1
|
Ueda R, Kanaiwa M, Terui A, Takimoto G, Sato T. Seasonal timing of ecosystem linkage mediates life-history variation in a salmonid fish population. Ecology 2025; 106:e70114. [PMID: 40383987 DOI: 10.1002/ecy.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/05/2025] [Indexed: 05/20/2025]
Abstract
Life-history variation can contribute to the long-term persistence of populations; however, it remains unclear which environmental factors drive life-history variation within a population. Seasonally recurring resource subsidies are common in nature and may influence variations in recipient consumers' life-history traits. In this study, we experimentally demonstrated that terrestrial invertebrate subsidies occurring early in the growing season facilitated consumer individuals to adopt fast growth. In contrast, fewer consumer individuals adopted fast growth when subsidies occurred late in the growing season. Consumer individuals that adopted fast growth matured early at age 1, suggesting that the observed variation in life history emerged along with a fast-slow life-history continuum. The estimated survival probability was lower in consumer individuals from the faster growth cluster in the no-supply treatment (control), suggesting a growth-survival trade-off. However, the growth-survival trade-off became unclear in the early-supply treatment and even reversed in the late-supply treatment. As a result, the frequency of consumer individuals maturing at age 1 was higher in the early-supply treatment than in the late-supply treatment and no-supply treatment, implying a higher short-term population growth with the early subsidies. Our findings highlight that seasonal ecosystem linkages through resource subsidies help us understand how life-history variation can be maintained within a population at the landscape scale.
Collapse
Affiliation(s)
- Rui Ueda
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe, Hyogo, Japan
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Minoru Kanaiwa
- Faculty of Bioresources, Mie University, Tsu, Mie, Japan
| | - Akira Terui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takuya Sato
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| |
Collapse
|
2
|
Davoren GK, Maynard LD, Johnson KF, Carvalho PC, Gulka J, Jenkins E, Lescure LM, Runnells E, Tripp A. Aggregative responses of marine predators to a pulsed resource. J Anim Ecol 2025; 94:69-84. [PMID: 39545341 PMCID: PMC11730658 DOI: 10.1111/1365-2656.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Pulsed resources resulting from animal migrations represent important, transient influxes of high resource availability into recipient communities. The ability of predators to respond and exploit these large increases in background resource availability, however, may be constrained when the timing and magnitude of the resource pulse vary across years. In coastal Newfoundland, Canada, we studied aggregative responses of multiple seabird predators to the annual inshore pulse of a key forage fish species, capelin (Mallotus villosus). Seabird aggregative responses to fish biomass were quantified from weekly hydroacoustic and seabird surveys during July-August within an annually persistent foraging area (10 km2) associated with a cluster of capelin spawning sites across 10 years (2009-2010, 2012, 2014-2020). Seabird predators included breeding members of the families Alcidae (Common Murres Uria aalge, Razorbills Alca torda, Atlantic Puffins Fratercula arctica) and Laridae (Great Black-backed Gulls Larus marinus, American Herring Gulls L. argentatus smithsonianus) and Northern Gannets Morus bassanus, along with non-breeding, moulting members of the Family Procellariidae (Sooty Shearwaters Ardenna griseus, Great Shearwaters A. gravis). The inshore migration of spawning capelin resulted in 5-619 times (mean ± SE, 146 ± 59 times) increase in coastal fish biomass along with a shift towards more, larger and denser fish shoals. Within years, seabird abundance did not increase with inshore fish biomass but rather peaked near the first day of spawning, suggesting that seabirds primarily respond to the seasonal resource influx rather than short-term variation in fish biomass. Across years, the magnitude of the seabird aggregative response was lower during low-magnitude resource pulse years, suggesting that predators are unable to perceive low-magnitude pulses, avoid foraging under high competitor densities, and/or shift dietary reliance away from capelin under these conditions. The seabird response magnitude, however, was higher when the resource pulse was delayed relative to the long-term average, suggesting that predators increase exploitation during years of minimal overlap between the resource pulse and energetically demanding periods (e.g. breeding, moulting). This long-term study quantifying responses of multiple predators to a pulsed resource illustrates the ability of natural systems to tolerate natural and human-induced disturbance events.
