1
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
2
|
Shuster SM, Keith AR, Whitham TG. Simulating selection and evolution at the community level using common garden data. Ecol Evol 2022; 12:e8696. [PMID: 35342594 PMCID: PMC8928883 DOI: 10.1002/ece3.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
A key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad-sense community heritability, H C 2 , can be used to predict the evolutionary response by community-level phenotypes when community-level selection is imposed. Using an approach informed by classic quantitative genetics, we made three predictions. First, when we imposed community-level selection, we expected a significant change in the average phenotype of arthropod communities associated with individual tree genotypes [we imposed selection by favoring high and low NMDS (nonmetric multidimensional scaling) scores that reflected differences in arthropod species richness, abundance and composition]. Second, we expected H C 2 to predict the magnitude of the community-level response. Third, we expected no significant change in average NMDS scores with community-level selection imposed at random. We tested these hypotheses using three years of common garden data for 102 species comprising the arthropod communities, associated with nine clonally replicated Populus angustifolia genotypes. Each of our predictions were met. We conclude that estimates of H C 2 account for the resemblance among communities sharing common ancestry, the persistence of community composition over time, and the outcome of selection when it occurs at the community level. Our results provide a means for exploring how this process leads to large-scale community evolutionary change, and they identify the circumstances in which selection may routinely act at the community level.
Collapse
Affiliation(s)
- Stephen M. Shuster
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Arthur R. Keith
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
3
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Senior JK, Gundale MJ, Iason GR, Whitham TG, Axelsson EP. Progeny selection for enhanced forest growth alters soil communities and processes. Ecosphere 2022. [DOI: 10.1002/ecs2.3943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- John K. Senior
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | | | - Thomas G. Whitham
- Center for Adaptable Western Landscapes Northern Arizona University Flagstaff Arizona USA
| | - E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| |
Collapse
|
5
|
Kennedy JP, Antwis RE, Preziosi RF, Rowntree JK. Evidence for the genetic similarity rule at an expanding mangrove range limit. AMERICAN JOURNAL OF BOTANY 2021; 108:1331-1342. [PMID: 34458987 DOI: 10.1002/ajb2.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Host-plant genetic variation can shape associated communities of organisms. These community-genetic effects include (1) genetically similar hosts harboring similar associated communities (i.e., the genetic similarity rule) and (2) host-plant heterozygosity increasing associated community diversity. Community-genetic effects are predicted to be less prominent in plant systems with limited genetic variation, such as those at distributional range limits. Yet, empirical evidence from such systems is limited. METHODS We sampled a natural population of a mangrove foundation species (Avicennia germinans) at an expanding range limit in Florida, USA. We measured genetic variation within and among 40 host trees with 24 nuclear microsatellite loci and characterized their foliar endophytic fungal communities with internal transcribed spacer (ITS1) gene amplicon sequencing. We evaluated relationships among host-tree genetic variation, host-tree spatial location, and the associated fungal communities. RESULTS Genetic diversity was low across all host trees (mean: 2.6 alleles per locus) and associated fungal communities were relatively homogeneous (five sequence variants represented 78% of all reads). We found (1) genetically similar host trees harbored similar fungal communities, with no detectable effect of interhost geographic distance. (2) Host-tree heterozygosity had no detectable effect, while host-tree absolute spatial location affected community alpha diversity. CONCLUSIONS This research supports the genetic similarity rule within a range limit population and helps broaden the current scope of community genetics theory by demonstrating that community-genetic effects can occur even at expanding distributional limits where host-plant genetic variation may be limited. Our findings also provide the first documentation of community-genetic effects in a natural mangrove system.
Collapse
Affiliation(s)
- John Paul Kennedy
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
6
|
Shiojiri K, Ishizaki S, Ando Y. Plant-plant communication and community of herbivores on tall goldenrod. Ecol Evol 2021; 11:7439-7447. [PMID: 34188825 PMCID: PMC8216902 DOI: 10.1002/ece3.7575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
The volatiles from damaged plants induce defense in neighboring plants. The phenomenon is called plant-plant communication, plant talk, or plant eavesdropping. Plant-plant communication has been reported to be stronger between kin plants than genetically far plants in sagebrush.Why do plants distinguish volatiles from kin or genetically far plants? We hypothesize that plants respond only to important conditions; the induced defense is not free of cost for the plant. To clarify the hypothesis, we conducted experiments and investigations using goldenrod of four different genotypes.The arthropod community on tall goldenrods were different among four genotypes. The response to volatiles was stronger from genetically close plants to the emitter than from genetically distant plants from the emitter. The volatiles from each genotype of goldenrods were different; and they were categorized accordingly. Moreover, the arthropod community on each genotype of goldenrods were different. Synthesis: Our results support the hypothesis: Goldenrods respond to volatiles from genetically close plants because they would have similar arthropod species. These results are important clues elucidating adaptive significance of plant-plant communication. .
