1
|
ALKhemeiri N, Eljack S, Saber-Ayad MM. Perspectives of Targeting Autophagy as an Adjuvant to Anti-PD-1/PD-L1 Therapy for Colorectal Cancer Treatment. Cells 2025; 14:745. [PMID: 40422248 DOI: 10.3390/cells14100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, with increasing incidence and mortality rates. Standard conventional treatments for CRC are surgery, chemotherapy, and radiotherapy. Recently, immunotherapy has been introduced as a promising alternative to CRC treatment that utilizes patients' immune system to combat cancer cells. The beneficial effect of immune checkpoint inhibitors, specifically anti-PD-1/ PD-L1, has been ascribed to the abundance of DNA replication errors that result in the formation of neoantigens. Such neoantigens serve as distinct flags that amplify the immune response when checkpoint inhibitors (ICIs) are administered. DNA replication errors in CRC patients are expressed as two statuses: the first is the deficient mismatch repair (MSI-H/dMMR) with a higher overall immune response and survival rate than the second status of patients with proficient mismatch repair (MSS/pMMR). There is a limitation to using anti-PD-1/PD-L1 as it is only confined to MSI-H/dMMR, where there is an abundance of T-cell inhibitory ligands (PD-L1). This calls for investigating new therapeutic interventions to widen the scope of ICIs' role in the treatment of CRC. Autophagy modulation provides a good example. Autophagy is a cellular process that plays a crucial role in maintaining cellular homeostasis and has been studied for its impact on tumor development, progression, and response to treatment. In this review, we aim to highlight autophagy as a potential determinant in tumor immune response and to study the impact of autophagy on the tumor immune microenvironment. Moreover, we aim to investigate the value of a combination of anti-PD-1/PD-L1 agents with autophagy modulators as an adjuvant therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Nasrah ALKhemeiri
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sahar Eljack
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Maha Mohamed Saber-Ayad
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo 12211, Egypt
| |
Collapse
|
2
|
Davidson B, Teien Lande K, Nebdal D, Nesbakken AJ, Holth A, Lindemann K, Zahl Eriksson AG, Sørlie T. Endometrial carcinomas with ambiguous histology often harbor TP53 mutations. Virchows Arch 2025; 486:697-705. [PMID: 39235515 PMCID: PMC12018639 DOI: 10.1007/s00428-024-03912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The objective of the present study was to characterize the molecular features of endometrial carcinomas with ambiguous histology. Eighteen carcinomas that could not be conclusively typed based on morphology and immunohistochemistry underwent analysis of mismatch repair (MMR) status, microsatellite status, and whole-exome sequencing. None of the tumors had pathogenic POLE mutation. Twelve tumors (67%) were microsatellite stable, and 6 (33%) had microsatellite instability. Fourteen tumors (78%) harbored TP53 mutations, and 2 (11%) had mutations in MMR genes. Eleven carcinomas (61%) were classified as copy number high and 7 (39%) as MSI-hypermutated, the latter including 3 tumors with TP53 mutation who concomitantly had MSI or mutation in a MMR gene. Other mutations that were found in > 1 tumor affected MUC16 (7 tumors), PIK3CA (6 tumors), PPP2R1A (6 tumors), ARID1A (5 tumors), PTEN (5 tumors), FAT1 (4 tumors), FAT4 (3 tumors), BRCA2 (2 tumors), ERBB2 (2 tumors), FBXW7 (2 tumors), MET (2 tumors), MTOR (2 tumors), JAK1 (2 tumors), and CSMD3 (2 tumors). At the last follow-up (median = 68.6 months), 8 patients had no evidence of disease, 1 patient was alive with disease, 8 patients were dead of disease, and 1 patient died of other cause. In conclusion, based on this series, the molecular landscape of endometrial carcinomas with ambiguous histology is dominated by TP53 mutations and the absence of POLE mutations, with heterogeneous molecular profile with respect to other genes. A high proportion of these tumors is clinically aggressive.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| | - Karin Teien Lande
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Anne Jorunn Nesbakken
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Kristina Lindemann
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
- Section for Gynecologic Oncology, Division of Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ane Gerda Zahl Eriksson
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
- Section for Gynecologic Oncology, Division of Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
| |
Collapse
|
3
|
Martinez-Cannon BA, Colombo I. The evolving role of immune checkpoint inhibitors in cervical and endometrial cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:23. [PMID: 39050882 PMCID: PMC11267150 DOI: 10.20517/cdr.2023.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for numerous tumor types, including cervical and endometrial cancers. Multiple ICIs against programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) have demonstrated encouraging outcomes in controlled clinical studies for advanced cervical and endometrial cancers. For advanced cervical cancer, approved ICIs as second-line treatment include cemiplimab, nivolumab, and pembrolizumab as single agents. In the first-line treatment setting, options include pembrolizumab alone or in combination with bevacizumab, as well as atezolizumab combined with a backbone platinum-based chemotherapy plus bevacizumab. Additionally, for locally advanced cervical cancer, pembrolizumab is recommended alongside concurrent chemoradiotherapy. For endometrial cancer, pembrolizumab monotherapy, pembrolizumab in combination with lenvatinib, and dostarlimab are currently approved as second-line treatment options. Moreover, either dostarlimab or pembrolizumab can be added to first-line platinum-based chemotherapy for mismatch repair deficient malignancies. Although the inclusion of these agents in clinical practice has led to improved overall response rates and survival outcomes, many patients still lack benefits, possibly due to multiple intrinsic and adaptive resistance mechanisms to immunotherapy. This review aims to highlight the rationale for utilizing ICIs and their current role, while also delineating the proposed mechanisms of resistance to ICIs in cervical and endometrial cancer.