Collapse
Affiliation(s)
- Gail K. Davoren
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Laurie D. Maynard
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Kelsey F. Johnson
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Paloma C. Carvalho
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Julia Gulka
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Edward Jenkins
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Lauren M. Lescure
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Emily Runnells
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ashley Tripp
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
3
|
Jensen AJ, Muthersbaugh M, Ruth CR, Butfiloski JW, Cantrell J, Adams J, Waits L, Kilgo JC, Jachowski DS. Resource pulses shape seasonal and individual variation in the diet of an omnivorous carnivore. Ecol Evol 2024; 14:e11632. [PMID: 38966241 PMCID: PMC11222735 DOI: 10.1002/ece3.11632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Resource pulses are ecologically important phenomenon that occur in most ecosystems globally. Following optimal foraging theory, many consumers switch to pulsatile foods when available, examples of which include fruit mast and vulnerable young prey. Yet how the availability of resource pulses shapes the ecology of predators is still an emerging area of research; and how much individual variation there is in response to pulses is not well understood. We hypothesized that resource pulses would lead to dietary convergence in our population, which we tested by tracking both population-level and individual coyote diets for 3 years in South Carolina, USA. We (1) described seasonal dietary shifts in relation to resource pulses; (2) compared male and female diets across seasons; and (3) tested this dietary convergence hypothesis by quantifying individual dietary variation both across and within periods when resource pulses were available. We found that pulses of white-tailed deer fawns and blackberries composed over half of coyote diet in summer, and persimmon fruits were an important component in fall. Male and female coyotes generally had similar diets, but males consumed more deer in fall, perhaps driven by scavenging more. We found support for our dietary convergence hypothesis, where individuals had more similar diets during resource pulses compared to a non-pulse period. We also found that this convergence happened before peak availability, suggesting a non-symmetric response to pulse availability. We show that nearly all coyotes eat fawns, suggesting that targeted efforts to remove "fawn killers" would be in vain. Instead, given how quickly coyotes collectively converge on resource pulses, our findings show that resource pulses could potentially be used by managers to alter the behavior of apex predators. More broadly, we open a new line of inquiry into how variation in individual foraging decisions scales up to shape the effects of resource pulses on ecological communities.
Collapse
Affiliation(s)
- Alex J. Jensen
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
- North Carolina Museum of Natural SciencesRaleighNorth CarolinaUSA
| | - Michael Muthersbaugh
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
| | - Charles R. Ruth
- South Carolina Department of Natural ResourcesColumbiaSouth CarolinaUSA
| | | | - Jay Cantrell
- South Carolina Department of Natural ResourcesColumbiaSouth CarolinaUSA
| | - Jennifer Adams
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | - John C. Kilgo
- United States Forest Service Southern Research StationNew EllentonSouth CarolinaUSA
| | - David S. Jachowski
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
4
|
Zhu Y, Mulholland MR, Bernhardt PW, Neeley AR, Widner B, Tapia AM, Echevarria MA. Nitrogen uptake rates and phytoplankton composition across contrasting North Atlantic Ocean coastal regimes north and south of Cape Hatteras. Front Microbiol 2024; 15:1380179. [PMID: 38784802 PMCID: PMC11113559 DOI: 10.3389/fmicb.2024.1380179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding nitrogen (N) uptake rates respect to nutrient availability and the biogeography of phytoplankton communities is crucial for untangling the complexities of marine ecosystems and the physical, biological, and chemical forces shaping them. In the summer of 2016, we conducted