1
|
Kobayashi PE, Lainetti PF, Leis-Filho AF, Delella FK, Vicente IST, Fonseca-Alves CE, Laufer-Amorim R. Canine prostate cancer cell transcriptome reveals important dysregulation in PI3K/AKT/mTOR pathway. J Comp Pathol 2025; 219:52-58. [PMID: 40328211 DOI: 10.1016/j.jcpa.2025.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
Dogs are the only large mammals, besides humans, that develop spontaneous prostate cancer, which has a poor prognosis and limited treatment efficacy. Considering the central role of mammalian target of rapamycin (mTOR) in carcinogenesis, the use of rapamycin, an mTOR inhibitor, has attracted considerable attention. In this study, we performed gene expression microarray analyses of normal canine prostate and prostate carcinoma cells. Among the 6,270 differentially expressed genes revealed in the transcriptome, 3,242 were upregulated and 3,028 were downregulated, and were related to phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway activation, as confirmed by enrichment analysis. Among the genes involved in this pathway, we found increased expression levels of FKBP1A, FKBP1B, AKT1S1, PDK2, PIP5K1 and PIP5KL1 in canine prostate cancer cells compared with normal prostate cells. We also treated two canine prostate cancer cell lines (PC1 and PC2) with rapamycin in vitro (6, 10 and 12 μM) for 24 h and observed a dose-dependent decrease in cell viability. Our results indicate that rapamycin significantly increased AKT transcript levels in both cell lines, indicating resistance to treatment. However, mTOR and 4E-BP1 expression were downregulated after rapamycin treatment. We suggest that mTOR inhibition is a potential treatment of choice for canine prostate cancer, which may guide and contribute to future prostate carcinoma clinical trials. However, the acquisition of resistance to treatment remains a challenge, and precision medicine may help overcome this problem.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Patrícia F Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Antonio F Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Flávia K Delella
- Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Igor S T Vicente
- Institute of Veterinary Oncology, Pompéia, São Paulo, Brazil; VetPrecision Laboratory, Botucatu, São Paulo, Brazil.
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil; Institute of Veterinary Oncology, Pompéia, São Paulo, Brazil; VetPrecision Laboratory, Botucatu, São Paulo, Brazil.
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
2
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
3
|
Wang Z, Ma L, Meng Y, Fang J, Xu D, Lu Z. The interplay of the circadian clock and metabolic tumorigenesis. Trends Cell Biol 2024; 34:742-755. [PMID: 38061936 DOI: 10.1016/j.tcb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 09/08/2024]
Abstract
The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
4
|
da Silveira EJD, Barros CCDS, Bottino MC, Castilho RM, Squarize C. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes. Exp Dermatol 2024; 33:e15005. [PMID: 38284199 PMCID: PMC10865818 DOI: 10.1111/exd.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The evolutionary establishment of an internal biological clock is a primordial event tightly associated with a 24-h period. Changes in the circadian rhythm can affect cellular functions, including proliferation, DNA repair and redox state. Even isolated organs, tissues and cells can maintain an autonomous circadian rhythm. These cell-autonomous molecular mechanisms are driven by intracellular clock genes, such as BMAL1. Little is known about the role of core clock genes and epigenetic modifications in the skin. Our focus was to identify BMAL1-driven epigenetic modifications associated with gene transcription by mapping the acetylation landscape of histones in epithelial cells responding to injury. We explored the role of BMAL1 in epidermal wound and tissue regeneration using a loss-of-function approach in vivo. We worked with BMAL1 knockout mice and a contraction-resistance wound healing protocol, determining the histone modifications using specific antibodies to detect the acetylation levels of histones H3 and H4. We found significant differences in the acetylation levels of histones in both homeostatic and injured skin with deregulated BMAL1. The intact skin displayed varied acetylation levels of histones H3 and H4, including hyperacetylation of H3 Lys 9 (H3K9). The most pronounced changes were observed at the repair site, with notable alterations in the acetylation pattern of histone H4. These findings reveal the importance of histone modifications in response to injury and indicate that modulation of BMAL1 and its associated epigenetic events could be therapeutically harnessed to improve skin regeneration.
Collapse
Affiliation(s)
- Ericka J. D. da Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Caio C. D. S. Barros
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Cristiane Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Almeida LO, Silva LC, Emerick C, Amorim Dos Santos J, Castilho RM, Squarize CH. Head and neck cancer stem cell maintenance relies on mTOR signaling, specifically involving the mechanistic target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2). Arch Oral Biol 2024; 157:105840. [PMID: 37939517 DOI: 10.1016/j.archoralbio.2023.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Emerging evidence suggests that the modest response of head and neck squamous cell carcinoma (HNSCC) to treatment is associated with cancer stem cells (CSC). However, the signaling pathways that play a role in HNSCC CSC maintenance and therapy response are not well-understood. In this study, we investigate the response of CSCs to phosphatase and tensin homolog (PTEN) modulation and its potential dependency on the mammalian target of rapamycin (mTOR) signaling. DESIGN PTEN deficiency was stably induced using short hairpin RNA (shRNA). Downregulation of RPTOR/mTORC1 and RICTOR/mTORC2 was achieved using small interfering RNA (siRNA). CSCs were evaluated through tumorsphere formation and were classified into various subtypes: parasphere, merosphere, and holosphere. We investigated the effect of rapamycin on CSC properties in both control and PTEN-deficient HNSCC cells. RESULTS PTEN deficiency led to an accumulation of CSCs and enhanced a favorable response to rapamycin treatment. The viability of HNSCC CSCs was dependent on mTOR signaling. Deficiencies in both mTORC1 and mTORC2 reduced the number of CSCs. However, CSCs with PTEN deficiency had a greater reliance on mTORC1 signaling. Interestingly, when considering CSC subtypes, a deficiency in mTORC2 led to an increased number of paraspheres in both the control and PTEN-deficient groups. CONCLUSIONS Loss of PTEN signaling increased the HNSCC CSC population, which can be targeted by rapamycin. However, the mTORC2 deficiency can induce a problematic selection of paraspheres CSCs subtype.