Collapse
Affiliation(s)
| | - Satomi Ishizaki
- Department of Natural Environmental ScienceNiigata UniversityNiigataJapan
| | - Yoshino Ando
- Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| |
Collapse
|
7
|
Heterozygous Trees Rebound the Fastest after Felling by Beavers to Positively Affect Arthropod Community Diversity. FORESTS 2021. [DOI: 10.3390/f12060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although genetic diversity within stands of trees is known to have community-level consequences, whether such effects are present at an even finer genetic scale is unknown. We examined the hypothesis that genetic variability (heterozygosity) within an individual plant would affect its dependent community, which adds a new dimension to the importance of genetic diversity. Our study contrasted foliar arthropod community diversity and microsatellite marker-derived measures of genetic diversity of cottonwood (Populus fremontii) trees that had been felled by beavers (Castor canadensis) and were resprouting, relative to adjacent standing, unfelled trees. Three patterns emerged: 1. Productivity (specific leaf area), phytochemical defenses (salicortin), and arthropod community richness, abundance, and diversity were positively correlated with the heterozygosity of individual felled trees, but not with that of unfelled trees; 2. These relationships were not explained by population substructure, genetic relatedness of the trees, or hybridization; 3. The underlying mechanism appears to be that beaver herbivory stimulates increased productivity (i.e., 2× increase from the most homozygous to the most heterozygous tree) that is the greatest in more heterozygous trees. Salicortin defenses in twigs were also expressed at higher concentrations in more heterozygous trees (i.e., 3× increase from the most homozygous to the most heterozygous tree), which suggests that this compound may dissuade further herbivory by beavers, as has been found for other mammalian herbivores. We suggest that high stress to trees as a consequence of felling reveals a heterozygosity–productivity linkage, which in turn is attractive to arthropods. Although experiments are required to demonstrate causality, these results link the genetic diversity of individual trees to community diversity, supporting the hypothesis that interactions among foundation species (beavers and trees) have community-level effects, and underscores the importance of genetic diversity for biodiversity, conservation, and restoration.
Collapse
|
8
|
Bothwell HM, Evans LM, Hersch-Green EI, Woolbright SA, Allan GJ, Whitham TG. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02254. [PMID: 33159398 DOI: 10.1002/eap.2254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Ecological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species-level ENM (3-14% increase in AUC; 1-23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly "adaptive management" approach to support conservation genetic management of species facing global change.
Collapse
Affiliation(s)
- Helen M Bothwell
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Luke M Evans
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Erika I Hersch-Green
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Scott A Woolbright
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Gerard J Allan
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, 800 South Beaver Street, PO Box 6077, Flagstaff, Arizona, 86011, USA
| | - Thomas G Whitham
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, 800 South Beaver Street, PO Box 6077, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
9
|
Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia 2021; 195:367-382. [PMID: 33471200 DOI: 10.1007/s00442-020-04835-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Provenance translocations of tree species are promoted in forestry, conservation, and restoration in response to global climate change. While this option is driven by adaptive considerations, less is known of the effects translocations can have on dependent communities. We investigated the relative importance and consistency of extended genetic effects in Eucalyptus using two species-E. globulus and E. pauciflora. In E. globulus, the dependent arthropod and pathogen canopy communities were quantified based on the abundance of 49 symptoms from 722 progeny from 13 geographic sub-races across 2 common gardens. For E. pauciflora, 6 symptoms were quantified over 2 years from 238 progeny from 16 provenances across 2 common gardens. Genetic effects significantly influenced communities in both species. However, site and year effects outweighed genetic effects with site explaining approximately 3 times the variation in community traits in E. globulus and site and year explaining approximately 6 times the variation in E. pauciflora. While the genetic effect interaction terms were significant in some community traits, broad trends in community traits associated with variation in home-site latitude for E. globulus and home-site altitude for E. pauciflora were evident. These broad-scale trends were consistent with patterns of adaptive differentiation within each species, suggesting there may be extended consequences of local adaptation. While small in comparison to site and year, the consistency of genetic effects highlights the importance of provenance choice in tree species, such as Eucalyptus, as adaptive divergence among provenances may have significant long-term effects on biotic communities.
Collapse
|
10
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
11
|
Drury C, Greer JB, Baums I, Gintert B, Lirman D. Clonal diversity impacts coral cover in Acropora cervicornisthickets: Potential relationships between density, growth, and polymorphisms. Ecol Evol 2019; 9:4518-4531. [PMID: 31031924 PMCID: PMC6476746 DOI: 10.1002/ece3.5035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022] Open
Abstract
As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter- and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high- and low-density aggregations of the threatened coral Acropora cervicornisin the Caribbean. We find that high-density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet-ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density-dependent factor that may impact traits important for the structure and function of coral reefs.
Collapse
Affiliation(s)
- Crawford Drury
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Justin B. Greer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Iliana Baums
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania
| | - Brooke Gintert
- Department of Marine Geoscience, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| |
Collapse
|
12
|
Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev Camb Philos Soc 2018; 94:648-661. [PMID: 30294844 DOI: 10.1111/brv.12472] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Frédéric Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Julien Cucherousset
- CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Simon Blanchet
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
13
|
Lämke JS, Unsicker SB. Phytochemical variation in treetops: causes and consequences for tree-insect herbivore interactions. Oecologia 2018; 187:377-388. [PMID: 29473116 PMCID: PMC5997108 DOI: 10.1007/s00442-018-4087-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/06/2018] [Indexed: 11/27/2022]
Abstract
The interaction of plants and their herbivorous opponents has shaped the evolution of an intricate network of defences and counter-defences for millions of years. The result is an astounding diversity of phytochemicals and plant strategies to fight and survive. Trees are specifically challenged to resist the plethora of abiotic and biotic stresses due to their dimension and longevity. Here, we review the recent literature on the consequences of phytochemical variation in trees on insect-tree-herbivore interactions. We discuss the importance of genotypic and phenotypic variation in tree defence against insects and suggest some molecular mechanisms that might bring about phytochemical diversity in crowns of individual trees.
