1
|
Yuan L, Wang J, Liu R, Tang Y, Wu D, Jin R, Zhu W. Soil properties, climate, and topography jointly determine plant community characteristics in marsh wetlands. JOURNAL OF PLANT RESEARCH 2025; 138:37-50. [PMID: 39514153 DOI: 10.1007/s10265-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Various environmental conditions influence the characteristics of plant communities within wetlands. Although the influence of key environmental factors on plant community traits within specific types of wetland ecosystems has been studied extensively, how they regulate plant communities across marsh wetland types remains poorly understood. We examined how environmental conditions influence plant communities in marsh wetlands along the lower Tumen River in northeastern China. We collected and analyzed data on the plant community characteristics (species, height, and coverage), soil physicochemical properties (organic carbon, inorganic nitrogen, and sulfur), and climatic and topographic factors (temperature, precipitation, and elevation) of 56 distinct marsh plots (29 herbaceous, 14 shrub, and 13 forested marshes) to understand how these variables correlate with plant community characteristics across marsh types. The wetland plant diversity varied, with the lowest, intermediate, and highest diversity occurring in herbaceous, shrub, and forested marshes, respectively. Climate, topography, and soil properties had crucial influences on plant diversity and biomass. Structural equation modeling showed that, in herbaceous marshes, plant biomass was primarily determined by soil and plant diversity, with climate exerting an indirect effect. In shrub marshes, soil, climate, and plant diversity directly influenced biomass. In forest marshes, soil and plant diversity directly affected biomass, whereas climate and topography had indirect effects. These findings highlight the complex interactions among environmental factors across marsh ecosystems and their influence mechanisms on biomass, aiding in formulating effective conservation and restoration strategies for marsh wetland ecosystems.
Collapse
Affiliation(s)
- Lin Yuan
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China
| | - Jingzhi Wang
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China.
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China.
| | - Rong Liu
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China
| | - Yuqi Tang
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China
| | - Di Wu
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China
| | - Ri Jin
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China
| | - Weihong Zhu
- College of Geography and Ocean Sciences, Yanbian University, Hunchun, Jilin Province, 133300, People's Republic of China
- Jilin Provincial Joint Key Laboratory of Changbai Mountains Wetland and Ecology, Changchun, Jilin Province, 130102, People's Republic of China
| |
Collapse
|
2
|
Zhang Z, Ju W, Zhou Y, Li X. Revisiting the cumulative effects of drought on global gross primary productivity based on new long-term series data (1982-2018). GLOBAL CHANGE BIOLOGY 2022; 28:3620-3635. [PMID: 35343026 DOI: 10.1111/gcb.16178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Drought has broad and deep impacts on vegetation. Studies on the effects of drought on vegetation have been conducted over years. Recently, the cumulative effect of drought is recognized as another key factor affecting plant growth. However, global-scale studies on this phenomenon are still lacking. Thus, based on new satellite based gross primary productivity (GPP) and multi-temporal scale Standardized Precipitation Evapotranspiration Index data sets, we explored the cumulative effect duration (CED) of drought on global vegetation GPP and analyzed its variability across elevations and climatic zones. The main findings were as follows: (1) The cumulative effect of drought on GPP was widespread, with an average CED of 4.89 months. (2) CED of drought on GPP varied among vegetation types. Specifically, grasslands showed the longest duration, with an average value of 5.28 months, followed by shrublands (5.09 months), wetlands (5.03 months), croplands (4.85 months), savannas (4.58 months), and forestlands (4.57 months). (3) CED of drought on GPP changes with climate conditions. It decreased with the decrease of precipitation in the driest month (Pdry ) and mean annual precipitation in tropical and arid climate zones, respectively. In both temperate and cold climate zones, CED of drought on GPP was shorter in areas with dry winter than that in areas with dry summer. It increased with the decrease of mean annual air temperature in tropical climate zones and decreased with the increase of summer temperature in temperate and cold climatic zones. (4) With increasing elevation, CED of drought on GPP showed a pattern of increasing (0-3000 m), then decreasing (3000-5000 m), and increasing again (>5000 m). Our findings highlight the heterogeneity of CED of drought on GPP, owing to differences in vegetation types, long-term hydrothermal conditions, elevation, etc. The results could deepen our understanding of the effects of drought on global vegetation.