Collapse
Affiliation(s)
- Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Basic and Oral Biology, University of Sao Paulo School of Dentistry, Ribeirao Preto, São Paulo, Brazil
| | - Luan César Silva
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Carolina Emerick
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Juliana Amorim Dos Santos
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Rodríguez-Santana C, López-Rodríguez A, Martinez-Ruiz L, Florido J, Cela O, Capitanio N, Ramírez-Casas Y, Acuña-Castroviejo D, Escames G. The Relationship between Clock Genes, Sirtuin 1, and Mitochondrial Activity in Head and Neck Squamous Cell Cancer: Effects of Melatonin Treatment. Int J Mol Sci 2023; 24:15030. [PMID: 37834478 PMCID: PMC10573844 DOI: 10.3390/ijms241915030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The circadian clock is a regulatory system, with a periodicity of approximately 24 h, which generates rhythmic changes in many physiological processes, including mitochondrial activity. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases such as cancer. Melatonin, whose production and secretion oscillates according to the light-dark cycle, is the principal regulator of clock gene expression. In addition, the oncostatic effects of melatonin correlate with an increase in mitochondrial activity. However, the direct links between circadian clock gene expression, mitochondrial activity, and the antiproliferative effects of melatonin in cancers, including head and neck squamous cell carcinoma (HNSCC), remain largely unknown. In this study, we analyzed the effects of melatonin on HNSCC cell lines (Cal-27 and SCC9), which were treated with 500 and 1000 µM melatonin. We found that the antiproliferative effect of melatonin is not mediated by the Bmal1 clock gene. Additionally, high doses of melatonin were observed to result in resynchronization of oscillatory circadian rhythm genes (Per2 and Sirt1). Surprisingly, the resynchronizing effect of melatonin on Per2 and Sirt1 did not produce alterations in the oscillation of mitochondrial respiratory activity. These results increase our understanding of the possible antiproliferative mechanisms in melatonin in the treatment of head and neck squamous cell carcinoma and suggest that its antiproliferative effects are independent of clock genes but are directly related to mitochondrial activity.
Collapse
Affiliation(s)
- César Rodríguez-Santana
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Alba López-Rodríguez
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Laura Martinez-Ruiz
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Javier Florido
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (N.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (N.C.)
| | - Yolanda Ramírez-Casas
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), San Cecilio University Hospital, 18016 Granada, Spain
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain; (C.R.-S.); (A.L.-R.); (L.M.-R.); (J.F.); (Y.R.-C.); (D.A.-C.)
- Department of Physiology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), San Cecilio University Hospital, 18016 Granada, Spain
| |
Collapse
|
7
|
Kim JY, Kim W, Lee KH. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim Cells Syst (Seoul) 2023; 27:38-52. [PMID: 36860270 PMCID: PMC9970207 DOI: 10.1080/19768354.2023.2180535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circadian rhythm regulates physiological cycles of awareness and sleepiness. Melatonin production is primarily regulated by circadian regulation of gene expression and is involved in sleep homeostasis. If the circadian rhythm is abnormal, sleep disorders, such as insomnia and several other diseases, can occur. The term 'autism spectrum disorder (ASD)' is used to characterize people who exhibit a certain set of repetitive behaviors, severely constrained interests, social deficits, and/or sensory behaviors that start very early in life. Because many patients with ASD suffer from sleep disorders, sleep disorders and melatonin dysregulation are attracting attention for their potential roles in ASD. ASD is caused by abnormalities during the neurodevelopmental processes owing to various genetic or environmental factors. Recently, the role of microRNAs (miRNAs) in circadian rhythm and ASD have gained attraction. We hypothesized that the relationship between circadian rhythm and ASD could be explained by miRNAs that can regulate or be regulated by either or both. In this study, we introduced a possible molecular link between circadian rhythm and ASD. We performed a thorough literature review to understand their complexity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| |
Collapse
|
8
|
Role of Melatonin in Cancer: Effect on Clock Genes. Int J Mol Sci 2023; 24:ijms24031919. [PMID: 36768253 PMCID: PMC9916653 DOI: 10.3390/ijms24031919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The circadian clock is a regulatory system, with a periodicity of approximately 24 h, that generates rhythmic changes in many physiological processes. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases, including cancer. In this context, tumor cells have an altered circadian machinery compared to normal cells, which deregulates the cell cycle, repair mechanisms, energy metabolism and other processes. Melatonin is the main hormone produced by the pineal gland, whose production and secretion oscillates in accordance with the light:dark cycle. In addition, melatonin regulates the expression of clock genes, including those in cancer cells, which could play a key role in the numerous oncostatic effects of this hormone. This review aims to describe and clarify the role of clock genes in cancer, as well as the possible mechanisms of the action of melatonin through which it regulates the expression of the tumor's circadian machinery, in order to propose future anti-neoplastic clinical treatments.
Collapse
|
9
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
10
|
Salemi M, Mogavero MP, Lanza G, Mongioì LM, Calogero AE, Ferri R. Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022; 11:1930. [PMID: 35741059 PMCID: PMC9221903 DOI: 10.3390/cells11121930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer's dementia is the most common, while Parkinson's disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration. Noncoding RNAs (ncRNAs) are defined as transcribed nucleotides that perform a variety of regulatory functions. The mechanisms by which ncRNAs exert their functions are numerous and involve every aspect of cellular life. The same ncRNA can act in multiple ways, leading to different outcomes; in fact, a single ncRNA can participate in the pathogenesis of more than one disease-even if these seem very different, as cancer and neurodegenerative disorders are. The ncRNA activates specific pathways leading to one or the other clinical phenotype, sometimes with obvious mechanisms of inverse comorbidity. We aimed to collect from the existing literature examples of inverse comorbidity in which ncRNAs seem to play a key role. We also investigated the example of mir-519a-3p, and one of its target genes Poly (ADP-ribose) polymerase 1, for the inverse comorbidity mechanism between some cancers and PD. We believe it is very important to study the inverse comorbidity relationship between cancer and neurodegenerative diseases because it will help us to better assess these two major areas of human disease.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute, IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Italian Ministry of Health, 94018 Troina, Italy; (G.L.); (R.F.)
