the link between SphK1 expression and hematological malignancies. SphK1 gene dysregulation may contribute to various malignancies, suggesting it could be a therapeutic target to improve patient outcomes. Further research is needed to understand SphK1's mechanistic role in hematological malignancies and its therapeutic potential.
Collapse
Affiliation(s)
- Sikha Morang
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| | - Surabhi Thapliyal
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Vikas Upadhyay
- Department of AYUSH, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| | - Shalini Khichi
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| | - Mukesh Mamgain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India
| | - Tripti Gogoi
- Department of Library & Information Sciences, Somaiya Vidyavihar University, Mumbai-400101, Maharashtra, India.
| | - Manisha Bisht
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| | - Shailendra Handu
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| |
Collapse
|
5
|
Carland C, Zhao L, Salman O, Cohen JB, Zamani P, Xiao Q, Dongre A, Wang Z, Ebert C, Greenawalt D, van Empel V, Richards AM, Doughty RN, Rietzschel E, Javaheri A, Wang Y, Schafer PH, Hersey S, Carayannopoulos LN, Seiffert D, Chang C, Gordon DA, Ramirez‐Valle F, Mann DL, Cappola TP, Chirinos JA. Urinary Proteomics and Outcomes in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033410. [PMID: 38639358 PMCID: PMC11179922 DOI: 10.1161/jaha.123.033410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.
Collapse
Affiliation(s)
- Corinne Carland
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Qing Xiao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Robert N. Doughty
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University Hospital and Ghent UniversityGhentBelgium
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | - Yixin Wang
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
6
|
Zhao X, Lv S, Li N, Zou Q, Sun L, Song T. YTHDF2 protein stabilization by the deubiquitinase OTUB1 promotes prostate cancer cell proliferation via PRSS8 mRNA degradation. J Biol Chem 2024; 300:107152. [PMID: 38462165 PMCID: PMC11002313 DOI: 10.1016/j.jbc.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Prostate cancer is a leading cause of cancer-related mortality in males. Dysregulation of RNA adenine N-6 methylation (m6A) contributes to cancer malignancy. m6A on mRNA may affect mRNA splicing, turnover, transportation, and translation. m6A exerts these effects, at least partly, through dedicated m6A reader proteins, including YTH domain-containing family protein 2 (YTHDF2). YTHDF2 is necessary for development while its dysregulation is seen in various cancers, including prostate cancer. However, the mechanism underlying the dysregulation and function of YTHDF2 in cancer remains elusive. Here, we find that the deubiquitinase OUT domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) increases YTHDF2 protein stability by inhibiting its ubiquitination. With in vivo and in vitro ubiquitination assays, OTUB1 is shown to block ubiquitin transfer to YTHDF2 independent of its deubiquitinase activity. Furthermore, analysis of functional transcriptomic data and m6A-sequencing data identifies PRSS8 as a potential tumor suppressor gene. OTUB1 and YTHDF2 decrease mRNA and protein levels of PRSS8, which is a trypsin-like serine protease. Mechanistically, YTHDF2 binds PRSS8 mRNA and promotes its degradation in an m6A-dependent manner. Further functional study on cellular and mouse models reveals PRSS8 is a critical downstream effector of the OTUB1-YTHDF2 axis in prostate cancer. We find in prostate cancer cells, PRSS8 decreases nuclear β-catenin level through E-cadherin, which is independent of its protease activity. Collectively, our study uncovers a key regulator of YTHDF2 protein stability and establishes a functional OTUB1-YTHDF2-PRSS8 axis in prostate cancer.
Collapse
Affiliation(s)
- Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Hong S, Fu N, Sang S, Ma X, Sun F, Zhang X. Identification and validation of IRF6 related to ovarian cancer and biological function and prognostic value. J Ovarian Res 2024; 17:64. [PMID: 38493179 PMCID: PMC10943877 DOI: 10.1186/s13048-024-01386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. However, serous OC lacks effective biomarkers. We aimed to identify novel biomarkers for OC and their pathogenic causes. METHODS The present study used the differentially expressed genes (DEGs) obtained from the "Limma" package and WGCNA modules for intersection analysis to obtain DEGs in OC. Three hub genes were identified-claudin 3 (CLDN3), interferon regulatory factor 6 (IRF6), and prostasin (PRSS8)-by searching for hub genes through the PPI network and verifying them in GSE14407, GSE18520, GSE66957, and TCGA + GTEx databases. The correlation between IRF6 and the prognosis of OC patients was further confirmed in Kaplan-Miller Plotter. RT-qPCR and IHC confirmed the RNA and protein levels of IRF6 in the OC samples. The effect of IRF6 on OC was explored using transwell invasion and scratch wound assays. Finally, we constructed a ceRNA network of hub genes and used bioinformatics tools to predict drug sensitivity. RESULTS The joint analysis results of TCGA, GTEx, and GEO databases indicated that IRF6 RNA and protein levels were significantly upregulated in serous OC and were associated with OS and PFS. Cell function experiments revealed that IRF6 knockdown inhibited SKOV3 cell proliferation, migration and invasion. CONCLUSION IRF6 is closely correlated with OC development and progression and could be considered a novel biomarker and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Shihao Hong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
- Zhejiang Province Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310016, China
| | - Ni Fu
- Department of Obstetrics and Gynecology, Huangyan Hospital of Chinese Medicine, Taizhou, Zhejiang Province, 318020, China
| | - Shanliang Sang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
- Zhejiang Province Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310016, China
| | - Xudong Ma
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
- Zhejiang Province Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310016, China
| | - Fangying Sun
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
- Zhejiang Province Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310016, China
| | - Xiao Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
- Zhejiang Province Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310016, China.