Collapse
Affiliation(s)
- Zhenyu Zhang
- International Institute of Earth System Science, Nanjing University, Nanjing, China
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Weimin Ju
- International Institute of Earth System Science, Nanjing University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Yanlian Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Xiaoyu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Lee BR, Ibáñez I. Improved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions. GLOBAL CHANGE BIOLOGY 2021; 27:3883-3897. [PMID: 33977598 DOI: 10.1111/gcb.15678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Phenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf-out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape. We then used these predictions to estimate changes in annual carbon assimilation while accounting for reduced carbon assimilation rates associated with hotter and drier summers. Lastly, we applied these estimates to previously published models of seedling growth and survival to investigate the net effect on seedling demographic performance. Our models predict that temperate tree seedlings will experience improved phenological escape and, therefore, increased spring carbon assimilation under climate change conditions. However, increased summer respiration costs will offset the gains in spring under extreme climate change leading to a net loss in annual carbon assimilation and demographic performance. Furthermore, we found that annual carbon assimilation predictions depend strongly on the species of nearby canopy tree that seedlings were planted near, with all seedlings projected to assimilate less carbon (and therefore experience worse demographic performance) when planted near Quercus rubra canopy trees as opposed to Acer saccharum canopy trees. We conclude that changes to spring phenological escape will have important effects on how tree seedling recruitment is affected by climate change, with the magnitude of these effects dependent upon climate change severity and biological interactions with neighboring adults. Thus, future studies of temperate forest recruitment should account for phenological escape dynamics in their models.
Collapse
Affiliation(s)
- Benjamin R Lee
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Miller TK, Gallinat AS, Smith LC, Primack RB. Comparing fruiting phenology across two historical datasets: Thoreau's observations and herbarium specimens. ANNALS OF BOTANY 2021; 128:159-170. [PMID: 33830225 PMCID: PMC8324031 DOI: 10.1093/aob/mcab019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Fruiting remains under-represented in long-term phenology records, relative to leaf and flower phenology. Herbarium specimens and historical field notes can fill this gap, but selecting and synthesizing these records for modern-day comparison requires an understanding of whether different historical data sources contain similar information, and whether similar, but not equivalent, fruiting metrics are comparable with one another. METHODS For 67 fleshy-fruited plant species, we compared observations of fruiting phenology made by Henry David Thoreau in Concord, Massachusetts (1850s), with phenology data gathered from herbarium specimens collected across New England (mid-1800s to 2000s). To identify whether fruiting times and the order of fruiting among species are similar between datasets, we compared dates of first, peak and last observed fruiting (recorded by Thoreau), and earliest, mean and latest specimen (collected from herbarium records), as well as fruiting durations. KEY RESULTS On average, earliest herbarium specimen dates were earlier than first fruiting dates observed by Thoreau; mean specimen dates were similar to Thoreau's peak fruiting dates; latest specimen dates were later than Thoreau's last fruiting dates; and durations of fruiting captured by herbarium specimens were longer than durations of fruiting observed by Thoreau. All metrics of fruiting phenology except duration were significantly, positively correlated within (r: 0.69-0.88) and between (r: 0.59-0.85) datasets. CONCLUSIONS Strong correlations in fruiting phenology between Thoreau's observations and data from herbaria suggest that field and herbarium methods capture similar broad-scale phenological information, including relative fruiting times among plant species in New England. Differences in the timing of first, last and duration of fruiting suggest that historical datasets collected with different methods, scales and metrics may not be comparable when exact timing is important. Researchers should strongly consider matching methodology when selecting historical records of fruiting phenology for present-day comparisons.