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Scientific Institute of Pavia, 27100 Pavia, Italy;
| | - Giuseppe Lanza
- Oasi Research Institute, IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Italian Ministry of Health, 94018 Troina, Italy; (G.L.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Laura M. Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.M.M.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.M.M.); (A.E.C.)
| | - Raffaele Ferri
- Oasi Research Institute, IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Italian Ministry of Health, 94018 Troina, Italy; (G.L.); (R.F.)
| |
Collapse
|
11
|
Nascimento-Filho CHV, Glinos AT, Jang Y, Goloni-Bertollo EM, Castilho RM, Squarize CH. From Tissue Physoxia to Cancer Hypoxia, Cost-Effective Methods to Study Tissue-Specific O 2 Levels in Cellular Biology. Int J Mol Sci 2022; 23:ijms23105633. [PMID: 35628446 PMCID: PMC9144419 DOI: 10.3390/ijms23105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The human body is endowed with an extraordinary ability to maintain different oxygen levels in various tissues and organs. The maintenance of physiological levels of oxygen is known as physoxia. The development of hypoxic conditions plays an important role in the biology of several pathologies, including cancer. In vitro studies using normal and neoplastic cells require that culture conditions be carried out under appropriate oxygen levels, either physoxic or hypoxic conditions. Such requirements are difficult to widely implement in laboratory practice, mainly due to the high costs of specialized equipment. In this work, we present and characterize a cost-effective method to culture cells under a range of oxygen levels using deoxidizing pouches. Our results show that physoxic and hypoxic levels using deoxidizing absorbers can be achieved either by implementing a gradual change in oxygen levels or by a regimen of acute depletion of oxygen. This approach triggers the activation of an epithelial-mesenchymal transition in cancer cells while stimulating the expression of HIF-1α. Culturing cancer cells with deoxidizing agent pouches revealed PI3K oncogenic pathway exacerbations compared to tumor cells growing under atmospheric levels of oxygen. Similar to the PI3K signaling disturbance, we also observed augmented oxidative stress and superoxide levels and increased cell cycle arrest. Most interestingly, the culture of cancer cells under hypoxia resulted in the accumulation of cancer stem cells in a time-dependent manner. Overall, we present an attractive, cost-effective method of culturing cells under appropriate physoxic or hypoxic conditions that is easily implementable in any wet laboratory equipped with cell culture tools.
Collapse
Affiliation(s)
- Carlos H. V. Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Alexandra T. Glinos
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Yeejin Jang
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Eny M. Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil;
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
- Correspondence:
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
12
|
A time to heal: microRNA and circadian dynamics in cutaneous wound repair. Clin Sci (Lond) 2022; 136:579-597. [PMID: 35445708 PMCID: PMC9069467 DOI: 10.1042/cs20220011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022]
Abstract
Many biological systems have evolved circadian rhythms based on the daily cycles of daylight and darkness on Earth. Such rhythms are synchronised or entrained to 24-h cycles, predominantly by light, and disruption of the normal circadian rhythms has been linked to elevation of multiple health risks. The skin serves as a protective barrier to prevent microbial infection and maintain homoeostasis of the underlying tissue and the whole organism. However, in chronic non-healing wounds such as diabetic foot ulcers (DFUs), pressure sores, venous and arterial ulcers, a variety of factors conspire to prevent wound repair. On the other hand, keloids and hypertrophic scars arise from overactive repair mechanisms that fail to cease in a timely fashion, leading to excessive production of extracellular matrix (ECM) components such as such as collagen. Recent years have seen huge increases in our understanding of the functions of microRNAs (miRNAs) in wound repair. Concomitantly, there has been growing recognition of miRNA roles in circadian processes, either as regulators or targets of clock activity or direct responders to external circadian stimuli. In addition, miRNAs are now known to function as intercellular signalling mediators through extracellular vesicles (EVs). In this review, we explore the intersection of mechanisms by which circadian and miRNA responses interact with each other in relation to wound repair in the skin, using keratinocytes, macrophages and fibroblasts as exemplars. We highlight areas for further investigation to support the development of translational insights to support circadian medicine in the context of these cells.
Collapse
|
13
|
Fu L, Wang M, Zhu G, Zhao Z, Sun H, Cao Z, Xia H. REV-ERBs negatively regulate mineralization of the cementoblasts. Biochem Biophys Res Commun 2022; 587:9-15. [PMID: 34861472 DOI: 10.1016/j.bbrc.2021.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.
Collapse
Affiliation(s)
- Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guixin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zifan Zhao
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Huifang Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Ebersole JL, Gonzalez OA. Mucosal circadian rhythm pathway genes altered by aging and periodontitis. PLoS One 2022; 17:e0275199. [PMID: 36472983 PMCID: PMC9725147 DOI: 10.1371/journal.pone.0275199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
As circadian processes can impact the immune system and are affected by infections and inflammation, this study examined the expression of circadian rhythm genes in periodontitis. METHODS Macaca mulatta were used with naturally-occurring and ligature-induced periodontitis. Gingival tissue samples were obtained from healthy, diseased, and resolved sites in four groups: young (≤3 years), adolescent (3-7 years), adult (12-26) and aged (18-23 years). Microarrays targeted circadian rhythm (n = 42), inflammation/tissue destruction (n = 11), bone biology (n = 8) and hypoxia pathway (n = 7) genes. RESULTS The expression of many circadian rhythm genes, across functional components of the pathway, was decreased in healthy tissues from younger and aged animals, as well as showing significant decreases with periodontitis. Negative correlations of the circadian rhythm gene levels with inflammatory mediators and tissue destructive/remodeling genes were particularly accentuated in disease. A dominance of positive correlations with hypoxia genes was observed, except HIF1A, that was uniformly negatively correlated in health, disease and resolution. CONCLUSIONS The chronic inflammation of periodontitis exhibits an alteration of the circadian rhythm pathway, predominantly via decreased gene expression. Thus, variation in disease expression and the underlying molecular mechanisms of disease may be altered due to changes in regulation of the circadian rhythm pathway functions.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Nevada, Nevada Las Vegas
- * E-mail:
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Kumar V, Gupta S, Chaurasia A, Sachan M. Evaluation of Diagnostic Potential of Epigenetically Deregulated MiRNAs in Epithelial Ovarian Cancer. Front Oncol 2021; 11:681872. [PMID: 34692473 PMCID: PMC8529058 DOI: 10.3389/fonc.2021.681872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies among women worldwide. Early diagnosis of EOC could help in ovarian cancer management. MicroRNAs, a class of small non-coding RNA molecules, are known to be involved in post-transcriptional regulation of ~60% of human genes. Aberrantly expressed miRNAs associated with disease progression are confined in lipid or lipoprotein and secreted as extracellular miRNA in body fluid such as plasma, serum, and urine. MiRNAs are stably present in the circulation and recently have gained an importance to serve as a minimally invasive biomarker for early detection of epithelial ovarian cancer. Methods Genome-wide methylation pattern of six EOC and two normal ovarian tissue samples revealed differential methylation regions of miRNA gene promoter through MeDIP-NGS sequencing. Based on log2FC and p-value, three hypomethylated miRNAs (miR-205, miR-200c, and miR-141) known to have a potential role in ovarian cancer progression were selected for expression analysis through qRT-PCR. The expression of selected miRNAs was analyzed in 115 tissue (85 EOC, 30 normal) and 65 matched serum (51 EOC and 14 normal) samples. Results All three miRNAs (miR-205, miR-200c, and miR-141) showed significantly higher expression in both tissue and serum cohorts when compared with normal controls (p < 0.0001). The receiver operating characteristic curve analysis of miR-205, miR-200c, and miR-141 has area under the curve (AUC) values of 87.6 (p < 0.0001), 78.2 (p < 0.0001), and 86.0 (p < 0.0001), respectively; in advance-stage serum samples, however, ROC has AUC values of 88.1 (p < 0.0001), 78.9 (p < 0.0001), and 86.7 (p < 0.0001), respectively, in early-stage serum samples. The combined diagnostic potential of the three miRNAs in advance-stage serum samples and early-stage serum samples has AUC values of 95.9 (95% CI: 0.925-1.012; sensitivity = 96.6% and specificity = 80.0%) and 98.1 (95% CI: 0.941-1.021; sensitivity = 90.5% and specificity = 100%), respectively. Conclusion Our data correlate the epigenetic deregulation of the miRNA genes with their expression. In addition, the miRNA panel (miR-205 + miR-200c + miR-141) has a much higher AUC, sensitivity, and specificity to predict EOC at an early stage in both tissue and serum samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
16
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
17
|
Patel SA, Kondratov RV. Clock at the Core of Cancer Development. BIOLOGY 2021; 10:150. [PMID: 33672910 PMCID: PMC7918730 DOI: 10.3390/biology10020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of the clocks in mammals. Emerging links have revealed interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk between the circadian clock and tumorigenesis is imperative for its prevention, management and development of effective treatment options. In this review, we summarize the role of the circadian clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical agents or through environmental cues is a new direction in cancer chronotherapy. Combining the circadian approach with traditional methods, such as radiation, chemotherapy or the recently developed, immunotherapy, may improve tumor response, while simultaneously minimizing the adverse effects commonly associated with cancer therapies.