Collapse
Affiliation(s)
- Bertha Alejandra Martinez-Cannon
- Hematology-Oncology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico
| | - Ilaria Colombo
- Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona 6500 - CH, Switzerland
| |
Collapse
|
4
|
Na W, Lee IJ, Koh I, Kwon M, Song YS, Lee SH. Cancer-specific functional profiling in microsatellite-unstable (MSI) colon and endometrial cancers using combined differentially expressed genes and biclustering analysis. Medicine (Baltimore) 2023; 102:e33647. [PMID: 37171359 PMCID: PMC10174364 DOI: 10.1097/md.0000000000033647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Microsatellite-unstable (MSI) cancers have distinct genetic and clinical features from microsatellite-stable cancers, but the molecular functional differences between MSI cancers originating from different tissues or organs have not been well studied because the application of usual differentially expressed gene (DEG) analysis is error-prone, producing too many noncancer-specific normally functioning genes. To maximize therapeutic efficacy, biomarkers reflecting cancer-specific differences between MSI cancers of different tissue origins should be identified. To identify functional differences between MSI colon and endometrial cancers, we combined DEG analysis and biclustering instead of DEG analysis alone and refined functionally relevant biclusters reflecting genuine functional differences between the 2 tumors. Specifically, using The Cancer Genome Atlas and genome-tissue expression as data sources, gene ontology (GO) enrichment tests were performed after routinely identifying DEGs between the 2 tumors with the exclusion of DEGs identified in their normal counterparts. Cancer-specific biclusters and associated enriched GO terms were obtained by biclustering with enrichment tests for the preferences for cancer type (either colon or endometrium) and GO enrichment tests for each cancer-specific bicluster, respectively. A novel childness score was developed to select functionally relevant biclusters among cancer-specific biclusters based on the extent to which the enriched GO terms of the biclusters tended to be child terms of the enriched GO terms in DEGs. The selected biclusters were tested using survival analysis to validate their clinical significance. We performed multiple sequential analyses to produce functionally relevant biclusters from the RNA sequencing data of MSI colon and endometrial cancer samples and their normal counterparts. We identified 3066 cancer-specific DEGs. Biclustering analysis revealed 153 biclusters and 41 cancer-specific biclusters were selected using Fisher exact test. A mean childness score over 0.6 was applied as the threshold and yielded 8 functionally relevant biclusters from cancer-specific biclusters. Functional differences appear to include gland cavitation and the TGF-β receptor, G protein, and cytokine pathways. In the survival analysis, 6 of the 8 functionally relevant biclusters were statistically significant. By attenuating noise and applying a synergistic contribution of DEG results, we refined candidate biomarkers to complement tissue-specific features of MSI tumors.
Collapse
Affiliation(s)
- Woong Na
- Department of Pathology, H Plus Yangji Hospital, Seoul, South Korea
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Il Ju Lee
- Department of Biomedical Informatics, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Insong Koh
- Department of Biomedical Informatics, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Mihye Kwon
- Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, South Korea
| | - Young Soo Song
- Department of Pathology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sung Hak Lee
- Department of Pathology, College of Medicine, Catholic University, Seoul, South Korea
| |
Collapse
|
5
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
6
|
Lin Q, Chen Z, Shi W, Lv Z, Wan X, Gao K. JAK1 inactivation promotes proliferation and migration of endometrial cancer cells via upregulating the hypoxia-inducible factor signaling pathway. Cell Commun Signal 2022; 20:177. [PMID: 36376931 PMCID: PMC9661757 DOI: 10.1186/s12964-022-00990-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Loss-of-function (LOF) mutations of JAK1, a member of the JAK kinase family, were frequently observed in EC, indicating that JAK1 may act as a tumor suppressor, at least in EC. However, the mechanism of JAK1 mediated regulation of tumorigenesis remains poorly understood. METHODS The genetic alterations of JAK1 in EC using latest sequencing dataset of EC deposited in TCGA database. The RNA-Seq dataset of EC and normal endometrial tissues from TCGA cohort was analyzed. The expression of JAK1 in EC and normal endometrial tissues were investigated using immunohistochemistry. The expression levels of genes in endometrial cancer cells were detected by quantitative reverse transcription-PCR (RT-qPCR) and western blotting. JAK1 protein was efficiently depleted by the two shRNAs. HIF1/2-α protein was efficiently depleted by siRNAs. JAK1 overexpressed EC cells were generated by an expressing plasmid. The proliferation and migration ability of cancer cells were evaluated by CCK8, colony formation assays and transwell assays. The global transcriptomic changes in JAK1-depleted KLE cells were investigated using RNA-Seq. Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to identify the most significant pathways that were altered in JAK1-depleted KLE cells. The physical association between HIF-1/2α and JAK1 using co-immunoprecipitation (co-IP) assays. RESULTS In the present study, we found that JAK1 was frequently mutated and downregulated in EC. JAK1 knockdown promotes EC cell proliferation and migration. JAK1 overexpression reduces EC cell proliferation and migration. We examined the transcriptional profiling changes in JAK1-depleted EC cells and unexpectedly found that the hypoxia inducible factor (HIF) pathway was activated. Mechanistically, JAK1 interacts with HIF-1/2α, and reduces HIF1/2-α protein expression under hypoxia. HIF-1/2α knockdown reverses the JAK1 knockdown-induced growth and migration of EC cells under hypoxia. JAK1 knockdown or pharmacological inhibition of JAK1 kinase activity by Ruxolitinib upregulates transcription of HIF target genes under hypoxia. JAK1 overexpression downregulates transcription of HIF target genes under hypoxia. CONCLUSIONS These findings provide novel insights into the functional link between JAK1 LOF mutations and abnormal HIF pathway activation in EC and suggest that pharmacological inhibition of HIF1/2 represents a promising therapeutic strategy targeting JAK1-mutated ECs. Video Abstract.