measurements of bulk microbial uptake rates for six 15N-labeled substrates: nitrate, nitrite, ammonium, urea, cyanate, and dissolve free amino acids across distinct marine provinces, including the continental shelf of the Mid-and South Atlantic Bights (MAB and SAB), the Slope Sea, and the Gulf Stream, marking the first instance of simultaneously measuring six different N uptake rates in this dynamic region. Total measured N uptake rates were lowest in the Gulf Stream followed by the SAB. Notably, the MAB exhibited significantly higher N uptake rates compared to the SAB, likely due to the excess levels of pre-existing phosphorus present in the MAB. Together, urea and nitrate uptake contributed approximately 50% of the total N uptake across the study region. Although cyanate uptake rates were consistently low, they accounted for up to 11% of the total measured N uptake at some Gulf Stream stations. Phytoplankton groups were identified based on specific pigment markers, revealing a dominance of diatoms in the shelf community, while Synechococcus, Prochlorococcus, and pico-eukaryotes dominated in oligotrophic Gulf Stream waters. The reported uptake rates in this study were mostly in agreement with previous studies conducted in coastal waters of the North Atlantic Ocean. This study suggests there are distinct regional patterns of N uptake in this physically dynamic region, correlating with nutrient availability and phytoplankton community composition. These findings contribute valuable insights into the intricate interplay of biological and chemical factors shaping N dynamics in disparate marine ecosystems.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Margaret R. Mulholland
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| | - Peter W. Bernhardt
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| | | | - Brittany Widner
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| | - Alfonso Macías Tapia
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
- Office of Education, National Oceanic and Atmospheric Administration, Silver Spring, MD, United States
| | - Michael A. Echevarria
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
5
|
Lapiedra O, Morales N, Yang LH, Fernández-Bellon D, Michaelides SN, Giery ST, Piovia-Scott J, Schoener TW, Kolbe JJ, Losos JB. Predator-driven behavioural shifts in a common lizard shape resource-flow from marine to terrestrial ecosystems. Ecol Lett 2024; 27:e14335. [PMID: 37972585 DOI: 10.1111/ele.14335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.
Collapse
Affiliation(s)
- Oriol Lapiedra
- CREAF, Edifici C Campus de Bellaterra, Cerdanyola del Valles, Spain
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nina Morales
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Darío Fernández-Bellon
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland
| | | | - Sean T Giery
- Department of Biology, Ohio University, Athens, Ohio, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Thomas W Schoener
- Department of Entomology, University of California, Davis, California, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan B Losos
- Department of Biology, Washington University of St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Getman-Pickering ZL, Soltis GJ, Shamash S, Gruner DS, Weiss MR, Lill JT. Periodical cicadas disrupt trophic dynamics through community-level shifts in avian foraging. Science 2023; 382:320-324. [PMID: 37856588 DOI: 10.1126/science.adi7426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Once every 13 or 17 years within eastern North American deciduous forests, billions of periodical cicadas concurrently emerge from the soil and briefly satiate a diverse array of naive consumers, offering a rare opportunity to assess the cascading impacts of an ecosystem-wide resource pulse on a complex food web. We quantified the effects of the 2021 Brood X emergence and report that more than 80 bird species opportunistically switched their foraging to include cicadas, releasing herbivorous insects from predation and essentially doubling both caterpillar densities and accumulated herbivory levels on host oak trees. These short-lived but massive emergence events help us to understand how resource pulses can rewire interaction webs and disrupt energy flows in ecosystems, with potentially long-lasting effects.