| |
Collapse
|
8
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
9
|
Cui W, Wen Q, Lurong D, Wu Y, Gao S, Li J, Li N, Xu C. Multi-omics reveals Bifidobacterium longum CECT7894 alleviate food allergy by regulating the Sphingolipid metabolism pathway. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Xu Z, Zhang Q, Ding C, Wen F, Sun F, Liu Y, Tao C, Yao J. Beneficial Effects of Hordenine on a Model of Ulcerative Colitis. Molecules 2023; 28:molecules28062834. [PMID: 36985809 PMCID: PMC10054341 DOI: 10.3390/molecules28062834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Hordenine, a phenethylamine alkaloid, is found in a variety of plants and exhibits a broad array of biological activities and pharmacological properties, including anti-inflammatory and anti-fibrotic effects. However, the efficacy and underlying mechanisms of hordenine in treating ulcerative colitis (UC) remain unclear. To address this, we examined the therapeutic effects of hordenine on dextran sodium sulphate (DSS)-induced UC by comparing disease activity index (DAI), colon length, secretion of inflammatory factors, and degree of colonic histological lesions across diseased mice that were and were not treated with hordenine. We found that hordenine significantly reduced DAI and levels of pro-inflammatory factors, including interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α), and also alleviated colon tissue oedema, colonic lesions, inflammatory cells infiltration and decreased the number of goblet cells. Moreover, in vitro experiments showed that hordenine protected intestinal epithelial barrier function by increasing the expression of tight junction proteins including ZO-1 and occludin, while also promoting the healing of intestinal mucosa. Using immunohistochemistry and western blotting, we demonstrated that hordenine reduced the expression of sphingosine kinase 1 (SPHK1), sphingosine-1-phosphate receptor 1 (S1PR1), and ras-related C3 botulinum toxin substrate 1 (Rac1), and it inhibited the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in colon tissues. Thus, hordenine appears to be effective in UC treatment owing to pharmacological mechanisms that favor mucosal healing and the inhibition of SPHK-1/S1PR1/STAT3 signaling.
Collapse
Affiliation(s)
- Zhengguang Xu
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Qilian Zhang
- School of Basic Medicine, Jining Medical University, Jining 272067, China
- School of Basic Medicine, Weifang Medical University, Weifang 261000, China
| | - Ce Ding
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Feifei Wen
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Fang Sun
- School of Basic Medicine, Jining Medical University, Jining 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, China
| | - Yanzhan Liu
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Chunxue Tao
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Jing Yao
- School of Basic Medicine, Jining Medical University, Jining 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, China
| |
Collapse
|
11
|
Feng Y, Liu S, Zha R, Sun X, Li K, Wu D, Aryal UK, Koch M, Li BY, Yokota H. Prostate cancer-associated urinary proteomes differ before and after prostatectomy. Ther Adv Med Oncol 2022; 14:17588359221131532. [PMID: 36324734 PMCID: PMC9618752 DOI: 10.1177/17588359221131532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A wide range of disorders can be detected in the urine. Tumor-modifying proteins in the urine may serve as a diagnostic tool for cancer patients and the alterations in their profiles may indicate efficacies of chemotherapy, radiotherapy, and surgery. METHODS We focused on urinary proteomes of patients with prostate cancer and identified tumor-modifying proteins in the samples before and after prostatectomy. Protein array analysis was conducted to evaluate a differential profile of tumor-promoting cytokines, while mass spectrometry-based global proteomics was conducted to identify tumor-suppressing proteins. RESULTS The result revealed striking differences by prostatectomy. Notably, the urine from the post-prostatectomy significantly decreased the tumorigenic behaviors of prostate tumor cells as well as breast cancer cells. We observed that angiogenin, a stimulator of blood vessel formation, was reduced in the post-prostatectomy urine. By contrast, the levels of three cell-membrane proteins such as prostasin (PRSS8), nectin 2 (PVRL2), and nidogen 1 (NID1) were elevated and they acted as extracellular tumor-suppressing proteins. These three proteins, given extracellularly, downregulated tumorigenic genes such as Runx2, Snail, and transforming growth factor beta and induced apoptosis of tumor cells. However, the role of NID1 differed depending on the location, and intracellular NID1 was tumorigenic and reduced the percent survival. CONCLUSIONS This study demonstrated that prostatectomy remarkably altered the profile of urinary proteomes, and the post-prostatectomy urine provided tumor-suppressive proteomes. The result sheds novel light on the dynamic nature of the urinary proteomes and a unique strategy for predicting tumor suppressors.
Collapse
Affiliation(s)
| | | | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Di Wu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin, Heilongjiang 150081, China
| | | |
Collapse
|
12
|
Bao X, Xu B, Muhammad IF, Nilsson PM, Nilsson J, Engström G. Plasma prostasin: a novel risk marker for incidence of diabetes and cancer mortality. Diabetologia 2022; 65:1642-1651. [PMID: 35922613 PMCID: PMC9477896 DOI: 10.1007/s00125-022-05771-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with an increased risk of cancer. Prostasin is an epithelial sodium channel stimulator that has been associated with suppression of tumours, glucose metabolism and hyperglycaemia-associated tumour pathology. However, the association between prostasin, diabetes and cancer mortality has not been well investigated in humans. We aim to investigate the associations between plasma prostasin and diabetes, and to explore whether prostasin has an effect on cancer mortality risk in individuals with hyperglycaemia. METHODS Plasma prostasin was measured using samples from the Malmö Diet and Cancer Study Cardiovascular Cohort, and statistical analysis was performed from both sex-specific quartiles and per 1 SD. The cross-sectional association between plasma prostasin and diabetes was first studied in 4658 participants (age 57.5 ± 5.9 years, 39.9% men). After excluding 361 with prevalent diabetes, the associations of prostasin with incident diabetes and cancer mortality risk were assessed using Cox regression analysis. The interactions between prostasin and blood glucose levels as well as other covariates were tested. RESULTS The adjusted OR for prevalent diabetes in the 4th vs 1st quartile of prostasin concentrations was 1.95 (95% CI 1.39, 2.76) (p for trend <0.0001). During mean follow-up periods of 21.9 ± 7.0 and 23.5 ± 6.1 years, respectively, 702 participants developed diabetes and 651 died from cancer. Prostasin was significantly associated with the incidence of diabetes. The adjusted HR for diabetes in the 4th vs 1st quartile of prostasin concentrations was 1.76 (95% CI 1.41, 2.19) (p for trend <0.0001). Prostasin was also associated with cancer mortality There was a significant interaction between prostasin and fasting blood glucose for cancer mortality risk (p for interaction =0.022), with a stronger association observed in individuals with impaired fasting blood glucose levels at baseline (HR per 1 SD change 1.52; 95% CI 1.07, 2.16; p=0.019). CONCLUSIONS/INTERPRETATION Plasma prostasin levels are positively associated with diabetes risk and with cancer mortality risk, especially in individuals with high blood glucose levels, which may shed new light on the relationship between diabetes and cancer.