Collapse
Affiliation(s)
- Tara K Miller
- Boston University, Biology Department, Boston, MA 02215, USA
| | - Amanda S Gallinat
- Department of Biology and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Linnea C Smith
- German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | | |
Collapse
|
5
|
Nordt B, Hensen I, Bucher SF, Freiberg M, Primack RB, Stevens A, Bonn A, Wirth C, Jakubka D, Plos C, Sporbert M, Römermann C. The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Birgit Nordt
- Botanic Garden and Botanical Museum BerlinFreie Universität Berlin Berlin Germany
| | - Isabell Hensen
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Solveig Franziska Bucher
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden Friedrich Schiller University Jena Jena Germany
| | - Martin Freiberg
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
| | | | | | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz‐Centre for Environmental Research – UFZ Leipzig Germany
- Institue of Biodiversity Friedrich Schiller University Jena Jena Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
- Max‐Planck‐Institute for Biogeochemistry Jena Germany
| | - Desiree Jakubka
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden Friedrich Schiller University Jena Jena Germany
| | - Carolin Plos
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Maria Sporbert
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden Friedrich Schiller University Jena Jena Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden Friedrich Schiller University Jena Jena Germany
| |
Collapse
|
6
|
Lunyolo LD, Khalifa M, Ribbe L. Assessing the interaction of land cover/land use dynamics, climate extremes and food systems in Uganda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142549. [PMID: 33077227 DOI: 10.1016/j.scitotenv.2020.142549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Rainfed agriculture is Uganda's mainstay across the different regions of its territory. Farmland area has been reported to increase despite agriculture's vulnerability to climate variations. This great interplay among land-use dynamics, climate extremes, and food systems is, however, understudied. The current research, therefore, explores this interaction at both national and regional scales for the period between 2001 and 2017. Following an approach that employs remote sensing datasets on Net Primary Productivity (NPP), land cover types, drought indices, and climate variables, i.e. precipitation, temperature, and evapotranspiration, impacts of climate extremes and land cover changes on food production have been analysed. Similarly, the performance of ten major crops in Uganda over the last 6 decades has been detected using the Regime Shift technique. Key findings, thereof, indicate that NPP in farmlands is sensitive to climate variability, and this sensitivity varies spatially among the regions. Forests and permanent wetlands have been massively changed into farmlands, hence, moving a step forward into offsetting food insecurity but a step backward in preserving ecosystem services, espcially mitigating climate change. Furthermore, the noticeable increase in the total production of the major crops in Uganda seems to be derived mainly by the increase in area harvested affirming the step towards food security. However, the influences, thereof, may aggravate climate change impacts especially through reversing carbon sinks into carbon sources. This reversal could impact the crop yields further. Contrastingly, results from some crops illustrate the potential to increase crop production without necessarily expanding the cropland area. Therefore, Uganda may, instead, consider exploiting the maximum yield potential of crops through, for instance, augmenting rainfed agriculture with irrigation and enforcing effective policies rather than expanding farmland area. These findings collectively contribute further to our understanding of the importance of policies that ensure food security but at the same time preserve a healthy environment.
Collapse
Affiliation(s)
- Lilian Daphine Lunyolo
- Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), Technische Hochschule Köln (University of Applied Sciences), Cologne 50679, Germany.