Collapse
Affiliation(s)
- Jörn S Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany.
| |
Collapse
|
14
|
Valencia-Cuevas L, Mussali-Galante P, Cano-Santana Z, Pujade-Villar J, Equihua-Martínez A, Tovar-Sánchez E. Genetic variation in foundation species governs the dynamics of trophic interactions. Curr Zool 2018; 64:13-22. [PMID: 29492034 PMCID: PMC5809035 DOI: 10.1093/cz/zox015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond presenting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradient of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids.
Collapse
Affiliation(s)
- Leticia Valencia-Cuevas
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Zenón Cano-Santana
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Delegación Coyoacán, DF 04510, México
| | - Juli Pujade-Villar
- Departamento de Biología Animal, Universitat de Barcelona, Facultat de Biología, Av. Diagonal, 645, Barcelona 08028, España
| | | | - Efraín Tovar-Sánchez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| |
Collapse
|
15
|
Jackrel SL, Morton TC. Inducible phenotypic plasticity in plants regulates aquatic ecosystem functioning. Oecologia 2018; 186:895-906. [DOI: 10.1007/s00442-018-4094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
|
16
|
Wininger K, Rank N. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens. Ann N Y Acad Sci 2017; 1408:46-60. [PMID: 29125186 DOI: 10.1111/nyas.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research.
Collapse
Affiliation(s)
- Kerry Wininger
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, California
| |
Collapse
|
17
|
Drury C, Schopmeyer S, Goergen E, Bartels E, Nedimyer K, Johnson M, Maxwell K, Galvan V, Manfrino C, Lirman D. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol Evol 2017; 7:6188-6200. [PMID: 28861224 PMCID: PMC5574808 DOI: 10.1002/ece3.3184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 12/21/2022] Open
Abstract
Threatened Caribbean coral communities can benefit from high‐resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis, across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis, including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.
Collapse
Affiliation(s)
- Crawford Drury
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Stephanie Schopmeyer
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Elizabeth Goergen
- Department of Marine and Environmental Sciences Nova Southeastern University Dania Beach FL USA
| | - Erich Bartels
- Mote Marine Tropical Research Laboratory Summerland Key FL USA
| | | | | | - Kerry Maxwell
- Federal Fish and Wildlife Conservation Commission Marathon FL USA
| | - Victor Galvan
- Punta Cana Ecological Foundation Punta Cana Dominican Republic
| | - Carrie Manfrino
- Central Caribbean Marine Institute Princeton NJ USA.,Little Cayman Research Centre Little Cayman Cayman Islands
| | - Diego Lirman
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| |
Collapse
|
18
|
Paaso U, Keski-Saari S, Keinänen M, Karvinen H, Silfver T, Rousi M, Mikola J. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch ( Betula pendula). FRONTIERS IN PLANT SCIENCE 2017; 8:1074. [PMID: 28694813 PMCID: PMC5483462 DOI: 10.3389/fpls.2017.01074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/06/2017] [Indexed: 05/12/2023]
Abstract
Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.
Collapse
Affiliation(s)
- Ulla Paaso
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, University of Eastern FinlandJoensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern FinlandJoensuu, Finland
| | - Heini Karvinen
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
| | - Tarja Silfver
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
| | - Matti Rousi
- Natural Resources Institute Finland (Luke)Helsinki, Finland
| | - Juha Mikola
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
| |
Collapse
|
19
|
Gosney B, O'Reilly-Wapstra J, Forster L, Whiteley C, Potts B. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus. J Chem Ecol 2017; 43:532-542. [PMID: 28478546 DOI: 10.1007/s10886-017-0849-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
Abstract
Genetic variation in foundation trees can influence dependent communities, but little is known about the mechanisms driving these extended genetic effects. We studied the potential chemical drivers of genetic variation in the dependent foliar community of the focal tree Eucalyptus globulus. We focus on the role of cuticular waxes and compare the effects to that of the terpenes, a well-studied group of secondary compounds known to be bioactive in eucalypts. The canopy community was quantified based on the abundance of thirty-nine distinctive arthropod and fungal symptoms on foliar samples collected from canopies of 246 progeny from 13 E. globulus sub-races grown in a common garden trial. Cuticular waxes and foliar terpenes were quantified using gas chromatography - mass spectrometry (GC-MC). A total of 4 of the 13 quantified waxes and 7 of the 16 quantified terpenes were significantly associated with the dependent foliar community. Variation in waxes explained 22.9% of the community variation among sub-races, which was equivalent to that explained by terpenes. In combination, waxes and terpenes explained 35% of the genetic variation among sub-races. Only a small proportion of wax and terpene compounds showing statistically significant differences among sub-races were implicated in community level effects. The few significant waxes have previously shown evidence of divergent selection in E. globulus, which signals that adaptive variation in phenotypic traits may have extended effects. While highlighting the role of the understudied cuticular waxes, this study demonstrates the complexity of factors likely to lead to community genetic effects in foundation trees.