Collapse
Affiliation(s)
- Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | | | - Peter M Nilsson
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
13
|
Overexpressed lncRNA LINC00893 Suppresses Progression of Colon Cancer by Binding with miR-146b-3p to Upregulate PRSS8. JOURNAL OF ONCOLOGY 2022; 2022:8002318. [PMID: 35571488 PMCID: PMC9098335 DOI: 10.1155/2022/8002318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) play a significant role in the progression and metastasis of various cancers. LINC00893 has been reported to exert antitumor effect on various cancers such as gastric cancer and thyroid cancer. Bioinformatics analysis also predicted that LINC00893 was downregulated in colon cancer. However, the clinical significance and regulating mechanism of LINC00893 in colon cancer remain unknown. Methods Expression of LINC00893, miR-146b-3p, and PRSS8 was detected in colon cancer tissues and adjacent nontumor tissues by RT-qPCR, and clinical significance was analyzed by receiver operating characteristic curve. The regulatory mechanism of LINC00893, miR-146b-3p, and PRSS8 was investigated by dual luciferase reporter and RNA pull-down assays. Proliferation, migration, invasion, and apoptosis were measured in HCT116 and SW620 cells by MTT, EdU staining, wound healing, Transwell, TUNEL, and flow-cytometry assays. Moreover, the effect of LINC00893 on colon cancer progression was further evaluated in tumor-bearing mice. Results LINC00893 and PRSS8 were significantly downregulated, while miR-146b-3p was upregulated in colon cancer tissues compared to control group. LINC00893, miR-146b-3p, and PRSS8 had significant diagnostic value with area under curve of 0.9383, 0.7300, and 0.9644, respectively. Overexpressed LINC00893 or silenced miR-146b-3p suppressed the proliferation, migration, and invasion while promoting apoptosis in colon cancer cells (HCT116, SW620). Moreover, miR-146b-3p overexpression reversed the inhibitory effect of LINC00893, while PRSS8 knockdown rescued the suppressive effect of miR-146b-3p inhibitor on malignant cell behaviors in colon cancer. Furthermore, the tumor growth in mice was significantly reduced by LINC00893 overexpression. Conclusion LINC00893 overexpression suppressed the progression of colon cancer by binding with miR-146b-3p to upregulate PRSS8. LINC00893 and its downstream molecules miR-146b-3p and PRSS8 may serve as novel biomarkers and therapeutic targets of colon cancer, providing new treatment options and research approaches towards colon cancer.
Collapse
|
14
|
A novel 6-gene signature derived from tumor-infiltrating T cells and neutrophils predicts survival of bladder urothelial carcinoma. Aging (Albany NY) 2021; 13:25496-25517. [PMID: 34905506 PMCID: PMC8714163 DOI: 10.18632/aging.203770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
Intratumoral immune cells were reported to be associated with prognosis of bladder urothelial carcinoma (BUC). However, the role of immune cells related genes in BUC prognosis is less well defined. In the study, we analyzed data retrieved from the Cancer Genome Atlas database and found higher neutrophils and lower T cells infiltration in BUC tumor tissues were significantly correlated with patients’ worse prognosis. Additionally, the expression levels of 164 genes were significantly correlated with T cells and neutrophils proportions. A Cox proportional-hazards model integrating 6 genes expression (EMP1, RASGRP4, HSPA1L, AHNAK, SLC1A6, and PRSS8) was identified. The 6-gene signature outperformed other clinical factors in risk prediction and was an independent prognostic factor for BUC. The findings were further conformed in three Gene Expression Omnibus datasets (n=331) and Jiangsu Province Hospital cohort (n = 46). Gene set enrichment analysis revealed that the model was highly involved in some immune-related pathways. A comprehensive nomogram combining the model and other clinical parameters was finally constructed to facilitate clinical application. In conclusion, a T cell and neutrophil-associated 6-gene prognostic model was identified for the survival prediction of BUC patients.