| | - Muhammad Khalifa
- Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), Technische Hochschule Köln (University of Applied Sciences), Cologne 50679, Germany; Institute of Geography, University of Cologne, Albertus-Magnus-Platz, D-50923 Cologne, Germany
| | - Lars Ribbe
- Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), Technische Hochschule Köln (University of Applied Sciences), Cologne 50679, Germany
| |
Collapse
|
7
|
Yuan M, Zhao L, Lin A, Wang L, Li Q, She D, Qu S. Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140297. [PMID: 32806362 DOI: 10.1016/j.scitotenv.2020.140297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Vegetation phenology is undergoing profound changes in response to the recent increases in the intensity and frequency of drought events. However, the mechanisms by which drought affects the start of the growing season (SGS) are poorly understood particularly in arid and semi-arid regions. Here, we identified varying degrees of preseason drought events and analyzed the sensitivity of the SGS to preseason drought across the Northeast China Transect (NECT). Our results showed that drought caused a delayed SGS in grassland ecosystems, but an advanced SGS within forest ecosystems. These contrasting responses to preseason drought reflected different adaptive strategies between vegetation types. The SGS was shown to be highly sensitive to short timescales drought (1-3 months) in semi-arid grasslands where annual precipitation is 200-300 mm (i.e. SAGE200-300). Biomes within this region were found to be most vulnerable out of all the ecosystems to drought. Given the frequent nature of droughts in the mid-latitudes, a drought early warning system was recommended accompanied by improved modeling of how the SGS will be affected by intensified drought under future climate change.
Collapse
Affiliation(s)
- Moxi Yuan
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Lin Zhao
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Aiwen Lin
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China.
| | - Lunche Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Qingjun Li
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Dunxian She
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China; Hubei Provincial Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, PR China
| | - Sai Qu
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| |
Collapse
|
8
|
Phenology Patterns Indicate Recovery Trajectories of Ponderosa Pine Forests After High-Severity Fires. REMOTE SENSING 2019. [DOI: 10.3390/rs11232782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Post-fire recovery trajectories in ponderosa pine (Pinus ponderosa Laws.) forests of the southwestern United States are increasingly shifting away from pre-burn vegetation communities. This study investigated whether phenological metrics derived from a multi-decade remotely sensed imagery time-series could differentiate among grass, evergreen shrub, deciduous, or conifer-dominated replacement pathways. We focused on 10 fires that burned ponderosa pine forests in Arizona and New Mexico, USA before the year 2000. A total of 29 sites with discernable post-fire recovery signals were selected within high-severity burn areas. At each site, we used Google Earth Engine to derive time-series of normalized difference vegetation index (NDVI) signals from Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager data from 1984 to 2017. We aggregated values to 8- and 16-day intervals, fit Savitzky–Golay filters to each sequence, and extracted annual phenology metrics of amplitude, base value, peak value, and timing of peak value in the TIMESAT analysis package. Results showed that relative to post-fire conditions, pre-burn ponderosa pine forests exhibit significantly lower mean NDVI amplitude (0.14 vs. 0.21), higher mean base NDVI (0.47 vs. 0.22), higher mean peak NDVI (0.60 vs. 0.43), and later mean peak NDVI (day of year 277 vs. 237). Vegetation succession pathways exhibit distinct phenometric characteristics as early as year 5 (amplitude) and as late as year 20 (timing of peak NDVI). This study confirms the feasibility of leveraging phenology metrics derived from long-term imagery time-series to identify and monitor ecological outcomes. This information may be of benefit to land resource managers who seek indicators of future landscape compositions to inform management strategies.