Collapse
Affiliation(s)
- Qin Lin
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China ,grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Zheng Chen
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wei Shi
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China ,grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Zeheng Lv
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China
| | - Xiaoping Wan
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China
| | - Kun Gao
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| |
Collapse
|
7
|
Marín-Jiménez JA, García-Mulero S, Matías-Guiu X, Piulats JM. Facts and Hopes in Immunotherapy of Endometrial Cancer. Clin Cancer Res 2022; 28:4849-4860. [PMID: 35789264 DOI: 10.1158/1078-0432.ccr-21-1564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy with checkpoint inhibitors has changed the paradigm of treatment for many tumors, and endometrial carcinoma is not an exception. Approved treatment options are pembrolizumab or dostarlimab for mismatch repair deficient tumors, pembrolizumab for tumors with high mutational load, and, more recently, pembrolizumab/lenvatinib for all patients with endometrial cancer. Endometrial cancer is a heterogeneous disease with distinct molecular subtypes and different prognoses. Differences between molecular subgroups regarding antigenicity and immunogenicity should be relevant to develop more tailored immunotherapeutic approaches. In this review, we aim to summarize and discuss the current evidence-Facts, and future opportunities-Hopes-of immunotherapy for endometrial cancer, focusing on relevant molecular and tumor microenvironment features of The Cancer Genome Atlas endometrial cancer subtypes.
Collapse
Affiliation(s)
- Juan A Marín-Jiménez
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Xavier Matías-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova - IRBLLEIDA, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| | - Josep M Piulats
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| |
Collapse
|
8
|
Mamat @ Yusof MN, Chew KT, Kampan N, Abd. Aziz NH, Md Zin RR, Tan GC, Shafiee MN. PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:3911. [PMID: 36010904 PMCID: PMC9405645 DOI: 10.3390/cancers14163911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies of the female genital tract and its current treatment mainly relies on surgical removal of the tumour bulk, followed by adjuvant radiotherapy with or without chemotherapy/hormonal therapy. However, the outcomes of these approaches are often unsatisfactory and are associated with severe toxicity and a higher recurrence rate of the disease. Thus, more clinical research exploring novel medical intervention is needed. Involvement of the immune pathway in cancer has become important and the finding of a high positive expression of programmed cell death-ligand 1 (PD-L1) in EC may offer a better targeted therapeutic approach. Numerous studies on the PD-L1 role in EC have been conducted, but the results remained inconclusive. Hence, this systematic review was conducted to provide an update and robust analysis in order to determine the pooled prevalence of PD-L1 expression in EC and evaluate its association with clinicopathological features in different focuses of tumour cells (TC) and immune cells (IC). A comprehensive literature search was conducted using the PubMed, Web of Science, and Scopus databases. Twelve articles between 2016 and 2021 with 3023 EC cases met the inclusion criteria. The effect of PD-L1 expression on the outcome parameters was estimated by the odds ratios (ORs) with 95% confidence intervals (CIs) for each study. The pooled prevalence of PD-L1 was 34.26% and 51.39% in the tumour cell and immune cell, respectively, among women with EC. The PD-L1 expression was significantly associated with Stage III/IV disease (in both TC and IC) and correlated to the presence of lympho-vascular invasion in IC. However, the PD-L1 expression in TC was not associated with the age groups, histology types, myometrial invasion, and lympho-vascular invasion. In IC, PD-L1 expression was not associated with age group, histology type, and myometrial invasion. The meta-analysis survival outcomes of PD-L1 high expression had a significant association with worse OS in IC but not in TC.
Collapse
Affiliation(s)
- Mohd Nazzary Mamat @ Yusof
- Gynaecologic-Oncology Unit, Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Kah Teik Chew
- Gynaecologic-Oncology Unit, Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Nirmala Kampan
- Gynaecologic-Oncology Unit, Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Nor Haslinda Abd. Aziz
- Gynaecologic-Oncology Unit, Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Mohamad Nasir Shafiee
- Gynaecologic-Oncology Unit, Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Glaire MA, Ryan NAJ, Ijsselsteijn ME, Kedzierska K, Obolenski S, Ali R, Crosbie EJ, Bosse T, de Miranda NFCC, Church DN. Discordant prognosis of mismatch repair deficiency in colorectal and endometrial cancer reflects variation in antitumour immune response and immune escape. J Pathol 2022; 257:340-351. [PMID: 35262923 PMCID: PMC9322587 DOI: 10.1002/path.5894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022]
Abstract
Defective DNA mismatch repair (dMMR) causes elevated tumour mutational burden (TMB) and microsatellite instability (MSI) in multiple cancer types. dMMR/MSI colorectal cancers (CRCs) have enhanced T-cell infiltrate and favourable outcome; however, this association has not been reliably detected in other tumour types, including endometrial cancer (EC). We sought to confirm this and explore the underpinning mechanisms. We first meta-analysed CRC and EC trials that have examined the prognostic value of dMMR/MSI and confirmed that dMMR/MSI predicts better prognosis in CRC, but not EC, with statistically significant variation between cancers (hazard ratio [HR] = 0.63, 95% confidence interval [CI] = 0.54-0.73 versus HR = 1.15, 95% CI = 0.72-1.58; PINT = 0.02). Next, we studied intratumoural immune infiltrate in CRCs and ECs of defined MMR status and found that while dMMR was associated with increased density of tumour-infiltrating CD3+ and CD8+ T-cells in both cancer types, the increases were substantially greater in CRC and significant only in this group (PINT = 4.3e-04 and 7.3e-03, respectively). Analysis of CRC and EC from the independent Cancer Genome Atlas (TCGA) series revealed similar variation and significant interactions in proportions of tumour-infiltrating lymphocytes, CD8+ , CD4+ , NK cells and immune checkpoint expression, confirming a more vigorous immune response to dMMR/MSI in CRC than EC. Agnostic analysis identified the IFNγ pathway activity as strongly upregulated by dMMR/MSI in CRC, but downregulated in EC by frequent JAK1 mutations, the impact of which on IFNγ response was confirmed by functional analyses. Collectively, our results confirm the discordant prognosis of dMMR/MSI in CRC and EC and suggest that this relates to differences in intratumoural immune infiltrate and tumour genome. Our study underscores the need for tissue-specific analysis of cancer biomarkers and may help inform immunotherapy use. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mark A Glaire
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Neil AJ Ryan
- Division of Cancer Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, St Mary's HospitalManchesterUK