Collapse
|
15
|
Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13:758-771. [PMID: 34457185 PMCID: PMC8371517 DOI: 10.4251/wjgo.v13.i8.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the most prevalent cancers in the world. The occurrence and progression of GI cancer involve multiple events. Metabolic reprogramming is one of the hallmarks of cancer and is intricately related to tumorigenesis. Many metabolic genes are involved in the occurrence and development of GI cancer. Research approaches combining tumor genomics and metabolomics are more likely to provide deeper insights into this field. In this paper, we review the roles of metabolism-associated genes, especially those involved in the regulation pathways, in the occurrence and progression of GI cancer. We provide the latest progress and future prospect into the different molecular mechanisms of metabolism-associated genes involved in the occurrence and development of GI cancer.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lin-Jie Mu
- The First Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
16
|
Yamamoto K, Yamashita F, Kawaguchi M, Izumi A, Kiwaki T, Kataoka H, Kaneuji T, Yamashita Y, Fukushima T. Decreased prostasin expression is associated with aggressiveness of oral squamous cell carcinoma. Hum Cell 2021; 34:1434-1445. [PMID: 34250582 DOI: 10.1007/s13577-021-00575-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Prostasin is a glycosylphosphatidylinositol-anchored serine protease widely expressed in epithelial cells, with crucial epidermal barrier functions. Evidence has suggested prostasin may have served as a tumor suppressor in various cancers, but its role in oral squamous cell carcinoma (OSCC) remains unclear. Thus, herein, we conducted an immunohistochemical prostasin study in 119 resected OSCC cases. Prostasin expression was decreased in 63% (75/119) of cases. OSCC with decreased prostasin immunoreactivity (low prostasin cases) tended to show a higher histological grade (p = 0.0088) and a more infiltrative cancer cell morphology (p = 0.0024). We then explored the role of prostasin in the OSCC cell lines: SAS and HSC-4. SAS did not express detectable prostasin levels, whereas HSC-4 expressed low but distinct levels. Prostasin overexpression suppressed the proliferation and migration of both OSCC lines in vitro. Conversely, prostasin silencing significantly enhanced growth rates of HSC-4. Finally, we analyzed the impact of prostasin expression on the prognosis of patients with OSCC; decreased expression tended to correlate with shorter overall survival (p = 0.0291) after resection. This trend was supported by our analyses using a public database (Kaplan-Meier plotter) of head and neck squamous cell carcinomas. In conclusion, we showed decreased prostasin expression was associated with aggressive features and a poorer prognosis of OSCC.
Collapse
Affiliation(s)
- Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Aya Izumi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Takeshi Kaneuji
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
17
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
18
|
Khoei SG, Sadeghi H, Samadi P, Najafi R, Saidijam M. Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnol Appl Biochem 2021; 68:279-287. [PMID: 32275078 DOI: 10.1002/bab.1922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Sphingosine kinases type 1 (SphK1) is a key enzyme in the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). Different abnormalities in SphK1 functions may correspond with poor prognosis in various cancers. Additionally, upregulated SphK1/S1P could promote cancer cell proliferation, angiogenesis, mobility, invasion, and metastasis. MicroRNAs as conserved small noncoding RNAs play major roles in cancer initiation, progression, metastasis, etc. Their posttranscriptionally mechanisms could affect the development of cancer growth or tumorigenesis suppression. The growing number of studies has described that various microRNAs can be regulated by SphK1, and its expression level can also be regulated by microRNAs. In this review, the relationship of SphK1 and microRNA functions and their interaction in human malignancies have been discussed. Based on them novel treatment strategies can be introduced.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Sadeghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Murray AS, Hyland TE, Sala-Hamrick KE, Mackinder JR, Martin CE, Tanabe LM, Varela FA, List K. The cell-surface anchored serine protease TMPRSS13 promotes breast cancer progression and resistance to chemotherapy. Oncogene 2020; 39:6421-6436. [PMID: 32868877 DOI: 10.1038/s41388-020-01436-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer progression is accompanied by increased expression of extracellular and cell-surface proteases capable of degrading the extracellular matrix as well as cleaving and activating downstream targets. The type II transmembrane serine proteases (TTSPs) are a family of cell-surface proteases that play critical roles in numerous types of cancers. Therefore, the aim of this study was to identify novel and uncharacterized TTSPs with differential expression in breast cancer and to determine their potential roles in progression. Systematic in silico data analysis followed by immunohistochemical validation identified increased expression of the TTSP family member, TMPRSS13 (transmembrane protease, serine 13), in invasive ductal carcinoma patient tissue samples compared to normal breast tissue. To test whether loss of TMPRSS13 impacts tumor progression, TMPRSS13 was genetically ablated in the oncogene-induced transgenic MMTV-PymT tumor model. TMPRSS13 deficiency resulted in a significant decrease in overall tumor burden and growth rate, as well as a delayed formation of detectable mammary tumors, thus suggesting a causal relationship between TMPRSS13 expression and the progression of breast cancer. Complementary studies using human breast cancer cell culture models revealed that siRNA-mediated silencing of TMPRSS13 expression decreases proliferation, induces apoptosis, and attenuates invasion. Importantly, targeting TMPRSS13 expression renders aggressive triple-negative breast cancer cell lines highly responsive to chemotherapy. At the molecular level, knockdown of TMPRSS13 in breast cancer cells led to increased protein levels of the tumor-suppressive protease prostasin. TMPRSS13/prostasin co-immunoprecipitation and prostasin zymogen activation experiments identified prostasin as a potential novel target for TMPRSS13. Regulation of prostasin levels may be a mechanism that contributes to the pro-oncogenic properties of TMPRSS13 in breast cancer. TMPRSS13 represents a novel candidate for targeted therapy in combination with standard of care chemotherapy agents in patients with hormone receptor-negative breast cancer or in patients with tumors refractory to endocrine therapy.