Collapse
|
9
|
Wiesner S, Staudhammer CL, Javaheri CL, Hiers JK, Boring LR, Mitchell RJ, Starr G. The role of understory phenology and productivity in the carbon dynamics of longleaf pine savannas. Ecosphere 2019. [DOI: 10.1002/ecs2.2675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Susanne Wiesner
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama 35487 USA
| | | | - Chloe L. Javaheri
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama 35487 USA
| | - J. Kevin Hiers
- Tall Timbers Research Station 13093 Henry Beadel Dr. Tallahassee Florida 32312 USA
| | | | | | - Gregory Starr
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama 35487 USA
| |
Collapse
|
10
|
Bailey LD, Ens BJ, Both C, Heg D, Oosterbeek K, van de Pol M. No phenotypic plasticity in nest-site selection in response to extreme flooding events. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0139. [PMID: 28483869 DOI: 10.1098/rstb.2016.0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/04/2023] Open
Abstract
Phenotypic plasticity is a crucial mechanism for responding to changes in climatic means, yet we know little about its role in responding to extreme climatic events (ECEs). ECEs may lack the reliable cues necessary for phenotypic plasticity to evolve; however, this has not been empirically tested. We investigated whether behavioural plasticity in nest-site selection allows a long-lived shorebird (Haematopus ostralegus) to respond to flooding. We collected longitudinal nest elevation data on individuals over two decades, during which time flooding events have become increasingly frequent. We found no evidence that individuals learn from flooding experiences, showing nest elevation change consistent with random nest-site selection. There was also no evidence of phenotypic plasticity in response to potential environmental cues (lunar nodal cycle and water height). A small number of individuals, those nesting near an artificial sea wall, did show an increase in nest elevation over time; however, there is no conclusive evidence this occurred in response to ECEs. Our study population showed no behavioural plasticity in response to changing ECE patterns. More research is needed to determine whether this pattern is consistent across species and types of ECEs. If so, ECEs may pose a major challenge to the resilience of wild populations.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Liam D Bailey
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra 0200, Australian Capital Territory, Australia
| | - Bruno J Ens
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Dik Heg
- Clinical Trials Unit, Department of Clinical Research, Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Kees Oosterbeek
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands
| | - Martijn van de Pol
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra 0200, Australian Capital Territory, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
11
|
Ummenhofer CC, Meehl GA. Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0135. [PMID: 28483866 DOI: 10.1098/rstb.2016.0135] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 11/12/2022] Open
Abstract
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Caroline C Ummenhofer
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Gerald A Meehl
- NCAR Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA
| |
Collapse
|
12
|
Carnwath G, Nelson C. Effects of biotic and abiotic factors on resistance versus resilience of Douglas fir to drought. PLoS One 2017; 12:e0185604. [PMID: 28973008 PMCID: PMC5626460 DOI: 10.1371/journal.pone.0185604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Significant increases in tree mortality due to drought-induced physiological stress have been documented worldwide. This trend is likely to continue with increased frequency and severity of extreme drought events in the future. Therefore, understanding the factors that influence variability in drought responses among trees will be critical to predicting ecosystem responses to climate change and developing effective management actions. In this study, we used hierarchical mixed-effects models to analyze drought responses of Pseudotsuga menziesii in 20 unmanaged forests stands across a broad range of environmental conditions in northeastern Washington, USA. We aimed to 1) identify the biotic and abiotic attributes most closely associated with the responses of individual trees to drought and 2) quantify the variability in drought responses at different spatial scales. We found that growth rates and competition for resources significantly affected resistance to a severe drought event in 2001: slow-growing trees and trees growing in subordinate canopy positions and/or with more neighbors suffered greater declines in radial growth during the drought event. In contrast, the ability of a tree to return to normal growth when climatic conditions improved (resilience) was unaffected by competition or relative growth rates. Drought responses were significantly influenced by tree age: older trees were more resistant but less resilient than younger trees. Finally, we found differences between resistance and resilience in spatial scale: a significant proportion (approximately 50%) of the variability in drought resistance across the study area was at broad spatial scales (i.e. among different forest types), most likely due to differences in the total amount of precipitation received at different elevations; in contrast, variation in resilience was overwhelmingly (82%) at the level of individual trees within stands and there was no difference in drought resilience among forest types. Our results suggest that for Pseudotsuga menziesii resistance and resilience to drought are driven by different factors and vary at different spatial scales.
Collapse
Affiliation(s)
- Gunnar Carnwath
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Cara Nelson
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
13
|
Felton AJ, Smith MD. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160142. [PMID: 28483872 PMCID: PMC5434093 DOI: 10.1098/rstb.2016.0142] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 01/28/2023] Open
Abstract
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Mo Y, Momen B, Kearney MS. Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes. REMOTE SENSING 2015. [DOI: 10.3390/rs70810832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Dorman M, Svoray T, Perevolotsky A, Moshe Y, Sarris D. What determines tree mortality in dry environments? A multi-perspective approach. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1054-71. [PMID: 26465042 DOI: 10.1890/14-0698.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.