- Division of Evolution and Genomic Medicine, Faculty of Biology, Medicine and HealthUniversity of Manchester, St. Mary's HospitalManchesterUK
- The Academic Women's Health Unit, Translational Health SciencesBristol Medical School, University of BristolBristolUK
| | | | - Katarzyna Kedzierska
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Sofia Obolenski
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Reem Ali
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, St Mary's HospitalManchesterUK
- Department of Obstetrics and GynaecologySt Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Tjalling Bosse
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Noel FCC de Miranda
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - David N Church
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals Foundation NHS TrustOxfordUK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
10
|
Hernandez-Sanchez A, Grossman M, Yeung K, Sei SS, Lipkin S, Kloor M. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J Immunother Cancer 2022; 10:e004416. [PMID: 35732349 PMCID: PMC9226910 DOI: 10.1136/jitc-2021-004416] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
The development of cancer vaccines to induce tumor-antigen specific immune responses was sparked by the identification of antigens specific to or overexpressed in cancer cells. However, weak immunogenicity and the mutational heterogeneity in many cancers have dampened cancer vaccine successes. With increasing information about mutational landscapes of cancers, mutational neoantigens can be predicted computationally to elicit strong immune responses by CD8 +cytotoxic T cells as major mediators of anticancer immune response. Neoantigens are potentially more robust immunogens and have revived interest in cancer vaccines. Cancers with deficiency in DNA mismatch repair have an exceptionally high mutational burden, including predictable neoantigens. Lynch syndrome is the most common inherited cancer syndrome and is caused by DNA mismatch repair gene mutations. Insertion and deletion mutations in coding microsatellites that occur during DNA replication include tumorigenesis drivers. The induced shift of protein reading frame generates neoantigens that are foreign to the immune system. Mismatch repair-deficient cancers and Lynch syndrome represent a paradigm population for the development of a preventive cancer vaccine, as the mutations induced by mismatch repair deficiency are predictable, resulting in a defined set of frameshift peptide neoantigens. Furthermore, Lynch syndrome mutation carriers constitute an identifiable high-risk population. We discuss the pathogenesis of DNA mismatch repair deficient cancers, in both Lynch syndrome and sporadic microsatellite-unstable cancers. We review evidence for pre-existing immune surveillance, the three mechanisms of immune evasion that occur in cancers and assess the implications of a preventive frameshift peptide neoantigen-based vaccine. We consider both preclinical and clinical experience to date. We discuss the feasibility of a cancer preventive vaccine for Lynch syndrome carriers and review current antigen selection and delivery strategies. Finally, we propose RNA vaccines as having robust potential for immunoprevention of Lynch syndrome cancers.
Collapse
Affiliation(s)
- Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, University Hospital Heidelberg Institute of Pathology, Heidelberg, Germany
| | - Mark Grossman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Yeung
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shizuko S Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthias Kloor
- University Hospital Heidelberg, Institute of Pathology, Department of Applied Tumor Biology, Heidelberg, Germany
| |
Collapse
|
11
|
Gorzo A, Galos D, Volovat SR, Lungulescu CV, Burz C, Sur D. Landscape of Immunotherapy Options for Colorectal Cancer: Current Knowledge and Future Perspectives beyond Immune Checkpoint Blockade. Life (Basel) 2022; 12:229. [PMID: 35207516 PMCID: PMC8878674 DOI: 10.3390/life12020229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer is the third most prevalent malignancy in Western countries and a major cause of death despite recent improvements in screening programs and early detection methods. In the last decade, a growing effort has been put into better understanding how the immune system interacts with cancer cells. Even if treatments with immune checkpoint inhibitors (anti-PD1, anti-PD-L1, anti-CTLA4) were proven effective for several cancer types, the benefit for colorectal cancer patients is still limited. However, a subset of patients with deficient mismatch repair (dMMR)/microsatellite-instability-high (MSI-H) metastatic colorectal cancer has been observed to have a prolonged benefit to immune checkpoint inhibitors. As a result, pembrolizumab and nivolumab +/- ipilimumab recently obtained the Food and Drug Administration approval. This review aims to highlight the body of knowledge on immunotherapy in the colorectal cancer setting, discussing the potential mechanisms of resistance and future strategies to extend its use.
Collapse
Affiliation(s)
- Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Diana Galos
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | | | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Allergology and Immunology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
13
|
Dholakia J, Scalise CB, Katre AA, Goldsberry WN, Meza-Perez S, Randall TD, Norian LA, Novak L, Arend RC. Sequential modulation of the Wnt/β-catenin signaling pathway enhances tumor-intrinsic MHC I expression and tumor clearance. Gynecol Oncol 2021; 164:170-180. [PMID: 34844776 DOI: 10.1016/j.ygyno.2021.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Progress in immunotherapy use for gynecologic malignancies is hampered by poor tumor antigenicity and weak T cell infiltration of the tumor microenvironment (TME). Wnt/β-catenin pathway modulation demonstrated patient benefit in clinical trials as well as enhanced immune cell recruitment in preclinical studies. The purpose of this study was to characterize the pathways by which Wnt/β-catenin modulation facilitates a more immunotherapy-favorable TME. METHODS Human tumor samples and in vivo patient-derived xenograft and syngeneic murine models were administered Wnt/β-catenin modulating agents DKN-01 and CGX-1321 individually or in sequence. Analytical methods included immunohistochemistry, flow cytometry, multiplex cytokine/chemokine array, and RNA sequencing. RESULTS DKK1 blockade via DKN-01 increased HLA/MHC expression in human and murine tissues, correlating with heightened expression of known MHC I regulators: NFkB, IL-1, LPS, and IFNy. PORCN inhibition via CGX-1321 increased production of T cell chemoattractant CXCL10, providing a mechanism for observed increases in intra-tumoral T cells. Diverse leukocyte recruitment was noted with elevations in B cells and macrophages, with increased tumor expression of population-specific chemokines. Sequential DKK1 blockade and PORCN inhibition decreased tumor burden as evidenced by reduced omental weights. CONCLUSIONS Wnt/β-catenin pathway modulation increases MHC I expression and promotes tumor leukocytic infiltration, facilitating a pro-immune TME associated with decreased tumor burden. This intervention overcomes common tumor immune-evasion mechanisms and may render ovarian tumors susceptible to immunotherapy.