Collapse
Affiliation(s)
- Zoe L Getman-Pickering
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Grace J Soltis
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Sarah Shamash
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Martha R Weiss
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - John T Lill
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
7
|
Parker JD. Periodical cicadas disrupt forest food webs. Science 2023; 382:268. [PMID: 37856594 DOI: 10.1126/science.adk5880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- John D Parker
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|
8
|
Marini G, Tagliapietra V, Cristofolini F, Cristofori A, Dagostin F, Zuccali MG, Molinaro S, Gottardini E, Rizzoli A. Correlation between airborne pollen data and the risk of tick-borne encephalitis in northern Italy. Sci Rep 2023; 13:8262. [PMID: 37217780 DOI: 10.1038/s41598-023-35478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Tick-borne encephalitis (TBE) is caused by a flavivirus that infects animals including humans. In Europe, the TBE virus circulates enzootically in natural foci among ticks and rodent hosts. The abundance of ticks depends on the abundance of rodent hosts, which in turn depends on the availability of food resources, such as tree seeds. Trees can exhibit large inter-annual fluctuations in seed production (masting), which influences the abundance of rodents the following year, and the abundance of nymphal ticks two years later. Thus, the biology of this system predicts a 2-year time lag between masting and the incidence of tick-borne diseases such as TBE. As airborne pollen abundance is related to masting, we investigated whether inter-annual variation in pollen load could be directly correlated with inter-annual variation in the incidence of TBE in human populations with a 2-year time lag. We focused our study on the province of Trento (northern Italy), where 206 TBE cases were notified between 1992 and 2020. We tested the relationship between TBE incidence and pollen load collected from 1989 to 2020 for 7 different tree species common in our study area. Through univariate analysis we found that the pollen quantities recorded two years prior for two tree species, hop-hornbeam (Ostrya carpinifolia) and downy oak (Quercus pubescens), were positively correlated with TBE emergence (R2 = 0.2) while a multivariate model with both tree species better explained the variation in annual TBE incidence (R2 = 0.34). To the best of our knowledge, this is the first attempt at quantifying the correlation between pollen quantities and the incidence of TBE in human populations. As pollen loads are collected by widespread aerobiological networks using standardized procedures, our study could be easily replicated to test their potential as early warning system for TBE and other tick-borne diseases.
Collapse
Affiliation(s)
- Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Antonella Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | | | | | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| |
Collapse
|
9
|
Bovill WD, Downes BJ, Bond NR, Reich P, Coleman R, Lake PS. A large-scale field experiment across six rivers illustrates how the effects of resource enrichment are context dependent. Oecologia 2023; 202:41-54. [PMID: 37138043 DOI: 10.1007/s00442-023-05368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/26/2023] [Indexed: 05/05/2023]
Abstract
Resource supplementation can increase species richness and change the faunal composition of communities, but experiments have produced variable outcomes. An often overlooked element is that species richness can only increase if new taxa can disperse to resource-rich locations and invade established, local communities. We experimentally increased a basal resource (detritus) in six rivers in south-eastern Australia by driving wooden stakes into the riverbed to increase retention of detritus. Control sites were left untreated. Sites were located in agricultural sections with mostly cleared vegetation, but with intact (uncleared) reference sites upstream to provide sources of prospective colonists. We measured channel retentiveness and sampled benthic detritus and invertebrates before and after manipulation. We tested whether: greater retentiveness increased detritus densities, species richness and abundances and altered faunal composition; manipulation sites reached bio-equivalence with reference sites; new species arose from upstream reference areas; and whether outcomes were consistent across rivers. Only three rivers gained increases in detritus densities. All had low pre-existing amounts of in-stream wood compared with rivers that did not respond to treatment. Two rivers (Hughes Creek, Seven Creeks) gained higher species richness and invertebrate densities within 12 months and reached bio-equivalence with reference sites. In contrast, Turtons Creek showed species turnover through replacement of individuals. Only in Hughes Creek was there evidence of successful dispersal from the upstream reference area. The outcomes show that the effects of resource supplementation vary between rivers and suggest that pre-existing conditions (e.g. channel retentiveness) may cause these differences, providing clear evidence of context dependence.
Collapse
Affiliation(s)
- William D Bovill
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, VIC, Australia.
- Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC, Australia.
| | - Barbara J Downes
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Nick R Bond
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, VIC, Australia
| | - Paul Reich
- Victorian Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| | | | - P S Lake
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
High Frequency of Apodemus Mice Boosts Inverse Activity Pattern of Bank Voles, Clethrionomys glareolus, through Non-Aggressive Intraguild Competition. Animals (Basel) 2023; 13:ani13060981. [PMID: 36978522 PMCID: PMC10044290 DOI: 10.3390/ani13060981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Sympatric animals with similar requirements can separate their ecological niches along the microhabitat, food and time axes. There may be alternative reasons for an interspecific different activity pattern, such as intraspecific social constraints, predator avoidance or physical conditions such as temperature, precipitation and illumination. We investigated the importance of intraguild competition in a 2-year study in an inner-alpine mixed forest, using small forest rodents as our model species. Apodemus mice were the physically superior, and bank voles, Clethrionomys glareolus, the inferior competitor. We predicted that bank voles would exhibit increased diurnal activity when frequencies of the almost exclusively nocturnal Apodemus mice were high during a seed mast year. To investigate this, we recorded 19,138 1 min videos. Controlling for confounding variables, bank vole diurnal activity was significantly related to the frequency of Apodemus mice. We assume that at high densities of Apodemus mice, a purely nocturnal separation in the niche dimensions of time, habitat and microhabitat is no longer sufficient, and therefore an inverse activity pattern by the bank voles is reinforced. Our videos showed, however, that this does not require persistent aggressive meetings and we explain this by the long co-evolution of the taxa under study.
Collapse
|
11
|
Southwell D, Skroblin A, Moseby K, Southgate R, Indigo N, Backhouse B, Bellchambers K, Brandle R, Brenton P, Copley P, Dziminski MA, Galindez-Silva C, Lynch C, Newman P, Pedler R, Rogers D, Roshier DA, Ryan-Colton E, Tuft K, Ward M, Zurell D, Legge S. Designing a large-scale track-based monitoring program to detect changes in species distributions in arid Australia. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2762. [PMID: 36218186 DOI: 10.1002/eap.2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Monitoring trends in animal populations in arid regions is challenging due to remoteness and low population densities. However, detecting species' tracks or signs is an effective survey technique for monitoring population trends across large spatial and temporal scales. In this study, we developed a simulation framework to evaluate the performance of alternative track-based monitoring designs at detecting change in species distributions in arid Australia. We collated presence-absence records from 550 2-ha track-based plots for 11 vertebrates over 13 years and fitted ensemble species distribution models to predict occupancy in 2018. We simulated plausible changes in species' distributions over the next 15 years and, with estimates of detectability, simulated monitoring to evaluate the statistical power of three alternative monitoring scenarios: (1) where surveys were restricted to existing 2-ha plots, (2) where surveys were optimized to target all species equally, and (3) where surveys were optimized to target two species of conservation concern. Across all monitoring designs and scenarios, we found that power was higher when detecting increasing occupancy trends compared to decreasing trends owing to the relatively low levels of initial occupancy. Our results suggest that surveying 200 of the existing plots annually (with a small subset resurveyed twice within a year) will have at least an 80% chance of detecting 30% declines in occupancy for four of the five invasive species modeled and one of the six native species. This increased to 10 of the 11 species assuming larger (50%) declines. When plots were positioned to target all species equally, power improved slightly for most compared to the existing survey network. When plots were positioned to target two species of conservation concern (crest-tailed mulgara and dusky hopping mouse), power to detect 30% declines increased by 29% and 31% for these species, respectively, at the cost of reduced power for the remaining species. The effect of varying survey frequency depended on its trade-off with the number of sites sampled and requires further consideration. Nonetheless, our research suggests that track-based surveying is an effective and logistically feasible approach to monitoring broad-scale occupancy trends in desert species with both widespread and restricted distributions.