Collapse
Affiliation(s)
- Sonal A. Patel
- Fusion Pharmaceuticals Inc., Hamilton, ON L8P 0A6, Canada;
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman V. Kondratov
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
18
|
Dadon-Freiberg M, Chapnik N, Froy O. REV-ERBα alters circadian rhythms by modulating mTOR signaling. Mol Cell Endocrinol 2021; 521:111108. [PMID: 33285244 DOI: 10.1016/j.mce.2020.111108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
REV-ERBα is a nuclear receptor that inhibits Bmal1 transcription as part of the circadian clock molecular mechanism. Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell and whole-body energy homeostasis, that serves as an important link between metabolism and circadian clock, in part, by regulating BMAL1 activity. While the connection of REV-ERBα to the circadian clock molecular mechanism is well characterized, the interaction between mTORC1, REV-ERBα and the circadian clock machinery is not very clear. We used leucine and rapamycin to modulate mTORC1 activation and evaluate this effect on circadian rhythms. In the liver, mTORC1 was inhibited by leucine. REV-ERBα overexpression activated the mTORC1 signaling pathway via transcription inhibition of mTORC1 inhibitor, Tsc1, antagonizing the effect of leucine, while its silencing downregulated mTORC1 signaling. Activation of mTORC1 led to increased BMAL1 phosphorylation. Activation as well as inhibition of mTORC1 led to altered circadian rhythms in mouse muscle. Inhibition of liver mTORC1 by leucine or rapamycin led to low-amplitude circadian rhythms. In summary, our study shows that leucine inhibits liver mTORC1 pathway leading to dampened circadian rhythms. REV-ERBα activates the mTORC1 pathway, leading to phosphorylation of the clock protein BMAL1.
Collapse
Affiliation(s)
- Maayan Dadon-Freiberg
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
19
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 PMCID: PMC8744084 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
20
|
Blawat K, Mayr A, Hardt M, Kirschneck C, Nokhbehsaim M, Behl C, Deschner J, Jäger A, Memmert S. Regulation of Autophagic Signaling by Mechanical Loading and Inflammation in Human PDL Fibroblasts. Int J Mol Sci 2020; 21:ijms21249446. [PMID: 33322510 PMCID: PMC7763506 DOI: 10.3390/ijms21249446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy (cellular self-consumption) is a crucial adaptation mechanism during cellular stress conditions. This study aimed to examine how this important process is regulated in human periodontal ligament (PDL) fibroblasts by mechanical and inflammatory stress conditions and whether the mammalian target of rapamycin (mTOR) signaling pathway is involved. Autophagy was quantified by flow cytometry. Qualitative protein phosphorylation profiling of the mTOR pathway was carried out. Effects of mTOR regulation were assessed by quantification of important synthesis product collagen 1, cell proliferation and cell death with real-time PCR and flow cytometry. Autophagy as a response to mechanical or inflammatory treatment in PDL fibroblasts was dose and time dependent. In general, autophagy was induced by stress stimulation. Phosphorylation analysis of mTOR showed regulatory influences of mechanical and inflammatory stimulation on crucial target proteins. Regulation of mTOR was also detectable via changes in protein synthesis and cell proliferation. Physiological pressure had cell-protective effects (p = 0.025), whereas overload increased cell death (p = 0.003), which was also promoted in long-term inflammatory treatment (p < 0.001). Our data provide novel insights about autophagy regulation by mechanical and inflammatory stress conditions in human PDL fibroblasts. Our results suggest some involvement of the mTOR pathway in autophagy and cell fate regulation under the named conditions.
Collapse
Affiliation(s)
- Kim Blawat
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Alexandra Mayr
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Miriam Hardt
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93042 Regensburg, Germany;
| | - Marjan Nokhbehsaim
- Center of Dento-Maxillo-Facial Medicine, Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, 53111 Bonn, Germany;
| | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55099 Mainz, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Andreas Jäger
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Svenja Memmert
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
- Correspondence:
| |
Collapse
|
21
|
Amin R, Tripathi K, Sanderson RD. Nuclear Heparanase Regulates Chromatin Remodeling, Gene Expression and PTEN Tumor Suppressor Function. Cells 2020; 9:cells9092038. [PMID: 32899927 PMCID: PMC7564302 DOI: 10.3390/cells9092038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase that cleaves heparan sulfate and has been shown in various cancers to promote metastasis, angiogenesis, osteolysis, and chemoresistance. Although heparanase is thought to act predominantly extracellularly or within the cytoplasm, it is also present in the nucleus, where it may function in regulating gene transcription. Using myeloma cell lines, we report here that heparanase enhances chromatin accessibility and confirm a previous report that it also upregulates the acetylation of histones. Employing the Multiple Myeloma Research Foundation CoMMpass database, we demonstrate that patients expressing high levels of heparanase display elevated expression of proteins involved in chromatin remodeling and several oncogenic factors compared to patients expressing low levels of heparanase. These signatures were consistent with the known function of heparanase in driving tumor progression. Chromatin opening and downstream target genes were abrogated by inhibition of heparanase. Enhanced levels of heparanase in myeloma cells led to a dramatic increase in phosphorylation of PTEN, an event known to stabilize PTEN, leading to its inactivity and loss of tumor suppressor function. Collectively, this study demonstrates that heparanase promotes chromatin opening and transcriptional activity, some of which likely is through its impact on diminishing PTEN tumor suppressor activity.