Collapse
Affiliation(s)
- Jhalak Dholakia
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Carly B Scalise
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Ashwini A Katre
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Whitney N Goldsberry
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Selene Meza-Perez
- University of Alabama at Birmingham, Division of Immunology & Rheumatology, Birmingham, AL, United States of America
| | - Troy D Randall
- University of Alabama at Birmingham, Division of Immunology & Rheumatology, Birmingham, AL, United States of America; University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America
| | - Lyse A Norian
- University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America; University of Alabama at Birmingham, Department of Nutrition Sciences, Birmingham, AL, United States of America
| | - Lea Novak
- University of Alabama at Birmingham, Department of Anatomic Pathology, Birmingham, AL, United States of America
| | - Rebecca C Arend
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America; University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America.
| |
Collapse
|
14
|
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov 2021; 11:874-899. [PMID: 33811122 DOI: 10.1158/2159-8290.cd-20-1638] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Resistance to anticancer therapies includes primary resistance, usually related to lack of target dependency or presence of additional targets, and secondary resistance, mostly driven by adaptation of the cancer cell to the selection pressure of treatment. Resistance to targeted therapy is frequently acquired, driven by on-target, bypass alterations, or cellular plasticity. Resistance to immunotherapy is often primary, orchestrated by sophisticated tumor-host-microenvironment interactions, but could also occur after initial efficacy, mostly when only partial responses are obtained. Here, we provide an overview of resistance to tumor and immune-targeted therapies and discuss challenges of overcoming resistance, and current and future directions of development. SIGNIFICANCE: A better and earlier identification of cancer-resistance mechanisms could avoid the use of ineffective drugs in patients not responding to therapy and provide the rationale for the administration of personalized drug associations. A clear description of the molecular interplayers is a prerequisite to the development of novel and dedicated anticancer drugs. Finally, the implementation of such cancer molecular and immunologic explorations in prospective clinical trials could de-risk the demonstration of more effective anticancer strategies in randomized registration trials, and bring us closer to the promise of cure.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice Andre
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Paris Saclay University, Saint-Aubin, France
| | - Aurelien Marabelle
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Semih Dogan
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Jean-Charles Soria
- Paris Saclay University, Saint-Aubin, France. .,Drug Development Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
15
|
Deshpande M, Romanski PA, Rosenwaks Z, Gerhardt J. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability. Cancers (Basel) 2020; 12:E3319. [PMID: 33182707 PMCID: PMC7697596 DOI: 10.3390/cancers12113319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Phillip A. Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
16
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
17
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
18
|
Torrejon DY, Abril-Rodriguez G, Champhekar AS, Tsoi J, Campbell KM, Kalbasi A, Parisi G, Zaretsky JM, Garcia-Diaz A, Puig-Saus C, Cheung-Lau G, Wohlwender T, Krystofinski P, Vega-Crespo A, Lee CM, Mascaro P, Grasso CS, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Ribas A. Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade. Cancer Discov 2020; 10:1140-1157. [PMID: 32467343 DOI: 10.1158/2159-8290.cd-19-1409] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
Mechanism-based strategies to overcome resistance to PD-1 blockade therapy are urgently needed. We developed genetic acquired resistant models of JAK1, JAK2, and B2M loss-of-function mutations by gene knockout in human and murine cell lines. Human melanoma cell lines with JAK1/2 knockout became insensitive to IFN-induced antitumor effects, while B2M knockout was no longer recognized by antigen-specific T cells and hence was resistant to cytotoxicity. All of these mutations led to resistance to anti-PD-1 therapy in vivo. JAK1/2-knockout resistance could be overcome with the activation of innate and adaptive immunity by intratumoral Toll-like receptor 9 agonist administration together with anti-PD-1, mediated by natural killer (NK) and CD8 T cells. B2M-knockout resistance could be overcome by NK-cell and CD4 T-cell activation using the CD122 preferential IL2 agonist bempegaldesleukin. Therefore, mechanistically designed combination therapies can overcome genetic resistance to PD-1 blockade therapy. SIGNIFICANCE: The activation of IFN signaling through pattern recognition receptors and the stimulation of NK cells overcome genetic mechanisms of resistance to PD-1 blockade therapy mediated through deficient IFN receptor and antigen presentation pathways. These approaches are being tested in the clinic to improve the antitumor activity of PD-1 blockade therapy.This article is highlighted in the In This Issue feature, p. 1079.
Collapse
Affiliation(s)
- Davis Y Torrejon
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gabriel Abril-Rodriguez
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Ameya S Champhekar
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jennifer Tsoi
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katie M Campbell
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Anusha Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gardenia Cheung-Lau
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Thomas Wohlwender
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Paige Krystofinski
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christopher M Lee
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Pau Mascaro
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Catherine S Grasso
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Begoña Comin-Anduix
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Siwen Hu-Lieskovan
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California. .,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
19
|
Gulhan DC, Garcia E, Lee EK, Lindemann NI, Liu JF, Matulonis UA, Park PJ, Konstantinopoulos PA. Genomic Determinants of De Novo Resistance to Immune Checkpoint Blockade in Mismatch Repair-Deficient Endometrial Cancer. JCO Precis Oncol 2020; 4:492-497. [PMID: 32494760 PMCID: PMC7269172 DOI: 10.1200/po.20.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
20
|
Picard E, Verschoor CP, Ma GW, Pawelec G. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front Immunol 2020; 11:369. [PMID: 32210966 PMCID: PMC7068608 DOI: 10.3389/fimmu.2020.00369] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is highly heterogeneous at the genetic and molecular level, which has major repercussions on the efficacy of immunotherapy. A small subset of CRCs exhibit microsatellite instability (MSI), a molecular indicator of defective DNA mismatch repair (MMR), but the majority are microsatellite-stable (MSS). The high tumor mutational burden (TMB) and neoantigen load in MSI tumors favors the infiltration of immune effector cells, and antitumor immune responses within these tumors are strong relative to their MSS counterparts. MSI has emerged as a major predictive marker for the efficacy of immune checkpoint blockade over the last few years and nivolumab or pembrolizumab targeting PD-1 has been approved for patients with MSI refractory or metastatic CRC. However, some MSS tumors show DNA polymerase epsilon (POLE) mutations that also confer a very high TMB and may also be heavily infiltrated by immune cells making them amenable to respond to immune checkpoint inhibitors (ICI). In this review we discuss the role of the different immune landscapes in CRC and their relationships with defined CRC genetic subtypes. We discuss potential reasons why immune checkpoint blockade has met with limited success for the majority of CRC patients, despite the finding that immune cell infiltration of primary non-metastatic tumors is a strong predictive, and prognostic factor for relapse and survival. We then consider in which ways CRC cells develop mechanisms to resist ICI. Finally, we address the latest advances in CRC vaccination and how a personalized neoantigen vaccine strategy might overcome the resistance of MSI and MSS tumors in patients for whom immune checkpoint blockade is not a treatment option.