Collapse
Affiliation(s)
- Benjamin Gosney
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | | | - Lynne Forster
- School of Agricultural Science, University of Tasmania, Private Bag 50, Hobart, TAS, 7001, Australia
| | - Carmen Whiteley
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad Potts
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
20
|
Stevenson CR, Davies C, Rowntree JK. Biodiversity in agricultural landscapes: The effect of apple cultivar on epiphyte diversity. Ecol Evol 2017; 7:1250-1258. [PMID: 28303193 PMCID: PMC5306003 DOI: 10.1002/ece3.2683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 12/04/2022] Open
Abstract
In natural systems, extended phenotypes of trees can be important in determining the species composition and diversity of associated communities. Orchards are productive systems where trees dominate, and can be highly biodiverse, but few studies have considered the importance of tree genetic background in promoting associated biodiversity. We tested the effect of apple cultivar (plant genetic background) on the diversity and composition of the associated epiphytic bryophyte community across a total of seven cultivars in five productive East Anglian orchards where each orchard contained two cultivars. Data were collected from 617 individual trees, over 5 years. Species richness and community composition were significantly influenced by both orchard and cultivar. Differences among orchards explained 16% of the variation in bryophyte community data, while cultivar explained 4%. For 13 of the 41 bryophyte species recorded, apple cultivar was an important factor in explaining their distribution. While the effects of cultivar were small, we were able to detect them at multiple levels of analysis. We provide evidence that extended phenotypes act in productive as well as natural systems. With issues of food security ranking high on the international agenda, it is important to understand the impact of production regimes on associated biodiversity. Our results can inform mitigation of this potential conflict.
Collapse
Affiliation(s)
| | | | - Jennifer K Rowntree
- Centre for the Genetics of Ecosystem Services Faculty of Life Sciences University of Manchester Manchester UK
| |
Collapse
|
21
|
Mimura M, Yahara T, Faith DP, Vázquez‐Domínguez E, Colautti RI, Araki H, Javadi F, Núñez‐Farfán J, Mori AS, Zhou S, Hollingsworth PM, Neaves LE, Fukano Y, Smith GF, Sato Y, Tachida H, Hendry AP. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 2017; 10:121-139. [PMID: 28127389 PMCID: PMC5253428 DOI: 10.1111/eva.12436] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.
Collapse
Affiliation(s)
- Makiko Mimura
- Department of Bioenvironmental SystemsTamagawa UniversityTokyoJapan
| | - Tetsukazu Yahara
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Daniel P. Faith
- The Australian Museum Research InstituteThe Australian MuseumSydneyNSWAustralia
| | | | | | - Hitoshi Araki
- Research Faculty of AgricultureHokkaido UniversitySapporoHokkaidoJapan
| | - Firouzeh Javadi
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Juan Núñez‐Farfán
- Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
| | - Akira S. Mori
- Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | | | - Linda E. Neaves
- Royal Botanic Garden EdinburghEdinburghUK
- Australian Centre for Wildlife Genomics, Australian Museum Research InstituteAustralian MuseumSydneyNSWAustralia
| | - Yuya Fukano
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Gideon F. Smith
- Department of BotanyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
- Departamento de Ciências da VidaCentre for Functional EcologyUniversidade de CoimbraCoimbraPortugal
| | | | - Hidenori Tachida
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
22
|
Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere 2017. [DOI: 10.1002/ecs2.1637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pilar Fernandez-Conradi
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | - Hervé Jactel
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Arndt Hampe
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Maria José Leiva
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | | |
Collapse
|
23
|
Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG. Genetically informed ecological niche models improve climate change predictions. GLOBAL CHANGE BIOLOGY 2017; 23:164-176. [PMID: 27543682 DOI: 10.1111/gcb.13470] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 07/15/2016] [Indexed: 05/06/2023]
Abstract
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species' ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species' niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change.
Collapse
Affiliation(s)
- Dana H Ikeda
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, 86001, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Tamara L Max
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Gerard J Allan
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Matthew K Lau
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
| | - Stephen M Shuster
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Thomas G Whitham
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, 86001, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86001, USA
| |
Collapse
|
24
|
Evans LM, Kaluthota S, Pearce DW, Allan GJ, Floate K, Rood SB, Whitham TG. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods. Ecol Evol 2016; 6:4565-81. [PMID: 27386097 PMCID: PMC4931002 DOI: 10.1002/ece3.2222] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate‐driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca. 1700 km). We present three main findings. First, we found strong evidence of divergent selection (QST > FST) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis. Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia, which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate cue for fall growth cessation. Genotypes moved too far southward suffer from early growth cessation, whereas those moved too far northward are prone to fall frost and winter dieback. In the face of current and forecasted climate change, habitat restoration, forestry, and tree breeding efforts should utilize these findings to better match latitudinal and climatic source environments with management locations for optimal future outcomes.