Collapse
|
22
|
Aydin AM, Chahoud J, Adashek JJ, Azizi M, Magliocco A, Ross JS, Necchi A, Spiess PE. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 2020; 17:555-570. [DOI: 10.1038/s41585-020-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
23
|
Borgato GB, Borges GA, Souza AP, Squarize CH, Castilho RM. Loss of PTEN sensitizes head and neck squamous cell carcinoma to 5-AZA-2'-deoxycytidine. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:181-190. [PMID: 32546428 DOI: 10.1016/j.oooo.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/23/2020] [Accepted: 05/03/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer associated with poor survival. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene involved in the maintenance of stem cells. DNA methylation is a known epigenetic modification involved in tumor progression. In this study, we investigated the effect of the DNA demethylation agent 5-AZA-2'-deoxycytidine (5-AZA) over HNSCC and its population of cancer stem cells (CSCs) presenting dysfunctional PTEN. STUDY DESIGN The effects of 5-AZA on HNSCC were evaluated by using WSU-HN13 cells. CSC was assessed by sphere-forming assays, along with the endogenous levels of aldehyde dehydrogenase. The clonogenic potential of tumors was evaluated, along with the protein expression of mTOR signaling and the identification of nuclear factor-κB (NF-κB) and epithelial-mesenchymal transition (EMT)-associated genes, using real-time polymerase chain reaction (PCR). RESULTS We observed that loss of PTEN enhances tumor biologic behavior, including colony- and tumor sphere-forming abilities. We also found that 5-AZA has an inhibitory effect over the CSCs and molecular markers associated with the NF-κB and EMT pathways. CONCLUSIONS Our findings suggest that the stratification of treatment of HNSCC based on PTEN status may identify a subset of patients who can benefit from the coadministration of 5-AZA.
Collapse
Affiliation(s)
- Gabriell Bonifacio Borgato
- Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil; Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel Alvares Borges
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, Brazil
| | - Ana Paula Souza
- Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Lu M, Huang L, Tang Y, Sun T, Li J, Xiao S, Zheng X, Christopher O, Mao H. ARNTL2 knockdown suppressed the invasion and migration of colon carcinoma: decreased SMOC2-EMT expression through inactivation of PI3K/AKT pathway. Am J Transl Res 2020; 12:1293-1308. [PMID: 32355542 PMCID: PMC7191172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
ARNTL2 is a transcriptional activator implicated in the molecular clock feedback system and is overexpressed in some malignant tumors. This study aimed to detect the effects of ARNTL2 knockdown by siRNA on the proliferation and invasion of colon carcinoma and clarify the molecular mechanisms of ARNTL2 in the development of colon carcinoma (CC). The CC microarray dataset GSE50760 was downloaded from the Gene Expression Omnibus (GEO) database. The expression levels of ARNTL2 in CC tissues and cancer cells were analyzed by immunohistochemistry and western blot, respectively. The knockdown of ARNTL2 expression was induced by RNA interference in colon cancer cells. The proliferation was detected by Cell Counting Kit-8 and clonal formation assays. The invasion and migration in vitro were detected by wound healing and transwell assays. Besides, a tumorigenicity test in the nude mice was performed to confirm whether ARNTL2 expression promoted the proliferation and invasion of CC cells. Furthermore, the expression of epithelial-mesenchymal transition (EMT) and PI3K/AKT signaling pathway-related factors were analyzed by western blot. Results showed that bioinformatics analysis found that ARNTL2 was upregulated in CC tissues. ARNTL2 was highly expressed in tissues and CC cells. Knockdown of ARNTL2 inhibited CC cells viability, colony formation, migration activity and reduced the size of tumors in the nude mice. Moreover, knockdown of ARNTL2 suppressed the expression of SMOC2, which may be the target gene of ARNTL2, and simultaneously inhibited the expression of EMT and PI3K/AKT signaling pathway-related factors. Taken together, downregulation of ARNTL2 could suppress CC cell proliferation and migration via SMOC2-EMT through inactivation of PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Min Lu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Liyun Huang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Yinli Tang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Tao Sun
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Jingyu Li
- Department of Pathology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Sha Xiao
- Department of Pathology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Xiangtao Zheng
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Odong Christopher
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, P. R. China
| |
Collapse
|
25
|
Takaguri A, Sasano J, Akihiro O, Satoh K. The role of circadian clock gene BMAL1 in vascular proliferation. Eur J Pharmacol 2020; 872:172924. [PMID: 31958455 DOI: 10.1016/j.ejphar.2020.172924] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, is implicated in the development of cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysms. However, the role of BMAL1 in vascular proliferation associated with vascular remodeling is unknown. In the present study, we investigated the mechanisms underlying BMAL1 expression in vascular smooth muscle cells (VSMCs) and the role of BMAL1 in VSMC proliferation. BMAL1 expression significantly increased in injured carotid arteries in C57BL/6J mice and platelet-derived growth factor (PDGF)-BB-stimulated VSMC cultures. Pretreatment with diphenyleneiodonium (an NADPH oxidase inhibitor) and U0126 or PD98059 (MEK Inhibitors) inhibited PDGF-BB-induced BMAL1 expression in a dose-dependent manner in VSMCs. In addition, the knockdown of early growth factor protein-1 (Egr-1) significantly inhibited PDGF-BB-induced BMAL1 mRNA or protein expression in VSMCs, and the knockdown of BMAL1 significantly decreased PDGF-BB-induced cell proliferation and extracellular signal-regulated kinase (ERK) phosphorylation but not Akt phosphorylation in VSMCs. The results demonstrate that PDGF-BB up-regulates BMAL1 expression through reactive oxygen species/ERK/Egr-1 pathways and that BMAL1 is involved in PDGF-BB-induced cell proliferation partially through ERK in VSMCs. Thus, BMAL1 may be a novel therapeutic target for the treatment of atherosclerosis including vascular remodeling.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Jun Sasano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Oomiya Akihiro
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Kumi Satoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan.