Collapse
Affiliation(s)
- Emilie Picard
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | | | - Grace W Ma
- Department of Surgery, Health Sciences North, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, Fenyö D. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020; 180:729-748.e26. [PMID: 32059776 PMCID: PMC7233456 DOI: 10.1016/j.cell.2020.01.026] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily A Kawaler
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Blumenberg
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhi Li
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhou
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Qingsong Gao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunantha Sethuraman
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Heiman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramani Kothadia
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yosef Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amanda E Oliphant
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily L Hoskins
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Samuel L Pugh
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sean J I Beecroft
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David W Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan C Jarman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Czekański
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; University Hospital of Lord's Transfiguration, 60-569 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deborah DeLair
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Noble
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew L Anderson
- College of Medicine Obstetrics & Gynecology, University of South Florida Health, Tampa, FL 33620, USA
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kelly V Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
22
|
Konstantinopoulos PA, Luo W, Liu JF, Gulhan DC, Krasner C, Ishizuka JJ, Gockley AA, Buss M, Growdon WB, Crowe H, Campos S, Lindeman NI, Hill S, Stover E, Schumer S, Wright AA, Curtis J, Quinn R, Whalen C, Gray KP, Penson RT, Cannistra SA, Fleming GF, Matulonis UA. Phase II Study of Avelumab in Patients With Mismatch Repair Deficient and Mismatch Repair Proficient Recurrent/Persistent Endometrial Cancer. J Clin Oncol 2019; 37:2786-2794. [PMID: 31461377 PMCID: PMC9798913 DOI: 10.1200/jco.19.01021] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Despite the tissue-agnostic approval of pembrolizumab in mismatch repair deficient (MMRD) solid tumors, important unanswered questions remain about the role of immune checkpoint blockade in mismatch repair-proficient (MMRP) and -deficient endometrial cancer (EC). METHODS This phase II study evaluated the PD-L1 inhibitor avelumab in two cohorts of patients with EC: (1) MMRD/POLE (polymerase ε) cohort, as defined by immunohistochemical (IHC) loss of expression of one or more mismatch repair (MMR) proteins and/or documented mutation in the exonuclease domain of POLE; and (2) MMRP cohort with normal IHC expression of all MMR proteins. Coprimary end points were objective response (OR) and progression-free survival at 6 months (PFS6). Avelumab 10 mg/kg intravenously was administered every 2 weeks until progression or unacceptable toxicity. RESULTS Thirty-three patients were enrolled. No patient with POLE-mutated tumor was enrolled in the MMRD cohort, and all MMRP tumors were not POLE-mutated. The MMRP cohort was closed at the first stage because of futility: Only one of 16 patients exhibited both OR and PFS6 responses. The MMRD cohort met the predefined primary end point of four ORs after accrual of only 17 patients; of 15 patients who initiated avelumab, four exhibited OR (one complete response, three partial responses; OR rate, 26.7%; 95% CI, 7.8% to 55.1%) and six (including all four ORs) PFS6 responses (PFS6, 40.0%; 95% CI, 16.3% to 66.7%), four of which are ongoing as of data cutoff date. Responses were observed in the absence of PD-L1 expression. IHC captured all cases of MMRD subsequently determined by polymerase chain reaction or genomically via targeted sequencing. CONCLUSION Avelumab exhibited promising activity in MMRD EC regardless of PD-L1 status. IHC for MMR assessment is a useful tool for patient selection. The activity of avelumab in MMRP/non-POLE-mutated ECs was low.
Collapse
Affiliation(s)
- Panagiotis A. Konstantinopoulos
- Dana-Farber Cancer Institute, Boston, MA,Panagiotis A. Konstantinopoulos, MD, PhD, Dana-Farber Cancer Institute, Harvard Medical School, Yawkey Center for Cancer Care, YC-1424, 450 Brookline Ave, Boston, MA, 02215; e-mail:
| | - Weixiu Luo
- Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | | | - Mary Buss
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | | | | | - Sarah Hill
- Brigham and Women’s Hospital, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Han P, Dai Q, Fan L, Lin H, Zhang X, Li F, Yang X. Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance. Front Immunol 2019; 10:251. [PMID: 30837996 PMCID: PMC6389627 DOI: 10.3389/fimmu.2019.00251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Somatic gene mutations play a critical role in immune evasion by tumors. However, there is limited information on genes that confer immunotherapy resistance in melanoma. To answer this question, we established a whole-genome knockout B16/ovalbumin cell line by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease technology, and determined by in vivo adoptive OT-I T-cell transfer and an in vitro OT-I T-cell-killing assay that Janus kinase (JAK)1 deficiency mediates T-cell resistance via a two-step mechanism. Loss of JAK1 reduced JAK-Signal transducer and activator of transcription signaling in tumor cells—resulting in tumor resistance to the T-cell effector molecule interferon—and suppressed T-cell activation by impairing antigen presentation. These findings provide a novel method for exploring immunotherapy resistance in cancer and identify JAK1 as potential therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Ping Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lilv Fan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlin Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanming Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Tang Y, He Y, Shi L, Yang L, Wang J, Lian Y, Fan C, Zhang P, Guo C, Zhang S, Gong Z, Li X, Xiong F, Li X, Li Y, Li G, Xiong W, Zeng Z. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget 2018; 8:39001-39011. [PMID: 28380458 PMCID: PMC5503590 DOI: 10.18632/oncotarget.16545] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) carries a high potential for metastasis and immune escape, with a great risk of relapse after primary treatment. Through analysis of whole genome expression profiling data in NPC samples, we found that the expression of a long non-coding RNA (lncRNA), actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), is significantly correlated with the immune escape marker programmed death 1 (PD-1). We therefore assessed the expression of AFAP1-AS1 and PD-1 in a cohort of 96 paraffin-embedded NPC samples and confirmed that AFAP1-AS1 and PD-1 are co-expressed in infiltrating lymphocytes in NPC tissue. Moreover, patients with high expression of AFAP1-AS1 or PD-1 in infiltrating lymphocytes were more prone to distant metastasis, and NPC patients with positive expression of both AFAP1-AS1 and PD-1 had the poorest prognosis. This study suggests that AFAP1-AS1 and PD-1 may be potential therapeutic targets in NPC and that patients with co-expression of AFAP1-AS1 and PD-1 may be ideal candidates for future clinical trials of anti-PD-1 immune therapy.