Collapse
Affiliation(s)
- Andrew S Murray
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Thomas E Hyland
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Carly E Martin
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Lauren M Tanabe
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI, USA. .,Department of Oncology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Chen C, Kuo YH, Lin CC, Chao CY, Pai MH, Chiang EPI, Tang FY. Decyl caffeic acid inhibits the proliferation of colorectal cancer cells in an autophagy-dependent manner in vitro and in vivo. PLoS One 2020; 15:e0232832. [PMID: 32401800 PMCID: PMC7219744 DOI: 10.1371/journal.pone.0232832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
The treatment of human colorectal cancer (CRC) cells through suppressing the abnormal survival signaling pathways has recently become a significant area of focus. In this study, our results demonstrated that decyl caffeic acid (DC), one of the novel caffeic acid derivatives, remarkedly suppressed the growth of CRC cells both in vitro and in vivo. The inhibitory effects of DC on CRC cells were investigated in an in vitro cell model and in vivo using a xenograft mouse model. CRC cells were treated with DC at various dosages (0, 10, 20 and 40 μM), and cell survival, the apoptotic index and the autophagy level were measured using an MTT assay and flow cytometry analysis, respectively. The signaling cascades in CRC were examined by Western blot assay. The anti-cancer effects of DC on tumor growth were examined by using CRC HCT-116 cells implanted in an animal model. Our results indicated that DC differentially suppressed the growth of CRC HT-29 and HCT-116 cells through an enhancement of cell-cycle arrest at the S phase. DC inhibited the expression of cell-cycle regulators, which include cyclin E and cyclin A proteins. The molecular mechanisms of action were correlated to the blockade of the STAT3 and Akt signaling cascades. Strikingly, a high dosage of DC prompted a self-protection action through inducing cell-dependent autophagy in HCT-116 cells. Suppression of autophagy induced cell death in the treatment of DC in HCT-116 cells. DC seemed to inhibit cell proliferation of CRC differentially, and the therapeutic advantage appeared to be autophagy dependent. Moreover, consumption of DC blocked the tumor growth of colorectal adenocarcinoma in an experimental animal model. In conclusion, our results suggested that DC could act as a therapeutic agent through the significant suppression of tumor growth of human CRC cells.
Collapse
Affiliation(s)
- Ching Chen
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Republic of China
- Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China
| | - Cheng-Chieh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan, Republic of China
- Department of Healthcare Administration, College of Health Science, Asia University, Taichung, Taiwan, Republic of China
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, Republic of China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
21
|
Lee CJ, Ahn H, Jeong D, Pak M, Moon JH, Kim S. Impact of mutations in DNA methylation modification genes on genome-wide methylation landscapes and downstream gene activations in pan-cancer. BMC Med Genomics 2020; 13:27. [PMID: 32093698 PMCID: PMC7038532 DOI: 10.1186/s12920-020-0659-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background In cancer, mutations of DNA methylation modification genes have crucial roles for epigenetic modifications genome-wide, which lead to the activation or suppression of important genes including tumor suppressor genes. Mutations on the epigenetic modifiers could affect the enzyme activity, which would result in the difference in genome-wide methylation profiles and, activation of downstream genes. Therefore, we investigated the effect of mutations on DNA methylation modification genes such as DNMT1, DNMT3A, MBD1, MBD4, TET1, TET2 and TET3 through a pan-cancer analysis. Methods First, we investigated the effect of mutations in DNA methylation modification genes on genome-wide methylation profiles. We collected 3,644 samples that have both of mRNA and methylation data from 12 major cancer types in The Cancer Genome Atlas (TCGA). The samples were divided into two groups according to the mutational signature. Differentially methylated regions (DMR) that overlapped with the promoter region were selected using minfi and differentially expressed genes (DEG) were identified using EBSeq. By integrating the DMR and DEG results, we constructed a comprehensive DNA methylome profiles on a pan-cancer scale. Second, we investigated the effect of DNA methylations in the promoter regions on downstream genes by comparing the two groups of samples in 11 cancer types. To investigate the effects of promoter methylation on downstream gene activations, we performed clustering analysis of DEGs. Among the DEGs, we selected highly correlated gene set that had differentially methylated promoter regions using graph based sub-network clustering methods. Results We chose an up-regulated DEGs cluster where had hypomethylated promoter in acute myeloid leukemia (LAML) and another down-regulated DEGs cluster where had hypermethylated promoter in colon adenocarcinoma (COAD). To rule out effects of gene regulation by transcription factor (TF), if differentially expressed TFs bound to the promoter of DEGs, that DEGs did not included to the gene set that effected by DNA methylation modifiers. Consequently, we identified 54 hypomethylated promoter DMR up-regulated DEGs in LAML and 45 hypermethylated promoter DMR down-regulated DEGs in COAD. Conclusions Our study on DNA methylation modification genes in mutated vs. non-mutated groups could provide useful insight into the epigenetic regulation of DEGs in cancer.
Collapse
Affiliation(s)
- Chai-Jin Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Hongryul Ahn
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Minwoo Pak
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea. .,Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea. .,Bioinformatics Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
22
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
23
|
Lin CK, Tseng CK, Wu YH, Lin CY, Huang CH, Wang WH, Liaw CC, Chen YH, Lee JC. Prostasin Impairs Epithelial Growth Factor Receptor Activation to Suppress Dengue Virus Propagation. J Infect Dis 2020; 219:1377-1388. [PMID: 30476206 DOI: 10.1093/infdis/jiy677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dengue virus (DENV), a common and widely spread arbovirus, causes life-threatening diseases, such as dengue hemorrhagic fever or dengue shock syndrome. There is currently no effective therapeutic or preventive treatment for DENV infection. METHODS Next-generation sequencing analysis revealed that prostasin expression was decreased upon DENV infection. Prostasin expression levels were confirmed by real-time quantitative polymerase chain reaction in patients with dengue fever and a DENV-infected mice model. Short hairpin RNA against EGFR and LY294002 were used to investigate the molecular mechanism. RESULTS Based on clinical studies, we first found relatively low expression of prostasin, a glycosylphosphatidyl inositol-anchored membrane protease, in blood samples from patients with dengue fever compared with healthy individuals and a high correlation of prostasin expression and DENV-2 RNA copy number. DENV infection significantly decreased prostasin RNA levels of in vivo and in vitro models. By contrast, exogenous expression of prostasin could protect ICR suckling mice from life-threatening DENV-2 infection. Mechanistic studies showed that inhibition of DENV propagation by prostasin was due to reducing expression of epithelial growth factor receptor, leading to suppression of the Akt/NF-κB-mediated cyclooxygenase-2 signaling pathway. CONCLUSION Our results demonstrate that prostasin expression is a noteworthy clinical feature and a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Weng-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Taiwan
| | - Jin-Ching Lee
- Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan.,PhD program in Life Sciences, College of Life Science, Kaohsiung Medical University, Taiwan
| |
Collapse
|
24
|
Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2-Mediated Signaling: Co-Conspirators in Cancer Progression. Cancer Res 2019; 79:301-310. [PMID: 30610085 DOI: 10.1158/0008-5472.can-18-1745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.