Collapse
|
17
|
Chakraborty T, Saha S, Reif A. Decrease in Available Soil Water Storage Capacity Reduces Vitality of Young Understorey European Beeches (Fagus sylvatica L.)-A Case Study from the Black Forest, Germany. PLANTS (BASEL, SWITZERLAND) 2013; 2:676-698. [PMID: 27137398 PMCID: PMC4844385 DOI: 10.3390/plants2040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/17/2013] [Accepted: 10/10/2013] [Indexed: 06/05/2023]
Abstract
Growth and survival of young European beech (Fagus sylvatica L.) is largely dependent on water availability. We quantified the influence of water stress (measured as Available Soil Water Storage Capacity or ASWSC) on vitality of young beech plants at a dry site. The study site was located in a semi-natural sessile oak (Quercus petraea (Mattuschka) Liebl.) stand adjacent to beech stands on a rocky gneiss outcrop in southwestern Germany. Plant vitality was measured as crown dieback and estimated by the percentage of dead above ground biomass. The magnitude of crown dieback was recorded in different vertical parts of the crown. Biomass was calculated from the harvested plants following allometric regression equations specifically developed for our study site. Stem discs from harvested plants were used for growth analysis. We found that soil depth up to bedrock and skeleton content significantly influenced ASWSC at the study site. A significant negative correlation between ASWSC and crown dieback was found. Highest rates of crown dieback were noticed in the middle and lower crown. The threshold of crown dieback as a function of drought stress for young beech plants was calculated for the first time in this study. This threshold of crown dieback was found to be 40% of above ground biomass. Beyond 40% crown dieback, plants eventually experienced complete mortality. In addition, we found that the extremely dry year of 2003 significantly hampered growth (basal area increment) of plants in dry plots (ASWSC < 61 mm) in the study area. Recovery in the plants' radial growth after that drought year was significantly higher in less dry plots (ASWSC > 61 mm) than in dry plots. We concluded that a decrease in ASWSC impeded the vitality of young beech causing partial up to complete crown dieback in the study site.
Collapse
Affiliation(s)
- Tamalika Chakraborty
- Chair of Vegetation Science, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstr. 4, Freiburg D-79085, Germany.
| | - Somidh Saha
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstr. 4, Freiburg D-79085, Germany.
| | - Albert Reif
- Chair of Vegetation Science, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstr. 4, Freiburg D-79085, Germany.
| |
Collapse
|
18
|
López-Hoffman L, Breshears DD, Allen CD, Miller ML. Key landscape ecology metrics for assessing climate change adaptation options: rate of change and patchiness of impacts. Ecosphere 2013. [DOI: 10.1890/es13-00118.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Patsias K, Bruelheide H. Climate change – Bad news for montane forest herb layer species? ACTA OECOLOGICA 2013. [DOI: 10.1016/j.actao.2013.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Liang L, Schwartz MD, Fei S. Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2012; 56:343-355. [PMID: 21557038 DOI: 10.1007/s00484-011-0438-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Phenology shows sensitive responses to seasonal changes in atmospheric conditions. Forest understory phenology, in particular, is a crucial component of the forest ecosystem that interacts with meteorological factors, and ecosystem functions such as carbon exchange and nutrient cycling. Quantifying understory phenology is challenging due to the multiplicity of species and heterogeneous spatial distribution. The use of digital photography for assessing forest understory phenology was systematically tested in this study within a temperate forest during spring 2007. Five phenology metrics (phenometrics) were extracted from digital photos using three band algebra and two greenness percentage (image binarization) methods. Phenometrics were compared with a comprehensive suite of concurrent meteorological variables. Results show that greenness percentage cover approaches were relatively robust in capturing forest understory green-up. Derived spring phenology of understory plants responded to accumulated air temperature as anticipated, and with day-to-day changes strongly affected by estimated moisture availability. This study suggests that visible-light photographic assessment is useful for efficient forest understory phenology monitoring and allows more comprehensive data collection in support of ecosystem/land surface models.