| |
Collapse
|
26
|
Silveira EJD, Nascimento Filho CHV, Yujra VQ, Webber LP, Castilho RM, Squarize CH. BMAL1 Modulates Epidermal Healing in a Process Involving the Antioxidative Defense Mechanism. Int J Mol Sci 2020; 21:E901. [PMID: 32019183 PMCID: PMC7038047 DOI: 10.3390/ijms21030901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/03/2023] Open
Abstract
The circadian rhythm regulates the physiology and behavior of living organisms in a time-dependent manner. Clock genes have distinct roles including the control over gene expression mediated by the transcriptional activators CLOCK and BMAL1, and the suppression of gene expression mediated by the transcriptional repressors PER1/2 and CRY1/2. The balance between gene expression and repression is key to the maintenance of tissue homeostasis that is disrupted in the event of an injury. In the skin, a compromised epithelial barrier triggers a cascade of events that culminate in the mobilization of epithelial cells and stem cells. Recruited epithelial cells migrate towards the wound and reestablish the protective epithelial layer of the skin. Although we have recently demonstrated the involvement of BMAL and the PI3K signaling in wound healing, the role of the circadian clock genes in tissue repair remains poorly understood. Here, we sought to understand the role of BMAL1 on skin healing in response to injury. We found that genetic depletion of BMAL1 resulted in delayed healing of the skin as compared to wild-type control mice. Furthermore, we found that loss of Bmal1 was associated with the accumulation of Reactive Oxygen Species Modulator 1 (ROMO1), a protein responsible for inducing the production of intracellular reactive oxygen species (ROS). The slow healing was associated with ROS and superoxide dismutase (SOD) production, and pharmacological inhibition of the oxidative stress signaling (ROS/SOD) led to cellular proliferation, upregulation of Sirtuin 1 (SIRT1), and rescued the skin healing phenotype of Bmal1-/- mice. Overall, our study points to BMAL1 as a key player in tissue regeneration and as a critical regulator of ROMO1 and oxidative stress in the skin.
Collapse
Affiliation(s)
- Ericka J. D. Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
- Odontology Sciences Postgraduate Program, Dentistry Department, Federal University of Rio Grande do Norte, Natal 59056, RN, Brazil
| | - Carlos H. V. Nascimento Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
| | - Veronica Q. Yujra
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
| | - Liana P. Webber
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
- The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
- The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Lellupitiyage Don SS, Lin HH, Furtado JJ, Qraitem M, Taylor SR, Farkas ME. Circadian oscillations persist in low malignancy breast cancer cells. Cell Cycle 2019; 18:2447-2453. [PMID: 31357909 PMCID: PMC6739049 DOI: 10.1080/15384101.2019.1648957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/20/2023] Open
Abstract
Epidemiological studies have shown that humans with altered circadian rhythms have higher cancer incidence, with breast cancer being one of the most cited examples. To uncover how circadian disruptions may be correlated with breast cancer and its development, prior studies have assessed the expression of BMAL1 and PER2 core clock genes via RT-qPCR and western blot analyses. These and our own low-resolution data show that BMAL1 and PER2 expression are suppressed and arrhythmic. We hypothesized that oscillations persist in breast cancer cells, but due to limitations of protocols utilized, cannot be observed. This is especially true where dynamic changes may be subtle. In the present work, we generated luciferase reporter cell lines representing high- and low-grade breast cancers to assess circadian rhythms. We tracked signals for BMAL1 and PER2 to determine whether and to what extent oscillations exist and provide initial correlations of circadian rhythm alterations with breast cancer aggression. In contrast to previous studies, where no oscillations were apparent in any breast cancer cell line, our luminometry data reveal that circadian oscillations of BMAL1 and PER2 in fact exist in the low-grade, luminal A MCF7 cells but are not present in high-grade, basal MDA-MB-231 cells. To our knowledge, this is the first evidence of core circadian clock oscillations in breast cancer cells. This work also suggests that circadian rhythms are further disrupted in more aggressive/high tumor grades of breast cancer, and that use of real time luminometry to study additional representatives of breast and other cancer subtypes is merited.
Collapse
Affiliation(s)
| | - Hui-Hsien Lin
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Jessica J. Furtado
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Maan Qraitem
- Department of Computer Science, Colby College, Waterville, ME, USA
| | | | | |
Collapse
|
28
|
Nascimento-Filho CHV, Webber LP, Borgato GB, Goloni-Bertollo EM, Squarize CH, Castilho RM. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN. FASEB J 2019; 33:13435-13449. [PMID: 31560860 DOI: 10.1096/fj.201900722r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide and is characterized by a fast-paced growth. Like other solid tumors, the HNSCC growth rate results in the development of hypoxic regions identified by the expression of hypoxia-inducible factor 1α (HIF-1α). Interestingly, clinical data have shown that pharmacological induction of intratumoral hypoxia caused an unexpected rise in tumor metastasis and the accumulation of cancer stem cells (CSCs). However, little is known on the molecular circuitries involved in the presence of intratumoral hypoxia and the augmented population of CSCs. Here we explore the impact of hypoxia on the behavior of HNSCC and define that the controlling function of phosphatase and tensin homolog (PTEN) over HIF-1α expression and CSC accumulation are de-regulated during hypoxic events. Our findings indicate that hypoxic niches are poised to accumulate CSCs in a molecular process driven by the loss of PTEN activity. Furthermore, our data suggest that targeted therapies aiming at the PTEN/PI3K signaling may constitute an effective strategy to counteract the development of intratumoral hypoxia and the accumulation of CSCs.-Nascimento-Filho, C. H. V., Webber, L. P., Borgato, G. B., Goloni-Bertollo, E. M., Squarize, C. H., Castilho, R. M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN.