Collapse
Affiliation(s)
- Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yu Lian
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ping Zhang
- School of Information Science and Engineering, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Albacker LA, Wu J, Smith P, Warmuth M, Stephens PJ, Zhu P, Yu L, Chmielecki J. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS One 2017; 12:e0176181. [PMID: 29121062 PMCID: PMC5679612 DOI: 10.1371/journal.pone.0176181] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/06/2017] [Indexed: 12/17/2022] Open
Abstract
Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.
Collapse
Affiliation(s)
- Lee A. Albacker
- Foundation Medicine Inc., Cambridge, Massachusetts, United States of America
- * E-mail: (LA); (LY)
| | - Jeremy Wu
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Peter Smith
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Markus Warmuth
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Philip J. Stephens
- Foundation Medicine Inc., Cambridge, Massachusetts, United States of America
| | - Ping Zhu
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Lihua Yu
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
- * E-mail: (LA); (LY)
| | - Juliann Chmielecki
- Foundation Medicine Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, Real B, Bielefeld N, Howe S, Weide B, Gutzmer R, Utikal J, Loquai C, Gogas H, Klein-Hitpass L, Zeschnigk M, Westendorf AM, Trilling M, Horn S, Schilling B, Schadendorf D, Griewank KG, Paschen A. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun 2017; 8:15440. [PMID: 28561041 PMCID: PMC5460020 DOI: 10.1038/ncomms15440] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
Melanoma treatment has been revolutionized by antibody-based immunotherapies. IFNγ secretion by CD8+ T cells is critical for therapy efficacy having anti-proliferative and pro-apoptotic effects on tumour cells. Our study demonstrates a genetic evolution of IFNγ resistance in different melanoma patient models. Chromosomal alterations and subsequent inactivating mutations in genes of the IFNγ signalling cascade, most often JAK1 or JAK2, protect melanoma cells from anti-tumour IFNγ activity. JAK1/2 mutants further evolve into T-cell-resistant HLA class I-negative lesions with genes involved in antigen presentation silenced and no longer inducible by IFNγ. Allelic JAK1/2 losses predisposing to IFNγ resistance development are frequent in melanoma. Subclones harbouring inactivating mutations emerge under various immunotherapies but are also detectable in pre-treatment biopsies. Our data demonstrate that JAK1/2 deficiency protects melanoma from anti-tumour IFNγ activity and results in T-cell-resistant HLA class I-negative lesions. Screening for mechanisms of IFNγ resistance should be considered in therapeutic decision-making.
Collapse
Affiliation(s)
- Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Natalia Pieper
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Christina Heeke
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Raffaela Maltaner
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Nadine Stadtler
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Birgit Real
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Nicola Bielefeld
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Sebastian Howe
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Benjamin Weide
- Division of Dermatooncology, Department of Dermatology, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Utikal
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg and University Medical Center Mannheim, Department of Dermatology, Venereology and Allergology, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Carmen Loquai
- Skin Cancer Center, Department of Dermatology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Helen Gogas
- First Department of Medicine,National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Zeschnigk
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, West German Cancer Center and the German Cancer Consortium (DKTK), 45122 Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mirko Trilling
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany.,Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Klaus G Griewank
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| |
Collapse
|
27
|
Sveen A, Johannessen B, Tengs T, Danielsen SA, Eilertsen IA, Lind GE, Berg KCG, Leithe E, Meza-Zepeda LA, Domingo E, Myklebost O, Kerr D, Tomlinson I, Nesbakken A, Skotheim RI, Lothe RA. Multilevel genomics of colorectal cancers with microsatellite instability-clinical impact of JAK1 mutations and consensus molecular subtype 1. Genome Med 2017; 9:46. [PMID: 28539123 PMCID: PMC5442873 DOI: 10.1186/s13073-017-0434-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Approximately 15% of primary colorectal cancers have DNA mismatch repair deficiency, causing a complex genome with thousands of small mutations-the microsatellite instability (MSI) phenotype. We investigated molecular heterogeneity and tumor immunogenicity in relation to clinical endpoints within this distinct subtype of colorectal cancers. METHODS A total of 333 primary MSI+ colorectal tumors from multiple cohorts were analyzed by multilevel genomics and computational modeling-including mutation profiling, clonality modeling, and neoantigen prediction in a subset of the tumors, as well as gene expression profiling for consensus molecular subtypes (CMS) and immune cell infiltration. RESULTS Novel, frequent frameshift mutations in four cancer-critical genes were identified by deep exome sequencing, including in CRTC1, BCL9, JAK1, and PTCH1. JAK1 loss-of-function mutations were validated with an overall frequency of 20% in Norwegian and British patients, and mutated tumors had up-regulation of transcriptional signatures associated with resistance to anti-PD-1 treatment. Clonality analyses revealed a high level of intra-tumor heterogeneity; however, this was not associated with disease progression. Among the MSI+ tumors, the total mutation load correlated with the number of predicted neoantigens (P = 4 × 10-5), but not with immune cell infiltration-this was dependent on the CMS class; MSI+ tumors in CMS1 were highly immunogenic compared to MSI+ tumors in CMS2-4. Both JAK1 mutations and CMS1 were favorable prognostic factors (hazard ratios 0.2 [0.05-0.9] and 0.4 [0.2-0.9], respectively, P = 0.03 and 0.02). CONCLUSIONS Multilevel genomic analyses of MSI+ colorectal cancer revealed molecular heterogeneity with clinical relevance, including tumor immunogenicity and a favorable patient outcome associated with JAK1 mutations and the transcriptomic subgroup CMS1, emphasizing the potential for prognostic stratification of this clinically important subtype. See related research highlight by Samstein and Chan 10.1186/s13073-017-0438-9.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Torstein Tengs
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Stine A. Danielsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Ina A. Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Kaja C. G. Berg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
| | - Enric Domingo
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
| | - David Kerr
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Arild Nesbakken
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
- Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| |
Collapse
|
28
|
Guo XX, Wu HT, Zhuang SH, Chen ZH, Liang RL, Chen Y, Wu YS, Liu TC. Detection of Janus-activated kinase-1 and its interacting proteins by the method of luminescent oxygen channeling. RSC Adv 2017. [DOI: 10.1039/c6ra27424b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Janus-activated kinase-1 (JAK1) plays an important role in many signaling pathways, including the JAK–STAT and SOCS pathways.