Collapse
Affiliation(s)
- Liang Liang
- Department of Forestry, University of Kentucky, Lexington, KY 40546-0073, USA.
| | | | | |
Collapse
|
21
|
Wilsey BJ, Daneshgar PP, Polley HW. Biodiversity, phenology and temporal niche differences between native- and novel exotic-dominated grasslands. PERSPECTIVES IN PLANT ECOLOGY, EVOLUTION AND SYSTEMATICS 2011; 13:265-276. [PMID: 0 DOI: 10.1016/j.ppees.2011.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
22
|
Breshears DD, López-Hoffman L, Graumlich LJ. When ecosystem services crash: preparing for big, fast, patchy climate change. AMBIO 2011; 40:256-63. [PMID: 21644454 PMCID: PMC3357807 DOI: 10.1007/s13280-010-0106-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Assessments of adaptation options generally focus on incremental, homogeneous ecosystem responses to climate even though climate change impacts can be big, fast, and patchy across a region. Regional drought-induced tree die-off in semiarid woodlands highlights how an ecosystem crash fundamentally alters most ecosystem services and poses management challenges. Building on previous research showing how choice of location is linked to adaptive capacity and vulnerability, we developed a framework showing how the options for retaining desired ecosystem services in the face of sudden crashes depend on how portable the service is and whether the stakeholder is flexible with regard to the location where they receive their services. Stakeholders using portable services, or stakeholders who can move to other locations to obtain services, may be more resilient to ecosystem crashes. Our framework suggests that entering into cooperative networks with regionally distributed stakeholders is key to building resilience to big, fast, patchy crashes.
Collapse
Affiliation(s)
- David D. Breshears
- School of Natural Resources and the Environment, The University of Arizona, 1311 E. Fourth Street, Biosciences East 325, Tucson, AZ 85721-0043 USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, 1311 E. Fourth Street, Biosciences East 325, Tucson, AZ 85721-0043 USA
| | - Laura López-Hoffman
- School of Natural Resources and the Environment, The University of Arizona, 1311 E. Fourth Street, Biosciences East 325, Tucson, AZ 85721-0043 USA
- Udall Center for Studies in Public Policy, The University of Arizona, 1311 E. Fourth Street, Biosciences East 325, Tucson, AZ 85721-0043 USA
| | - Lisa J. Graumlich
- College of the Environment, The University of Washington, Seattle, WA 98195-5679 USA
| |
Collapse
|
23
|
Jump AS, Cavin L, Hunter PD. Monitoring and managing responses to climate change at the retreating range edge of forest trees. ACTA ACUST UNITED AC 2010; 12:1791-8. [PMID: 20818456 DOI: 10.1039/b923773a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rising temperatures and increasing drought severity linked to global climate change are negatively impacting forest growth and function at the equatorial range edge of species distributions. Rapid dieback and range retractions are predicted to occur in many areas as temperatures continue to rise. Despite widespread negative impacts at the ecosystem level, equatorial range edges are not well studied, and their responses to climate change are poorly understood. Effective monitoring of tree responses to climate in these regions is of critical importance in order to predict and manage threats to populations. Remote sensing of impacts on forests can be combined with ground-based assessment of environmental and ecological changes to identify populations most at risk. Modelling may be useful as a 'first-filter' to identify populations of concern but, together with many remote sensing methods, often lacks adequate resolution for application at the range edge. A multidisciplinary approach, combining remote observation with targeted ground-based monitoring of local susceptible and resistant populations, is therefore required. Once at-risk regions have been identified, management can be adapted to reduce immediate risks in priority populations, and promote long-term adaptation to change. However, management to protect forest ecosystem function may be preferable where the maintenance of historical species assemblages is no longer viable.