Collapse
Affiliation(s)
- Luke M Evans
- Department of Biological Sciences & Merriam-Powell Center for Environmental Research Northern Arizona University PO Box 5640 Flagstaff Arizona 86011
| | - Sobadini Kaluthota
- Biological Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - David W Pearce
- Biological Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Gerard J Allan
- Department of Biological Sciences & Merriam-Powell Center for Environmental Research Northern Arizona University PO Box 5640 Flagstaff Arizona 86011
| | - Kevin Floate
- Lethbridge Research and Development Centre Agriculture and Agri-Food Canada Lethbridge Alberta T1J 4B1 Canada
| | - Stewart B Rood
- Biological Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Thomas G Whitham
- Department of Biological Sciences & Merriam-Powell Center for Environmental Research Northern Arizona University PO Box 5640 Flagstaff Arizona 86011
| |
Collapse
|
25
|
Plant genotype influences aquatic‐terrestrial ecosystem linkages through timing and composition of insect emergence. Ecosphere 2016. [DOI: 10.1002/ecs2.1331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Lau MK, Keith AR, Borrett SR, Shuster SM, Whitham TG. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution. Ecology 2016. [DOI: 10.1890/15-0600.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Matthew K. Lau
- Department of Biological Sciences and Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff Arizona 86011 USA
| | - Arthur R. Keith
- Department of Biological Sciences and Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff Arizona 86011 USA
| | - Stuart R. Borrett
- Department of Biology and Marine Biology University of North Carolina Wilmington North Carolina 28403 USA
- Duke Network Analysis Center Social Science Research Institute Duke University Durham North Carolina 27708 USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff Arizona 86011 USA
| | - Thomas G. Whitham
- Department of Biological Sciences and Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff Arizona 86011 USA
| |
Collapse
|
27
|
Read QD, Hoban SM, Eppinga MB, Schweitzer JA, Bailey JK. Accounting for the nested nature of genetic variation across levels of organization improves our understanding of biodiversity and community ecology. OIKOS 2016. [DOI: 10.1111/oik.02760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Quentin D. Read
- Dept of Ecology and Evolutionary Biology; Univ. of Tennessee; Knoxville TN 37996 USA
- Rocky Mountain Biological Laboratory; PO Box 519 Crested Butte, CO 81224 USA
| | - Sean M. Hoban
- National Inst. of Mathematical and Biological Synthesis; Knoxville TN 37996 USA
| | - Maarten B. Eppinga
- Dept of Environmental Sciences; Copernicus Inst. of Sustainable Development, Utrecht University; PO Box 80115 NL-3508 TC Utrecht the Netherlands
| | | | - Joseph K. Bailey
- Dept of Ecology and Evolutionary Biology; Univ. of Tennessee; Knoxville TN 37996 USA
| |
Collapse
|
28
|
Floate KD, Godbout J, Lau MK, Isabel N, Whitham TG. Plant-herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. THE NEW PHYTOLOGIST 2016; 209:832-844. [PMID: 26346922 DOI: 10.1111/nph.13622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Natural systems of hybridizing plants are powerful tools with which to assess evolutionary processes between parental species and their associated arthropods. Here we report on these processes in a trispecific hybrid swarm of Populus trees. Using field observations, common garden experiments and genetic markers, we tested the hypothesis that genetic similarities among hosts underlie the distributions of 10 species of gall-forming arthropods and their ability to adapt to new host genotypes. KEY FINDINGS the degree of genetic relatedness among parental species determines whether hybridization is primarily bidirectional or unidirectional; host genotype and genetic similarity strongly affect the distributions of gall-forming species, individually and as a community. These effects were detected observationally in the wild and experimentally in common gardens; correlations between the diversity of host genotypes and their associated arthropods identify hybrid zones as centres of biodiversity and potential species interactions with important ecological and evolutionary consequences. These findings support both hybrid bridge and evolutionary novelty hypotheses. However, the lack of parallel genetic studies on gall-forming arthropods limits our ability to define the host of origin with their subsequent shift to other host species or their evolution on hybrids as their final destination.
Collapse
Affiliation(s)
- Kevin D Floate
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Julie Godbout
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (Sainte-Foy), QC, G1V 4C7, Canada
| | - Matthew K Lau
- Merriam-Powell Center for Environmental Research and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (Sainte-Foy), QC, G1V 4C7, Canada
| | - Thomas G Whitham
- Merriam-Powell Center for Environmental Research and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
29
|
Meneses N, Bailey JK, Allan GJ, Bangert RK, Bowker MA, Rehill BJ, Wimp GM, Lindroth RL, Whitham TG. Arthropod community similarity in clonal stands of aspen: A test of the genetic similarity rule. ECOSCIENCE 2015. [DOI: 10.2980/19-1-3402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Pautasso M, Schlegel M, Holdenrieder O. Forest health in a changing world. MICROBIAL ECOLOGY 2015; 69:826-842. [PMID: 25502075 DOI: 10.1007/s00248-014-0545-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.