Collapse
Affiliation(s)
- Nisha R Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang D, Wang J, Du G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther 2018; 195:85-99. [PMID: 30347210 DOI: 10.1016/j.pharmthera.2018.10.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate (S1P), play many important roles in cellular activities. Ceramide and sphingosine inhibit cell proliferation and induce cell apoptosis while S1P has the opposite effect. Maintaining a metabolic balance of sphingolipids is essential for growth and development of cells. Sphingosine kinase (SPHK) is an important regulator for keeping this balance. It controls the level of S1P and plays important roles in proliferation, migration, and invasion of cancer cells and tumor angiogenesis. There are two isoenzymes of sphingosine kinase, SPHK1 and SPHK2. SPHK1 is ubiquitously expressed in most cancers where it promotes survival and proliferation, while SPHK2 is restricted to only certain tissues and its functions are not well characterized. SPHK1 is currently considered as a novel target for the treatment of cancers. Targeting SPHK1 would provide new strategies for cancer treatment and improve the prognosis of cancer patients. Here we review and summarize the current research findings on the SPHK1-S1P axis in cancer from many aspects including structure, expression, regulation, mechanism, and potential inhibitors.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
26
|
Su L, Tian J, Sun J, Han N, Feng L, Yu B, Wang Y. Lentivirus-mediated siRNA knockdown of SPHK1 inhibits proliferation and tumorigenesis of neuroblastoma. Onco Targets Ther 2018; 11:7187-7196. [PMID: 30425511 PMCID: PMC6203087 DOI: 10.2147/ott.s180962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The overexpression of sphingosine kinase 1 (SPHK1) is responsible for the progress of many cancers. However, the role of SPHK1 in the development and progression of neuroblastoma (NB) remain largely unknown. Here in this study, we explored whether silencing SPHK1 by lentivirus-mediated siRNA could be employed as a potential therapeutic target for NB. MATERIALS AND METHODS Lentivirus was adopted to load SPHK1 siRNA. The results were obtained using RT-qPCR, Western blot, cell proliferation assay, transwell cell migration/invasion assays as well as in vivo xenograft tumor models in nude mice. RESULTS Our results demonstrated that SPHK1 mRNA was upregulated in SH-SY5Y and SK-N-SH cells as well as in human NB tissues. SPHK1 knockdown by siRNA resulted in impaired proliferation, increased apoptosis, as well as impaired migration and invasion of SH-SY5Y and SK-N-SH cells. In addition, the in vivo study suggested that SPHK1 knockdown significantly reduced the tumorigenesis of SH-SY5Y xenograft model. Furthermore, intratumorally administered lentivirus-SPHK1 siRNA could significantly inhibit tumor growth in an SH-SY5Y xenograft mice model. Intensive investigations on mechanism revealed that these effects were achieved through the deactivation of STAT3 pathways. CONCLUSION These data suggest that SPHK1 inhibition via downregulation of STAT3 pathways by lentivirus-mediated siRNA knockdown can significantly suppress NB progression, which could be a promising target for future gene therapy of NB.
Collapse
Affiliation(s)
- Lin Su
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| | - Junyan Tian
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| | - Jinsong Sun
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| | - Nuan Han
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| | - Lin Feng
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| | - Baohua Yu
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| | - Yuepeng Wang
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining City 272029, Shandong Province, People's Republic of China,
| |
Collapse
|
27
|
PRSS8 suppresses colorectal carcinogenesis and metastasis. Oncogene 2018; 38:497-517. [DOI: 10.1038/s41388-018-0453-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
28
|
Xu C, Zhang W, Liu S, Wu W, Qin M, Huang J. Activation of the SphK1/ERK/p-ERK pathway promotes autophagy in colon cancer cells. Oncol Lett 2018; 15:9719-9724. [PMID: 29928348 PMCID: PMC6004663 DOI: 10.3892/ol.2018.8588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is a master kinase that catalyzes the synthesis of sphingosine 1 phosphate and participates in the regulation of cell proliferation and autophagy. The present study aimed to assess the effects of the activation of the SphK1/extracellular signal-regulated kinase (ERK)/phosphorylated (p-)ERK pathway in the regulation of autophagy in colon cancer (HT-29) cells. Inverted fluorescence microscopy was used to detect the expression of green fluorescent protein (GFP) in the SphK1-overexpressing HT-29 cells [SphK1(+)-HT-29] and the negative control HT-29 cells (NC-HT-29). Western blotting was used to detect the protein expression levels of SphK1, ERK1/2, p-ERK1/2, as well as those of the autophagy-associated markers LC3A, ATG5, and ULK1. Protein localization and expression of the LC3A antibody were detected by immunofluorescence. The results demonstrated that GFP was similarly expressed in SphK1(+)-HT-29 and NC-HT-29 cells. However, significantly increased SphK1 mRNA and protein expression levels were detected in SphK1(+)-HT-29 cells compared with in NC-HT-29 cells, which resulted in upregulated ERK/p-ERK. Furthermore, the protein expression levels of the three autophagy-associated markers increased. LC3A protein was localized in the cytoplasm of SphK1(+)-HT-29 cells, indicating autophagy. In summary, the findings of the present study suggested that activation of the SphK1/ERK/p-ERK pathway promotes autophagy in colon cancer HT-29 cells.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wenlu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wenhong Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
29
|