Collapse
Affiliation(s)
- Alistair S Jump
- School of Biological and Environmental Sciences, University of Stirling, Stirling, UK.
| | | | | |
Collapse
|
24
|
Huang CY, Asner GP, Martin RE, Barger NN, Neff JC. Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:668-681. [PMID: 19425430 DOI: 10.1890/07-2103.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regional, high-resolution mapping of vegetation cover and biomass is central to understanding changes to the terrestrial carbon (C) cycle, especially in the context of C management. The third most extensive vegetation type in the United States is pinyon-juniper (P-J) woodland, yet the spatial patterns of tree cover and aboveground biomass (AGB) of P-J systems are poorly quantified. We developed a synoptic remote-sensing approach to scale up pinyon and juniper projected cover (hereafter "cover") and AGB field observations from plot to regional levels using fractional photosynthetic vegetation (PV) cover derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations (P < 0.001) between field cover and airborne PV estimates (r2 = 0.92), and between airborne and satellite PV estimates (r2 = 0.61). Field data also indicated that P-J AGB can be estimated from canopy cover using a unified allometric equation (r2 = 0.69; P < 0.001). Using these multiscale cover-AGB relationships, we developed high-resolution, regional maps of P-J cover and AGB for the western Colorado Plateau. The P-J cover was 27.4% +/- 9.9% (mean +/- SD), and the mean aboveground woody C converted from AGB was 5.2 +/- 2.0 Mg C/ha. Combining our data with the southwest Regional Gap Analysis Program vegetation map, we estimated that total contemporary woody C storage for P-J systems throughout the Colorado Plateau (113 600 km2) is 59.0 +/- 22.7 Tg C. Our results show how multiple remote-sensing observations can be used to map cover and C stocks at high resolution in drylands, and they highlight the role of P-J ecosystems in the North American C budget.
Collapse
Affiliation(s)
- Cho-Ying Huang
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94304, USA.
| | | | | | | | | |
Collapse
|
25
|
Nord EA, Lynch JP. Plant phenology: a critical controller of soil resource acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1927-37. [PMID: 19286918 DOI: 10.1093/jxb/erp018] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant phenology, the timing of plant growth and development, is changing in response to global climate change. Changing temperature, soil moisture, nitrogen availability, light, and elevated CO(2) are all likely to affect plant phenology. Alteration of plant phenology by global climate change may alter the ability of plants to acquire soil resources (water and nutrients) by altering the timing and duration of the deployment of roots and leaves, which drive resource acquisition. The potential importance of phenologically-driven changes in soil resource acquisition for plant fitness and productivity have received little attention. General hypotheses are proposed for how plant acquisition of soil resources may be affected by the alteration of phenology. It is expected that the acquisition of mobile resources will be approximately proportional to total transpiration. Alteration of phenology that increases total transpiration should increase, while changes in phenology that reduce transpiration should decrease the acquisition of mobile resources. The acquisition of immobile resources will be approximately proportional to root length duration, thus changes in phenology that increase growth duration should increase the acquisition of immobile resources and vice versa. For both groups of resources, longer growing seasons would tend to increase resource acquisition, and shorter growing seasons would tend to decrease resource acquisition. In the case of resources that exhibit seasonal variability in availability, the synchrony of resource availability and acquisition capacity is important, and subject to disturbance by the alteration of phenology.
Collapse
Affiliation(s)
- Eric A Nord
- Intercollege Program in Ecology, The Pennsylvania State University, 310 Tyson Building, University Park, PA 16802, USA
| | | |
Collapse
|
26
|
Inouye DW. EFFECTS OF CLIMATE CHANGE ON PHENOLOGY, FROST DAMAGE, AND FLORAL ABUNDANCE OF MONTANE WILDFLOWERS. Ecology 2008; 89:353-62. [DOI: 10.1890/06-2128.1] [Citation(s) in RCA: 768] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Miller-Rushing AJ, Primack RB. GLOBAL WARMING AND FLOWERING TIMES IN THOREAU'S CONCORD: A COMMUNITY PERSPECTIVE. Ecology 2008; 89:332-41. [PMID: 18409423 DOI: 10.1890/07-0068.1] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|