Collapse
Affiliation(s)
- Marco Pautasso
- Forest Pathology & Dendrology, Institute of Integrative Biology (IBZ), ETH Zurich, 8092, Zurich, Switzerland,
| | | | | |
Collapse
|
31
|
Hultine KR, Bean DW, Dudley TL, Gehring CA. Species Introductions and Their Cascading Impacts on Biotic Interactions in desert riparian ecosystems. Integr Comp Biol 2015; 55:587-601. [PMID: 25908667 DOI: 10.1093/icb/icv019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Desert riparian ecosystems of North America are hotspots of biodiversity that support many sensitive species, and are in a region experiencing some of the highest rates of climatic alteration in North America. Fremont cottonwood, Populus fremontii, is a foundation tree species of this critical habitat, but it is threatened by global warming and regional drying, and by a non-native tree/shrub, Tamarix spp., all of which can disrupt the mutualism between P. fremontii and its beneficial mycorrhizal fungal communities. Specialist herbivorous leaf beetles (Diorhabda spp.) introduced for biocontrol of Tamarix are altering the relationship between this shrub and its environment. Repeated episodic feeding on Tamarix foliage by Diorhabda results in varying rates of dieback and mortality, depending on genetic variation in allocation of resources, growing conditions, and phenological synchrony between herbivore and host plant. In this article, we review the complex interaction between climatic change and species introductions and their combined impacts on P. fremontii and their associated communities. We anticipate that (1) certain genotypes of P. fremontii will respond more favorably to the presence of Tamarix and to climatic change due to varying selection pressures to cope with competition and stress; (2) the ongoing evolution of Diorhabda's life cycle timing will continue to facilitate its expansion in North America, and will over time enhance herbivore impact to Tamarix; (3) defoliation by Diorhabda will reduce the negative impact of Tamarix on P. fremontii associations with mycorrhizal fungi; and (4) spatial variability in climate and climatic change will modify the capacity for Tamarix to survive episodic defoliation by Diorhabda, thereby altering the relationship between Tamarix and P. fremontii, and its associated mycorrhizal fungal communities. Given the complex biotic/abiotic interactions outlined in this review, conservation biologists and riparian ecosystem managers should strive to identify and conserve the phenotypic traits that underpin tolerance and resistance to stressors such as climate change and species invasion. Such efforts will greatly enhance conservation restoration efficacy for protecting P. fremontii forests and their associated communities.
Collapse
Affiliation(s)
- Kevin R Hultine
- *Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - Dan W Bean
- Palisade Insectary, Colorado Department of Agriculture, Palisade, CO, USA
| | - Tom L Dudley
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
32
|
Heimonen K, Valtonen A, Kontunen-Soppela S, Keski-Saari S, Rousi M, Oksanen E, Roininen H. Colonization of a host tree by herbivorous insects under a changing climate. OIKOS 2014. [DOI: 10.1111/oik.01986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaisa Heimonen
- Dept of Biology; Univ. of Eastern Finland; PO Box 111, FI-80101 Joensuu Finland
| | - Anu Valtonen
- Dept of Biology; Univ. of Eastern Finland; PO Box 111, FI-80101 Joensuu Finland
| | | | - Sarita Keski-Saari
- Dept of Biology; Univ. of Eastern Finland; PO Box 111, FI-80101 Joensuu Finland
| | - Matti Rousi
- Finnish Forest Research Inst., Vantaa Research Unit; PO Box 18, FI-01301 Vantaa Finland
| | - Elina Oksanen
- Dept of Biology; Univ. of Eastern Finland; PO Box 111, FI-80101 Joensuu Finland
| | - Heikki Roininen
- Dept of Biology; Univ. of Eastern Finland; PO Box 111, FI-80101 Joensuu Finland
| |
Collapse
|
33
|
Gosney BJ, O′Reilly-Wapstra JM, Forster LG, Barbour RC, Iason GR, Potts BM. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities. PLoS One 2014; 9:e114132. [PMID: 25469641 PMCID: PMC4254790 DOI: 10.1371/journal.pone.0114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022] Open
Abstract
Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.
Collapse
Affiliation(s)
- Benjamin J. Gosney
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Julianne M. O′Reilly-Wapstra
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| | - Lynne G. Forster
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert C. Barbour
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn R. Iason
- The James Hutton Institute, Craigibuckler, Aberdeen, Scotland, United Kingdom
| | - Brad M. Potts
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
34
|
Maldonado-López Y, Cuevas-Reyes P, González-Rodríguez A, Pérez-López G, Acosta-Gómez C, Oyama K. Relationships among plant genetics, phytochemistry and herbivory patterns in Quercus castanea across a fragmented landscape. Ecol Res 2014. [DOI: 10.1007/s11284-014-1218-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 2014; 23:4203-15. [DOI: 10.1111/mec.12788] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Iliana B. Baums
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - Meghann K. Devlin-Durante
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - Todd C. LaJeunesse
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| |
Collapse
|
36
|
Woolbright SA, Whitham TG, Gehring CA, Allan GJ, Bailey JK. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol Evol 2014; 29:406-16. [PMID: 24932850 DOI: 10.1016/j.tree.2014.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Climate relicts, marginal populations that have become isolated via climate-driven range shifts, preserve ecological and evolutionary histories that can span millennia. Studies point to climate relicts as 'natural laboratories' for investigating how long-term environmental change impacts species and populations. However, we propose that such research should be expanded to reveal how climate change affects 'interacting' species in ways that reshape community composition and evolution. Biotic interactions and their community and ecosystem effects are often genetically based and driven by associations with foundation species. We discuss evolution in climate relicts within the context of the emerging fields of community and ecosystem genetics, exploring the idea that foundation relicts are also natural community and ecosystem laboratories and windows to future landscapes.