Li K, Xu X, He Y, Tian Y, Pan W, Xu L, Ma Y, Gao Y, Gao J, Qi Y, Wei L, Zhang J. P21-activated kinase 7 (PAK7) interacts with and activates Wnt/β-catenin signaling pathway in breast cancer. J Cancer 2018; 9:1821-1835. [PMID: 29805709 PMCID: PMC5968771 DOI: 10.7150/jca.24934] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Breast cancer is the highest incidence of tumor in women, which seriously threaten women's health. The occurrence and progression of breast cancer is linked to inactivation or downregulation of tumor suppressors, and activation or upregulation of oncogenes. However, the mechanism of PAK7 involving in the occurrence and progression of breast cancer is not yet fully understood. Methods: PAK7 expression was analyzed by RT-qPCR and immunohistochemistry and correlated with clinicopatholgical parameters in breast cancer tissue microarray. The effects of PAK7 on breast cancer cells were detected by CCK-8 assay, colon formation assay, wound healing and transwell assays, and flow cytometry. The relationship between PAK7 and Wnt/β-catenin signaling pathway was determined by western blotting, TOP/FOP flash, co-Immunoprecipitation and co-localization assays. Results: PAK7 expression was significantly increased in breast cancer tissues and positively correlated with pathological differentiation and TNM stage of breast cancer. Overexpression of PAK7 could significantly promote proliferation and migration of breast cancer cells, and inhibit apoptosis. In contrast, PAK7 knockdown significantly inhibited the proliferation and migration of breast cancer cells and promoted apoptosis. In addition, PAK7 could activate Wnt/β-catenin signaling pathway in breast cancer cells. Further study found that PAK7 could directly bind to GSK3β and β-catenin, and regulate β-catenin degradation by phosphorylating GSK3β. Conclusions: Our study demonstrated that PAK7, as an oncogene, involved in breast cancer progression by activating the Wnt/β-catenin signaling pathway, suggesting that the potential applicability of PAK7 as a target for breast cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Xiaolong Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yanqi He
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yihao Tian
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Wenting Pan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Liu Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yanbin Ma
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yang Gao
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| | - Jingbo Gao
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| | - Yuwen Qi
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
30
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
31
|
Stromal expression of JNK1 and VDR is associated with the prognosis of esophageal squamous cell carcinoma. Clin Transl Oncol 2018; 20:1185-1195. [DOI: 10.1007/s12094-018-1843-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
|
32
|
Bao Y, Guo Y, Zhang C, Fan F, Yang W. Sphingosine Kinase 1 and Sphingosine-1-Phosphate Signaling in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18102109. [PMID: 28991193 PMCID: PMC5666791 DOI: 10.3390/ijms18102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (Sphk1) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). Growing studies have demonstrated that Sphk1 is overexpressed in various types of solid cancers and can be induced by growth factors, cytokines, and carcinogens, leading to the increase of S1P production. Subsequently, the increased Sphk1/S1P facilitates cancer cell proliferation, mobility, angiogenesis, invasion, and metastasis. Therefore, Sphk1/S1P signaling plays oncogenic roles. This review summarizes the features of Sphk1/S1P signaling and their functions in colorectal cancer cell growth, tumorigenesis, and metastasis, as well as the possible underlying mechanisms.
Collapse
Affiliation(s)
- Yonghua Bao
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Yongchen Guo
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Chenglan Zhang
- Department of Nursing, Health Professional College of Heilongjiang Province, Beian 164000, China.
| | - Fenghua Fan
- Department of Nursing, Health Professional College of Heilongjiang Province, Beian 164000, China.
| | - Wancai Yang
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
- Department of Pathology, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
33
|
Yu H, Duan P, Zhu H, Rao D. miR-613 inhibits bladder cancer proliferation and migration through targeting SphK1. Am J Transl Res 2017; 9:1213-1221. [PMID: 28386347 PMCID: PMC5376012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Increasing evidence has suggested that microRNA (miRNA) dysregulation may contribute to tumor progression and metastasis. However, the role of miR-613 in bladder cancer was still unknown. MATERIALS AND METHODS qRT-PCR and Western blotting were performed to detect the expression of miR-613 and its direct target gene. CCK-8 analysis, qRT-PCR and cell invasion were performed to measure the cell function. RESULTS We demonstrated that the expression of miR-613 was downregulated in the bladder cancer cell lines. In addition, miR-613 expression was downregulated in the bladder cancer tissues compared to the adjacent normal tissues. Out of 35 bladder cancer tissues, miR-613 was downregulated in 27 cases compared to the adjacent tissues. Ectopic expression of miR-613 suppressed the bladder cancer cell proliferation and invasion. Moreover, miR-613 overexpression enhanced the expression of epithelial biomarker, Ecadherin, and suppressed the expression of mesenchymal biomarker, Vimentin, Snail and N-cadherin. Furthermore, we identified the Sphingosine kinase 1 (SphK1) as the direct target gene of miR-613 in the bladder cancer cell. Restoration of Sphk1 partially rescued miR-613-inhibited bladder cancer cell proliferation, invasion and EMT. CONCLUSIONS These data suggested that miR-613 acted a tumor suppressive role in bladder cancer through targeting SphK1 in bladder.