Collapse
Affiliation(s)
- Carlos H V Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Genetics and Molecular Biology Research Unit, Department of Molecular Biology, School of Medicine of São José do Rio Preto, São Paulo, Brazil
| | - Liana P Webber
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriell B Borgato
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Eny M Goloni-Bertollo
- Genetics and Molecular Biology Research Unit, Department of Molecular Biology, School of Medicine of São José do Rio Preto, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Verlande A, Masri S. Circadian Clocks and Cancer: Timekeeping Governs Cellular Metabolism. Trends Endocrinol Metab 2019; 30:445-458. [PMID: 31155396 PMCID: PMC6679985 DOI: 10.1016/j.tem.2019.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
The circadian clock is a biological mechanism that dictates an array of rhythmic physiological processes. Virtually all cells contain a functional clock whose disruption results in altered timekeeping and detrimental systemic effects, including cancer. Recent advances have connected genetic disruption of the clock with multiple transcriptional and signaling networks controlling tumor initiation and progression. An additional feature of this circadian control relies on cellular metabolism, both within the tumor microenvironment and the organism systemically. A discussion of major advances related to cancer metabolism and the circadian clock will be outlined, including new efforts related to metabolic flux of transformed cells, metabolic heterogeneity of tumors, and the implications of circadian control of these pathways.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
30
|
Li HX. The role of circadian clock genes in tumors. Onco Targets Ther 2019; 12:3645-3660. [PMID: 31190867 PMCID: PMC6526167 DOI: 10.2147/ott.s203144] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are generated via variations in the expression of clock genes that are organized into a complex transcriptional–translational autoregulatory network and regulate the diverse physiological and behavioral activities that are required to adapt to periodic environmental changes. Aberrant clock gene expression is associated with a heightened risk of diseases that affect all aspects of human health, including cancers. Within the past several years, a number of studies have indicated that clock genes contribute to carcinogenesis by altering the expression of clock-controlled and tumor-related genes downstream of many cellular pathways. This review comprehensively summarizes how clock genes affect the development of tumors and their prognosis. In addition, the review provides a full description of the current state of oral cancer research that aims to optimize cancer diagnosis and treatment modalities.
Collapse
Affiliation(s)
- Han-Xue Li
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing 400015, People's Republic of China
| |
Collapse
|
31
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
32
|
Tan FH, Bai Y, Saintigny P, Darido C. mTOR Signalling in Head and Neck Cancer: Heads Up. Cells 2019; 8:cells8040333. [PMID: 30970654 PMCID: PMC6523933 DOI: 10.3390/cells8040333] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is a central regulator of metabolism in all cells. It senses intracellular and extracellular signals and nutrient levels, and coordinates the metabolic requirements for cell growth, survival, and proliferation. Genetic alterations that deregulate mTOR signalling lead to metabolic reprogramming, resulting in the development of several cancers including those of the head and neck. Gain-of-function mutations in EGFR, PIK3CA, and HRAS, or loss-of-function in p53 and PTEN are often associated with mTOR hyperactivation, whereas mutations identified from The Cancer Genome Atlas (TCGA) dataset that potentially lead to aberrant mTOR signalling are found in the EIF4G1, PLD1, RAC1, and SZT2 genes. In this review, we discuss how these mutant genes could affect mTOR signalling and highlight their impact on metabolic processes, as well as suggest potential targets for therapeutic intervention, primarily in head and neck cancer.
Collapse
Affiliation(s)
- Fiona H Tan
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Yuchen Bai
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France.
| | - Charbel Darido
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
33
|
Abstract
Perturbed diurnal rhythms are becoming increasingly evident as deleterious events in the pathology of metabolic diseases. Exercise is well characterized as a crucial intervention in the prevention and treatment of individuals with metabolic diseases. Little is known, however, regarding optimizing the timing of exercise bouts in order to maximize their health benefits. Furthermore, exercise is a potent modulator of skeletal muscle metabolism, and it is clear that skeletal muscle has a strong circadian profile. In humans, mitochondrial function peaks in the late afternoon, and the circadian clock might be inherently impaired in myotubes from patients with metabolic disease. Timing exercise bouts to coordinate with an individual's circadian rhythms might be an efficacious strategy to optimize the health benefits of exercise. The role of exercise as a Zeitgeber can also be used as a tool in combating metabolic disease. Shift work is known to induce acute insulin resistance, and appropriately timed exercise might improve health markers in shift workers who are at risk of metabolic disease. In this Review, we discuss the literature regarding diurnal skeletal muscle metabolism and the interaction with exercise bouts at different times of the day to combat metabolic disease.
Collapse
Affiliation(s)
- Brendan M Gabriel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Janjić K, Agis H. Chronodentistry: the role & potential of molecular clocks in oral medicine. BMC Oral Health 2019; 19:32. [PMID: 30760278 PMCID: PMC6375164 DOI: 10.1186/s12903-019-0720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Molecular clocks help organisms to adapt important physiological functions to periodically changing conditions in the environment. These include the adaption of the 24 h sleep-wake rhythm to changes of day and night. The circadian clock is known to act as a key regulator in processes of health and disease in different organs. The knowledge on the circadian clock led to the development of chronopharmacology and chronotherapy. These fields aim to investigate how efficiency of medication and therapies can be improved based on circadian clock mechanisms. In this review we aim to highlight the role of the circadian clock in oral tissues and its potential in the different fields of dentistry including oral and maxillofacial surgery, restorative dentistry, endodontics, periodontics and orthodontics to trigger the evolving field of chronodentistry.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
35
|
Gallardo-Vera F, Tapia-Rodriguez M, Diaz D, Fortoul van der Goes T, Montaño LF, Rendón-Huerta EP. Vanadium pentoxide increased PTEN and decreased SHP1 expression in NK-92MI cells, affecting PI3K-AKT-mTOR and Ras-MAPK pathways. J Immunotoxicol 2018; 15:1-11. [PMID: 29228829 DOI: 10.1080/1547691x.2017.1404662] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vanadium is an air pollutant that imparts immunosuppressive effects on NK cell immune responses, in part, by dysregulating interleukin (IL)-2/IL-2R-mediated JAK signaling pathways and inducing apoptosis. The aim of the present study was to evaluate effects of vanadium pentoxide (V2O5) on other IL-2 receptor-mediated signaling pathways, i.e. PI3K-AKT-mTOR and Ras-MAPK. Here, IL-2-independent NK-92MI cells were exposed to different V2O5 doses for 24 h periods. Expression of PI3K, Akt, mTOR, ERK1/2, MEK1, PTEN, SHP1, BAD and phosphorylated forms, as well as caspases-3, -8, -9, BAX and BAK in/on the cells were then determined by flow cytometry. The results show that V2O5 was cytotoxic to NK cells in a dose-related manner. Exposure increased BAD and pBAD expression and decreased that of BAK and BAX, but cell death was not related to caspase activation. At 400 µM V2O5, expression of PI3K-p85 regulatory subunit increased 20% and pPI3K 50%, while that of the non-pPI3K 110α catalytic subunit decreased by 20%. At 200 μM, V2O5 showed significant decrease in non-pAkt expression (p < 0.05); the decrease in pAkt expression was significant at 100 μM. Non-pmTOR expression displayed a significant downward trend beginning at 100 μM. Expressions of pMEK-1/2 and pERK-1/2 increased substantially at 200 μM V2O5. No differences were found with non-phosphorylated ERK-1/2. PTEN expression increased significantly at 100 μM V2O5 exposure whereas pPTEN decreased by 18% at 25 μM V2O5 concentrations, but remained unchanged thereafter. Lastly, V2O5 at all doses decreased SHP1 expression and increased expression of its phosphorylated form. These results indicated a toxic effect of V2O5 on NK cells that was due in part to dysregulation of signaling pathways mediated by IL-2 via increased PTEN and decreased SHP1 expression. These results can help to explain some of the known deleterious effects of this particular form of vanadium on innate immune responses.