Collapse
Affiliation(s)
- Scott A Woolbright
- The Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Joseph K Bailey
- Department of Ecology and Evolution, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
37
|
Davies C, Ellis CJ, Iason GR, Ennos RA. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol Lett 2014; 10:20140190. [PMID: 24789141 PMCID: PMC4013706 DOI: 10.1098/rsbl.2014.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity.
Collapse
Affiliation(s)
- Chantel Davies
- Institute of Evolutionary Biology, University of Edinburgh, , Mayfield Road, EH9 3JT, UK
| | | | | | | |
Collapse
|
38
|
Moran EV, Bewick S, Cobbold CA. Effects of plant genotype and insect dispersal rate on the population dynamics of a forest pest. Ecology 2014; 94:2792-802. [PMID: 24597225 DOI: 10.1890/12-1708.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been shown that plant genotype can strongly affect not only individual herbivore performance, but also community composition and ecosystem function. Few studies, however, have addressed how plant genotype affects herbivore population dynamics. In this paper, we used a simulation modeling approach to ask how the genetic composition of a forest influences pest outbreak dynamics, using the example of aspen (Populus tremuloides) and forest tent caterpillars (FTC; Malacosoma disstria). Specifically, we examined how plant genotype, the relative size of genotypic patches, and the rate of insect dispersal between them, affect the frequency, amplitude, and duration of outbreaks. We found that coupling two different genotypes does not necessarily result in an averaging of insect dynamics. Instead, depending on the ratio of patch sizes, when dispersal rates are moderate, outbreaks in the two-genotype case may be more or less severe than in forests of either genotype alone. Thresholds for different dynamic behaviors were similar for all genotypic combinations. Thus, the qualitative behavior of a stand of two different genotypes can be predicted based on the response of the insect to each genotype, the relative sizes of the two patches, and the scale of insect dispersal.
Collapse
Affiliation(s)
- Emily V Moran
- NIM BioS, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Sharon Bewick
- NIM BioS, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Christina A Cobbold
- University of Glasgow, School of Mathematics and Statistics, Glasgow G128QW United Kingdom
| |
Collapse
|
39
|
Silfver T, Rousi M, Oksanen E, Roininen H. Genetic and environmental determinants of insect herbivore community structure in a Betula pendula population. F1000Res 2014; 3:34. [PMID: 24715977 PMCID: PMC3962004 DOI: 10.12688/f1000research.3-34.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22
Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes.
B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure.
B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in
B. pendula forest ecosystems.
Collapse
Affiliation(s)
- Tarja Silfver
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Matti Rousi
- Vantaa Research Unit, Finnish Forest Research Institute, FIN-01301 Vantaa, Finland
| | - Elina Oksanen
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Heikki Roininen
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, FIN-80101 Joensuu, Finland
| |
Collapse
|
40
|
|
41
|
Stam JM, Kroes A, Li Y, Gols R, van Loon JJA, Poelman EH, Dicke M. Plant interactions with multiple insect herbivores: from community to genes. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:689-713. [PMID: 24313843 DOI: 10.1146/annurev-arplant-050213-035937] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant simultaneously or at different times. Herbivory results in changes in the plant's morphological or chemical phenotype that affect interactions with subsequently arriving herbivores. Changes in the plant's phenotype are mediated by molecular processes such as phytohormonal signaling networks and transcriptomic rearrangements that are initiated by oral secretions of the herbivore. Processes at different levels of biological complexity occur at timescales ranging from minutes to years. In this review, we address plant-mediated interactions with multiple species of the associated insect community and their effects on community dynamics, and link these to the mechanistic effects that multiple attacks have on plant phenotypes.
Collapse
Affiliation(s)
- Jeltje M Stam
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands;
| | | | | | | | | | | | | |
Collapse
|
42
|
Bailey JK, Genung MA, Ware I, Gorman C, Van Nuland ME, Long H, Schweitzer JA. Indirect genetic effects: an evolutionary mechanism linking feedbacks, genotypic diversity and coadaptation in a climate change context. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12154] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Joseph K. Bailey
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| | - Mark A. Genung
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| | - Ian Ware
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| | - Courtney Gorman
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| | - Michael E. Van Nuland
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| | - Hannah Long
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall Knoxville TN 37996-0001 USA
| |
Collapse
|
43
|
Yeoh SH, Ho SY, Thornhill AH, Foley WJ. Regional population expansion in Eucalyptus globulus. Mol Phylogenet Evol 2013; 68:498-501. [DOI: 10.1016/j.ympev.2013.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/11/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
44
|
Ikeda DH, Bothwell HM, Lau MK, O'Neill GA, Grady KC, Whitham TG. A genetics-based Universal Community Transfer Function for predicting the impacts of climate change on future communities. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Dana H. Ikeda
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Helen M. Bothwell
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Matthew K. Lau
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Gregory A. O'Neill
- Tree Improvement Branch; British Columbia Ministry of Forests, Lands and Natural Resource Operations; Kalamalka Forestry Centre; 3401 Reservoir Road Vernon British Columbia V1B 2C7 Canada
| | - Kevin C. Grady
- Merriam-Powell Center for Environmental Research; Northern Arizona University; Flagstaff Arizona 86011 USA
- School of Forestry; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Thomas G. Whitham
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
- Merriam-Powell Center for Environmental Research; Northern Arizona University; Flagstaff Arizona 86011 USA
| |
Collapse
|
45
|
Krauss SL, Sinclair EA, Bussell JD, Hobbs RJ. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol Evol 2013; 3:2138-49. [PMID: 23919158 PMCID: PMC3728953 DOI: 10.1002/ece3.595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 02/02/2023] Open
Abstract
An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range-wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R-statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ∼60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat-matched sites within a 30-km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability-based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration.