Collapse
Affiliation(s)
- Xin-Xin Guo
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Han-Tao Wu
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Si-Hui Zhuang
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Zhen-Hua Chen
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Rong-Liang Liang
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Yao Chen
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Ying-Song Wu
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| | - Tian-Cai Liu
- State Key Laboratory of Organ Failure
- Institute of Antibody Engineering
- School of Laboratory Medicine and Biotechnology
- Southern Medical University
- Guangzhou 510515
| |
Collapse
|
29
|
Eggink FA, Van Gool IC, Leary A, Pollock PM, Crosbie EJ, Mileshkin L, Jordanova ES, Adam J, Freeman-Mills L, Church DN, Creutzberg CL, De Bruyn M, Nijman HW, Bosse T. Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology 2016; 6:e1264565. [PMID: 28344870 PMCID: PMC5353925 DOI: 10.1080/2162402x.2016.1264565] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
High-risk endometrial cancer (EC) is an aggressive disease for which new therapeutic options are needed. Aims of this study were to validate the enhanced immune response in highly mutated ECs and to explore immune profiles in other EC subgroups. We evaluated immune infiltration in 116 high-risk ECs from the TransPORTEC consortium, previously classified into four molecular subtypes: (i) ultramutated POLE exonuclease domain-mutant ECs (POLE-mutant); (ii) hypermutated microsatellite unstable (MSI); (iii) p53-mutant; and (iv) no specific molecular profile (NSMP). Within The Cancer Genome Atlas (TCGA) EC cohort, significantly higher numbers of predicted neoantigens were demonstrated in POLE-mutant and MSI tumors compared with NSMP and p53-mutants. This was reflected by enhanced immune expression and infiltration in POLE-mutant and MSI tumors in both the TCGA cohort (mRNA expression) and the TransPORTEC cohort (immunohistochemistry) with high infiltration of CD8+ (90% and 69%), PD-1+ (73% and 69%) and PD-L1+ immune cells (100% and 71%). Notably, a subset of p53-mutant and NSMP cancers was characterized by signs of an antitumor immune response (43% and 31% of tumors with high infiltration of CD8+ cells, respectively), despite a low number of predicted neoantigens. In conclusion, the presence of enhanced immune infiltration, particularly high numbers of PD-1 and PD-L1 positive cells, in highly mutated, neoantigen-rich POLE-mutant and MSI endometrial tumors suggests sensitivity to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Florine A Eggink
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen, the Netherlands
| | - Inge C Van Gool
- Department of Pathology, Leiden University Medical Center , Leiden, the Netherlands
| | - Alexandra Leary
- Department of Medical Oncology, INSERM U981, Gustave Roussy Cancer Center , Villejuif, France
| | - Pamela M Pollock
- Queensland University of Technology (QUT), Translational Research Institute , Brisbane, QLD, Australia
| | - Emma J Crosbie
- Institute of Cancer Sciences, University of Manchester, St Marys Hospital , Manchester, UK
| | - Linda Mileshkin
- Division of Cancer Medicine, Peter MacCallum Cancer Centre , East Melbourne, VIC, Australia
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Center for Gynecological Oncology Amsterdam, VU Medical Center, Amsterdam, the Netherlands
| | - Julien Adam
- Department of Medical Oncology, INSERM U981, Gustave Roussy Cancer Center , Villejuif, France
| | - Luke Freeman-Mills
- Tumour Genomics and Immunology Group, Oxford Centre for Cancer Gene Research, The Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, UK
| | - David N Church
- Tumour Genomics and Immunology Group, Oxford Centre for Cancer Gene Research, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Oxford Cancer Centre, Churchill Hospital, Oxford, UK
| | - Carien L Creutzberg
- Department of Clinical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - Marco De Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen, the Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen, the Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
30
|
Seliger B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA 2016; 88:213-220. [PMID: 27659281 DOI: 10.1111/tan.12898] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Although the human immune system can recognize and eradicate tumor cells, tumors have also been shown to develop different strategies to escape immune surveillance, which has been described for the first time in different mouse models. The evasion of immune recognition was often associated with a poor prognosis and reduced survival of patients. During the last years the molecular mechanisms, which protect tumor cells from this immune attack, have been identified and appear to be more complex than initially expected. However, next to the composition of cellular, soluble and physical components of the tumor microenvironment, the tumor cells changes to limit immune responses. Of particular importance are classical and non-classical human leukocyte antigen (HLA) class I antigens, which often showed a deregulated expression in cancers of distinct origin. Furthermore, HLA class I abnormalities were linked to defects in the interferon signaling, which have both been shown to be essential for mounting immune responses and are involved in resistances to T cell-based immunotherapies. Therefore this review summarizes the expression, regulation, function and clinical relevance of HLA class I antigens in association with the interferon signal transduction pathway and its role in adaptive resistances to immunotherapies.
Collapse
Affiliation(s)
- B Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|