Collapse
Affiliation(s)
- Darren Southwell
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Anja Skroblin
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Katherine Moseby
- University of NSW School of Biological, Earth and Environmental Science, Sydney, New South Wales, Australia
| | - Richard Southgate
- Envisage Environmental Services, Kingscote, South Australia, Australia
| | - Naomi Indigo
- Centre for Biodiversity and Conservation Research, University of Queensland, St Lucia, Queensland, Australia
| | - Brett Backhouse
- Alinytjara Wilurara Landscape Board, Adelaide, South Australia, Australia
| | | | - Robert Brandle
- Department for Environment and Water, South Australian Government, Adelaide, South Australia, Australia
- South Australian Arid Lands Landscape Board, Port Augusta, South Australia, Australia
| | - Peter Brenton
- Atlas of Living Australia, CSIRO National Collections and Marine Infrastructure, Docklands, Victoria, Australia
| | - Peter Copley
- Department for Environment and Water, South Australian Government, Adelaide, South Australia, Australia
| | - Martin A Dziminski
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Kensington, Western Australia, Australia
| | - Carolina Galindez-Silva
- Anangu Pitjantjatjara Yankunytjatjara Land Management, Alice Springs, Northwest Territories, Australia
| | - Catherine Lynch
- South Australian Arid Lands Landscape Board, Port Augusta, South Australia, Australia
| | - Peggy Newman
- Atlas of Living Australia, CSIRO National Collections and Marine Infrastructure, Docklands, Victoria, Australia
| | - Reece Pedler
- University of NSW School of Biological, Earth and Environmental Science, Sydney, New South Wales, Australia
| | - Daniel Rogers
- Department for Environment and Water, South Australian Government, Adelaide, South Australia, Australia
| | - David A Roshier
- Australian Wildlife Conservancy, Subiaco, Western Australia, Australia
| | - Ellen Ryan-Colton
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Alice Springs, Northwest Territories, Australia
| | | | - Matt Ward
- Department for Environment and Water, South Australian Government, Adelaide, South Australia, Australia
| | - Damaris Zurell
- Geography Department, Humboldt-University Berlin, Berlin, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sarah Legge
- Centre for Biodiversity and Conservation Research, University of Queensland, St Lucia, Queensland, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Alice Springs, Northwest Territories, Australia
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
12
|
Sura SA, Gehris CG, Liang MY, Lim AN, Fong P. Press versus pulse nutrient supply and species interactions mediate growth of coral reef macroalgae. OIKOS 2023. [DOI: 10.1111/oik.09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shayna A. Sura
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
- Dauphin Island Sea Lab Dauphin Island AL USA
| | - Connor G. Gehris
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| | - Michelle Y. Liang
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| | - Alexandra N. Lim
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| | - Peggy Fong
- Univ. of California Los Angeles, Dept of Ecology and Evolutionary Biology Los Angeles CA USA
| |
Collapse
|
13
|
Yuan G, Tan X, Guo P, Xing K, Chen Z, Li D, Yu S, Peng H, Li W, Fu H, Jeppesen E. Linking trait network to growth performance of submerged macrophytes in response to ammonium pulse. WATER RESEARCH 2023; 229:119403. [PMID: 36446174 DOI: 10.1016/j.watres.2022.119403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Extreme precipitation events caused by climate change leads to large variation of nitrogen input to aquatic ecosystems. Our previous study demonstrated the significant effect of different ammonium pulse patterns (differing in magnitude and frequency) on submersed macrophyte growth based on six plant morphological traits. However, how connectivity among plant traits responds to nitrogen pulse changes, which in turn affects plant performance, has not yet been fully elucidated. The response of three common submersed macrophytes (Myriophyllum spicatum, Vallisneria natans and Potamogeton maackianus) to three ammonium pulse patterns was tested using plant trait network (PTN) analysis based on 18 measured physiological and morphological traits. We found that ammonium pulses enhanced trait connectivity in PTN, which may enable plants to assimilate ammonium and/or mitigate ammonium toxicity. Large input pulses with low frequency had stronger effects on PTNs compared to low input pulses with high frequency. Due to the cumulative and time-lagged effect of the plant response to the ammonium pulse, there was a profound and prolonged effect on plant performance after the release of the pulse. The highly connected traits in PTN were those related to biomass allocation (e.g., plant biomass, stem ratio, leaf ratio and ramet number) rather than physiological traits, while phenotype-related traits (e.g., plant height, root length and AB ratio) and energy storage-related traits (e.g., stem starch) were least connected. V. natans showed clear functional divergence among traits, making it more flexible to cope with unfavorable habitats (i.e., high input pulses with low frequencies). M. spicatum with high RGR revealed strong correlations among traits and thus supported nitrogen accumulation from favourable environments (i.e., low input pulses with high frequencies). Our study highlights the responses of PTN for submerged macrophytes to ammonium pulses depends on their intrinsic metabolic rates, the magnitude, frequency and duration of the pulses, and our results contribute to the understanding of the impact of resource pulses on the population dynamics of submersed macrophytes within the context of global climate change.