Collapse
Affiliation(s)
- Siegfried L Krauss
- Botanic Gardens and Parks Authority Fraser Avenue, West Perth, Western Australia, 6005, Australia ; School of Plant Biology, University of Western Australia Nedlands, Western Australia, 6009, Australia
| | | | | | | |
Collapse
|
46
|
Bernhardsson C, Robinson KM, Abreu IN, Jansson S, Albrectsen BR, Ingvarsson PK. Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecol Lett 2013; 16:791-8. [DOI: 10.1111/ele.12114] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/26/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Carolina Bernhardsson
- Umeå Plant Science Centre; Department of Ecology and Environmental Science; Umeå University; SE-901 87 Umeå Sweden
| | - Kathryn M. Robinson
- Umeå Plant Science Centre; Department of Plant Physiology; Umeå University; Umeå SE-901 87 Umeå Sweden
| | - Ilka N. Abreu
- Umeå Plant Science Centre; Department of Plant Physiology; Umeå University; Umeå SE-901 87 Umeå Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre; Department of Plant Physiology; Umeå University; Umeå SE-901 87 Umeå Sweden
| | - Benedicte R. Albrectsen
- Umeå Plant Science Centre; Department of Plant Physiology; Umeå University; Umeå SE-901 87 Umeå Sweden
- Department of Plant and Environmental Sciences; Section for Plant Biochemistry; University of Copenhagen; Thorvaldsensvej 40 DK 1871 Frederiksberg Denmark
| | - Pär K. Ingvarsson
- Umeå Plant Science Centre; Department of Ecology and Environmental Science; Umeå University; SE-901 87 Umeå Sweden
| |
Collapse
|
47
|
Utsumi S. Evolutionary community ecology of plant-associated arthropods in terrestrial ecosystems. Ecol Res 2013. [DOI: 10.1007/s11284-013-1042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments. PLoS One 2013; 8:e58416. [PMID: 23526981 PMCID: PMC3603948 DOI: 10.1371/journal.pone.0058416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/04/2013] [Indexed: 11/27/2022] Open
Abstract
Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E). We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs) in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h2op = 0.24) to high (e.g., macrocarpal G h2op = 0.48) narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal) and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.
Collapse
|
49
|
Weis JJ, Post DM. Intraspecific variation in a predator drives cascading variation in primary producer community composition. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2012.00258.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Silva JCE, Potts BM, Bijma P, Kerr RJ, Pilbeam DJ. Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree. THE NEW PHYTOLOGIST 2013; 197:631-641. [PMID: 23253336 DOI: 10.1111/nph.12035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/04/2012] [Indexed: 05/27/2023]
Abstract
Indirect genetic effects (IGEs) are heritable effects of individuals on trait values of their conspecifics. IGEs may substantially affect response to selection, but empirical studies on IGEs are sparse and their magnitude and correlation with direct genetic effects are largely unknown in plants. Here we used linear mixed models to estimate genetic (co)variances attributable to direct and indirect effects for growth and foliar disease damage in a large pedigreed population of Eucalyptus globulus. We found significant IGEs for growth and disease damage, which increased with age for growth. The correlation between direct and indirect genetic effects was highly negative for growth, but highly positive for disease damage, consistent with neighbour competition and infection, respectively. IGEs increased heritable variation by 71% for disease damage, but reduced heritable variation by 85% for growth, leaving nonsignificant heritable variation for later age growth. Thus, IGEs are likely to prevent response to selection in growth, despite a considerable ordinary heritability. IGEs change our perspective on the genetic architecture and potential response to selection. Depending on the correlation between direct and indirect genetic effects, IGEs may enhance or diminish the response to natural or artificial selection compared with that predicted from ordinary heritability.
Collapse
Affiliation(s)
- João Costa E Silva
- Centro de Estudos Florestais, Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Brad M Potts
- School of Plant Science and CRC for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Piter Bijma
- Animal Breeding and Genomics Centre, Wageningen University, Marijkeweg 40, 6709PG, Wageningen, The Netherlands
| | - Richard J Kerr
- PlantPlan Genetics Pty Ltd, c/o School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - David J Pilbeam
- Southern Tree Breeding Association Inc, 39 Helen Street, PO Box 1811, Mount Gambier, South Australia, 5290, Australia
| |
Collapse
|