Collapse
Affiliation(s)
- Haifeng Yu
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Ping Duan
- Department of Obstetric and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Haibo Zhu
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| |
Collapse
|
34
|
Sánchez DI, González-Fernández B, San-Miguel B, de Urbina JO, Crespo I, González-Gallego J, Tuñón MJ. Melatonin prevents deregulation of the sphingosine kinase/sphingosine 1-phosphate signaling pathway in a mouse model of diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res 2017; 62. [PMID: 27696512 DOI: 10.1111/jpi.12369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
The sphingosine kinase (SphK)/sphingosine 1-phosphate (S1P) pathway is involved in multiple biological processes, including carcinogenesis. Melatonin shows beneficial effects in cell and animal models of hepatocellular carcinoma, but it is unknown if they are associated with the modulation of the SphK/S1P system, along with different downstream signaling pathways modified in cancer. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight i.p) once a week for 8 weeks. Melatonin was given at 5 or 10 mg/kg/day i.p. beginning 4 weeks after the onset of DEN administration and ending at the sacrifice time (10, 20, 30, or 40 weeks). Melatonin alleviated the distortion of normal hepatic architecture, lowered the incidence of preneoplastic/neoplastic lesions, and inhibited the expression of proliferative/cell cycle regulatory proteins (Ki67, PCNA, cyclin D1, cyclin E, CDK4, and CDK6). S1P levels and expression of SphK1, SphK2, and S1P receptors (S1PR1/S1PR3) were significantly elevated in DEN-treated mice. However, there was a decreased expression of S1P lyase. These effects were significantly abrogated in a time- and dose-dependent manner by melatonin, which also increased S1PR2 expression. Following DEN treatment, mice exhibited increased phosphorylation of PI3K, AKT, mTOR, STAT3, ERK, and p38, and a higher expression of NF-κB p50 and p65 subunits. Melatonin administration significantly inhibited those changes. Data obtained suggest a contribution of the SphK/S1P system and related signaling pathways to the protective effects of melatonin in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
35
|
Yang HY, Fang DZ, Ding LS, Hui XB, Liu D. Overexpression of Protease Serine 8 Inhibits Glioma Cell Proliferation, Migration, and Invasion via Suppressing the Akt/mTOR Signaling Pathway. Oncol Res 2016; 25:923-930. [PMID: 27983922 PMCID: PMC7841053 DOI: 10.3727/096504016x14798241682647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protease serine 8 (PRSS8), a serine peptidase, has a widespread expression in normal epidermal cells. Recently, many researchers demonstrated downregulation of PRSS8 in cancer tissues as well as its tumor suppressor role in cancer development. However, the biological functions of PRSS8 in glioma remain unclear. In the current study, we demonstrated a decreased expression of PRSS8 in glioma tissues and cell lines. PRSS8 upregulation inhibited glioma cell proliferation, migration, and invasion. In addition, xenograft experiments showed that PRSS8 overexpression suppressed glioma cell growth in vivo. We also found that upregulated PRSS8 reduced the protein expression levels of p-Akt and p-mTOR in glioma cells. Taken together, our study demonstrated that overexpression of PRSS8 inhibited glioma cell proliferation, migration, and invasion via suppressing the Akt/mTOR signaling pathway. Therefore, PRSS8 may act as a novel therapeutic target for glioma.
Collapse
|
36
|
Ma C, Ma W, Zhou N, Chen N, An L, Zhang Y. Protease Serine S1 Family Member 8 (PRSS8) Inhibits Tumor Growth In Vitro and In Vivo in Human Non-Small Cell Lung Cancer. Oncol Res 2016; 25:781-787. [PMID: 27983914 PMCID: PMC7841066 DOI: 10.3727/096504016x14772417575982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protease serine S1 family member 8 (PRSS8), a membrane-anchored serine protease, has been reported to be involved in the development of several human cancers. However, the role of PRSS8 in non-small cell lung cancer (NSCLC) pathogenesis remains unclear. The objective of this study was to investigate PRSS8 expression, biological function, and its related molecular mechanism in NSCLC. Our results showed that PRSS8 was expressed in a low amount in NSCLC cell lines. Ectopic expression of PRSS8 inhibited tumor growth in vitro and in vivo. Furthermore, ectopic expression of PRSS8 inhibited the migration and invasion of NSCLC cells. It also suppressed the EMT process in A549 cells. Mechanistically, we found that the ectopic expression of PRSS8 downregulated the protein expression levels of p-JAK1, p-JAK2, and p-STAT3 in A549 cells. Taken together, our study showed that PRSS8 plays an important role in the growth and metastasis of NSCLC. Thus, PRSS8 may be a novel therapeutic target for NSCLC.
Collapse
|
37
|
Li S, Fang Y, Qin H, Fu W, Zhang X. miR-659-3p is involved in the regulation of the chemotherapy response of colorectal cancer via modulating the expression of SPHK1. Am J Cancer Res 2016; 6:1976-1985. [PMID: 27725903 PMCID: PMC5043107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of most prevalent malignant diseases worldwide. Metastasis and chemo-resistance are the two prominent death-related factors of CRCs. Thus, it is urgent to understand the mechanism responsible for the chemo-resistant properties of CRC and develop new therapeutic methods. Here, we found that the expression of miR-659-3p was significantly reduced in cisplatin (CDDP)-resistant HT29 and LOVO colorectal cancer cells and in CDDP-resistant clinical colorectal cancer samples compared with respective CDDP-sensitive counterparts. Sphingosine kinase 1 (SPHK1) is a direct target of miR-659-3p in colorectal cancer cells, and it is negatively regulated by miR-659-3p. We found that anti-miR-659-3p could increase the IC50 of CDDP in parental HT29 and LOVO colorectal cancer cells; additionally, miR-659-3p mimics decreased the IC50 of CDDP in HT29/CDDP and LOVO/CDDP colorectal cancer cells. Furthermore, we showed that the miR-659-3p/SPHK1 pathway was involved in the regulation of chemotherapy responses of colorectal cancer cells in vivo. In all, our findings suggest a new mechanism involved in the regulation of the chemotherapy response of CRC and might provide new targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuyuan Li
- Department of Colorectal Surgery, Tianjin Union Medical CenterTianjin 300121, P. R. China
| | - Ying Fang
- Department of Pathology, The First Hospital of JiaxingZhejiang 314000, P. R. China
| | - Hai Qin
- Department of Colorectal Surgery, Tianjin Union Medical CenterTianjin 300121, P. R. China
| | - Wenzheng Fu
- Department of Colorectal Surgery, Tianjin Union Medical CenterTianjin 300121, P. R. China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical CenterTianjin 300121, P. R. China
| |
Collapse
|