Collapse
Affiliation(s)
- Guixiang Yuan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China.
| | - Xiaoyao Tan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Peiqin Guo
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Ke Xing
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Zhenglong Chen
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Dongbo Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Sizhe Yu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Hui Peng
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Hui Fu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Erik Jeppesen
- Lake section, Department of Ecoscience, Aarhus University, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
14
|
Carpenter JK, Monks A, Innes J, Griffiths J, Anderson D. Immigration drives ship rat population irruptions in marginal high‐elevation habitat in response to pulsed resources. Ecosphere 2023. [DOI: 10.1002/ecs2.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
| | - Adrian Monks
- Manaaki Whenua – Landcare Research Dunedin New Zealand
| | - John Innes
- Manaaki Whenua – Landcare Research Hamilton New Zealand
| | | | - Dean Anderson
- Manaaki Whenua – Landcare Research Lincoln New Zealand
| |
Collapse
|
15
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
16
|
Setälä H, Szlavecz K, Pullen JD, Parker JD, Huang Y, Chang C. Acute resource pulses from periodical cicadas propagate to belowground food webs but do not affect tree performance. Ecology 2022; 103:e3773. [PMID: 35633474 PMCID: PMC9786866 DOI: 10.1002/ecy.3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
Acute resource pulses can have dramatic legacies for organismal growth, but the legacy effects of resource pulses on broader aspects of community structure and ecosystem processes are less understood. Mass emergence of periodical cicadas (Magicicada spp.) provides an excellent opportunity to shed light on the influence of resource pulses on community and ecosystem dynamics: the adults emerge every 13 or 17 years in vast numbers over much of eastern North America, with a smaller but still significant number becoming incorporated into forest food webs. To study the potential effects of such arthropod resource pulse on primary production and belowground food webs, we added adult cicada bodies to the soil surface surrounding sycamore trees and assessed soil carbon and nitrogen concentrations, plant-available nutrients, abundance and community composition of soil fauna occupying various trophic levels, decomposition rate of plant litter after 50 and 100 days, and tree performance for 4 years. Contrary to previous studies, we did not find significant cicada effects on tree performance despite observing higher plant-available nutrient levels on cicada addition plots. Cicada addition did change the community composition of soil nematodes and increased the abundance of bacterial- and fungal-feeding nematodes, while plant feeders, omnivores, and predators were not influenced. Altogether, acute resource pulses from decomposing cicadas propagated belowground to soil microbial-feeding invertebrates and stimulated nutrient mineralization in the soil, but these effects did not transfer up to affect tree performance. We conclude that, despite their influence on soil food web and processes they carry out, even massive resource pulses from arthropods do not necessarily translate to NPP, supporting the view that ephemeral nutrient pulses can be attenuated relatively quickly despite being relatively large in magnitude.