Collapse
Affiliation(s)
- Francisco Gallardo-Vera
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Miguel Tapia-Rodriguez
- b Unidad de Microscopia , Instituto de Investigaciones Biomédicas, UNAM , Mexico City , México
| | - Daniel Diaz
- c Facultad de Ciencias , UNAM , Mexico City , México
| | - Teresa Fortoul van der Goes
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Luis F Montaño
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Erika P Rendón-Huerta
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| |
Collapse
|
36
|
Yang C, Huang X, Liu H, Xiao F, Wei J, You L, Qian W. PDK1 inhibitor GSK2334470 exerts antitumor activity in multiple myeloma and forms a novel multitargeted combination with dual mTORC1/C2 inhibitor PP242. Oncotarget 2018; 8:39185-39197. [PMID: 28402933 PMCID: PMC5503605 DOI: 10.18632/oncotarget.16642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
A deeper understanding of the complex pathogenesis of multiple myeloma (MM) continues to lead to novel therapeutic approaches. Prior studies suggest that 3-phosphoinositide-dependent kinase 1 (PDK1) is expressed and active, acting as a crucial regulator of molecules that are essential for myelomagenesis. In the present study, we show that GSK2334470 (GSK-470), a novel and highly specific inhibitor of PDK1, induces potent cytotoxicity in MM cell lines including Dexamethasone-resistant cell line, but not in human normal cells. Insulin-like growth factor-1 could not rescue GSK-470-induced cell death. Moreover, GSK-470 down-modulates phosphor-PDK1, thereby inhibiting downstream phosphor-AKT at Thr308 and mTOR complex 1 (mTORC1) activity. However, GSK-470 could not affect mTORC2 activity and phosphor-AKT at Ser473. RPMI 8226 and OPM-2 cells with low expression of PTEN show relative resistant to GSK-470. Knockout of PTEN by shRNA resulted in a partial reversion of GSK-470-mediated growth inhibition, whereas overexpression of PTEN enhanced myeloma cell sensitivity to GSK-470, suggesting that the sensitivity to GSK-470 is correlated with PTEN expression statue in MM cells. Combining PP242, a dual mTORC1/C2 inhibitor, with GSK-470, had greater antimyeloma activity than either one alone in vitro and in MM xenograft model established in immunodeficient mice. In particular, this combination was able to result in a complete inhibition of mTORC1/C2 and full activity of AKT. Together, these findings raise the possibility that combining PDK1 antagonist GSK-470 with mTORC1/C2 inhibitors may represent a novel strategy against MM including drug-resistant myeloma, regardless of PTEN expression status.
Collapse
Affiliation(s)
- Chunmei Yang
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Xianbo Huang
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Hui Liu
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Feng Xiao
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jueying Wei
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Liangshun You
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Wenbin Qian
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| |
Collapse
|
37
|
Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H, Gui X, Li T, Xiong W, Lu D. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 2018; 9:253. [PMID: 29449541 PMCID: PMC5833746 DOI: 10.1038/s41419-018-0305-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Maternally expressed gene 3 (MEG3) encodes an lncRNA which is suggested to function as a tumor suppressor and has been showed to involve in a variety of cancers. Herein, our findings demonstrate that MEG3 inhibits the malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, MEG3 promotes the expression and maturition of miR122 which targets PKM2. Therefore, MEG3 decreases the expression and nuclear location of PKM2 dependent on miR122. Furthermore, MEG3 also inhibits CyclinD1 and C-Myc via PKM2 in liver cancer cells. On the other hand, MEG3 promotes β-catenin degradation through ubiquitin-proteasome system dependent on PTEN. Strikingly, MEG3 inhibits β-catenin activity through PKM2 reduction and PTEN increase. Significantly, we also found that excessive β-catenin abrogated the effect of MEG3 in liver cancer. In conclusion, our study for the first time demonstrates that MEG3 acts as a tumor suppressor by negatively regulating the activity of the PKM2 and β-catenin signaling pathway in hepatocarcinogenesis and could provide potential therapeutic targets for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Zhuojia Lin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Jie Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Wujun Xiong
- Department of Hepatology, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
38
|
Zagni C, Almeida LO, Balan T, Martins MT, Rosselli-Murai LK, Papagerakis P, Castilho RM, Squarize CH. PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells. Stem Cell Reports 2017; 9:304-314. [PMID: 28602615 PMCID: PMC5511049 DOI: 10.1016/j.stemcr.2017.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Tissue integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. In the skin, hair follicle stem cells (HFSCs) that reside within the bulge maintain tissue homeostasis in response to activating cues that occur with each new hair cycle or upon injury. We found that PTEN, a major regulator of the PI3K-AKT pathway, controlled HFSC number and size in the bulge and maintained genomically stable pluripotent cells. This regulatory function is central for HFSC quiescence, where PTEN-deficiency phenotype is in part regulated by BMAL1. Furthermore, PTEN ablation led to downregulation of BMI-1, a critical regulator of adult stem cell self-renewal, and elevated senescence, suggesting the presence of a protective system that prevents transformation. We found that short- and long-term PTEN depletion followed by activated BMAL1, a core clock protein, contributed to accumulation of HFSC. PTEN downregulation leads to the enrichment of stem cells in the niche PTEN activates core clock protein BMAL1 BMAL1 plays a role in PTEN-associated stem cell accumulation via AKT
Collapse
Affiliation(s)
- Chiara Zagni
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Tarek Balan
- OPD, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Marco T Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Luciana K Rosselli-Murai
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Petros Papagerakis
- OPD, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Center for Organogenesis, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Luciano AK, Santana JM, Velazquez H, Sessa WC. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression. J Biol Rhythms 2017; 32:212-221. [PMID: 28452287 DOI: 10.1177/0748730417704534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AKT signaling pathway is important for circadian rhythms in mammals and flies ( Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1-/- mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1-/- aorta, compared with control aorta, follows a distinct pattern. In the Akt1-/- aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms.
Collapse
Affiliation(s)
- Amelia K Luciano
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.,Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Jeans M Santana
- Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - William C Sessa
- Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|