Collapse
Affiliation(s)
- Heikki Setälä
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiLahtiFinland
| | - Katalin Szlavecz
- Department of Earth and Planetary SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jamie D. Pullen
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - John D. Parker
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Yumei Huang
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Chih‐Han Chang
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan,Institute of Ecology and Evolutionary BiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
17
|
Vettorazzi M, Mogensen N, Kaelo B, Broekhuis F. Understanding the effects of seasonal variation in prey availability on prey switching by large carnivores. J Zool (1987) 2022. [DOI: 10.1111/jzo.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M. Vettorazzi
- Wildlife Ecology and Conservation Group Wageningen University and Research Wageningen The Netherlands
| | - N. Mogensen
- Mara Predator Conservation Programme Kenya Wildlife Trust Nairobi Kenya
| | - B. Kaelo
- Mara Predator Conservation Programme Kenya Wildlife Trust Nairobi Kenya
| | - F. Broekhuis
- Wildlife Ecology and Conservation Group Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
18
|
Pearse AT, Anteau MJ, Post van der Burg M, Sherfy MH, Buhl TK, Shaffer TL. Reassessing perennial cover as a driver of duck nest survival in the Prairie Pothole Region. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aaron T. Pearse
- U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown 58401 ND USA
| | - Michael J. Anteau
- U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown 58401 ND USA
| | - Max Post van der Burg
- U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown 58401 ND USA
| | - Mark H. Sherfy
- U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown 58401 ND USA
| | - Thomas K. Buhl
- U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown 58401 ND USA
| | - Terry L. Shaffer
- U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown 58401 ND USA
| |
Collapse
|
19
|
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience 2022; 25:104559. [PMID: 35784794 PMCID: PMC9240802 DOI: 10.1016/j.isci.2022.104559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature. Most taxonomic/functional groups respond negatively to extreme events, whereas groups such as mosses, legumes, trees, and vertebrate predators respond most negatively to climate extremes. We further highlight that ecological recovery after climate extremes is challenging to predict purely based on ecological responses during or immediately after climate extremes. By accounting for the characteristics of the recovering species, resource availability, and species interactions with neighboring competitors or facilitators, mutualists, and enemies, we outline a conceptual framework to better predict ecological recovery in terrestrial ecosystems.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Corresponding author
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
20
|
Obrist DS, Hanly PJ, Brown NEM, Ernst CM, Wickham SB, Fitzpatrick OT, Kennedy JC, Nijland W, Reshitnyk LY, Darimont CT, Starzomski BM, Reynolds JD. Biogeographic features mediate marine subsidies to island food webs. Ecosphere 2022. [DOI: 10.1002/ecs2.4171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Debora S. Obrist
- Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
- Hakai Institute Heriot Bay British Columbia Canada
| | - Patrick J. Hanly
- Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
- Hakai Institute Heriot Bay British Columbia Canada
| | - Norah E. M. Brown
- Hakai Institute Heriot Bay British Columbia Canada
- School of Environmental Studies University of Victoria Victoria British Columbia Canada
| | - Christopher M. Ernst
- Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
- Hakai Institute Heriot Bay British Columbia Canada
| | - Sara B. Wickham
- Hakai Institute Heriot Bay British Columbia Canada
- School of Environmental Studies University of Victoria Victoria British Columbia Canada
| | - Owen T. Fitzpatrick
- Hakai Institute Heriot Bay British Columbia Canada
- School of Environmental Studies University of Victoria Victoria British Columbia Canada
| | - Jeremiah C. Kennedy
- Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
- Hakai Institute Heriot Bay British Columbia Canada
| | - Wiebe Nijland
- Hakai Institute Heriot Bay British Columbia Canada
- School of Environmental Studies University of Victoria Victoria British Columbia Canada
- Department of Physical Geography Utrecht University Utrecht The Netherlands
| | | | - Chris T. Darimont
- Hakai Institute Heriot Bay British Columbia Canada
- Department of Geography University of Victoria Victoria British Columbia Canada
- Raincoast Conservation Foundation Sidney British Columbia Canada
| | - Brian M. Starzomski
- Hakai Institute Heriot Bay British Columbia Canada
- School of Environmental Studies University of Victoria Victoria British Columbia Canada
| | - John D. Reynolds
- Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
- Hakai Institute Heriot Bay British Columbia Canada
| |
Collapse
|
21
|
Mason DS, Baruzzi C, Lashley MA. Passive directed dispersal of plants by animals. Biol Rev Camb Philos Soc 2022; 97:1908-1929. [PMID: 35770842 DOI: 10.1111/brv.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Conceptual gaps and imprecise terms and definitions may obscure the breadth of plant-animal dispersal relationships involved in directed dispersal. The term 'directed' indicates predictable delivery to favourable microsites. However, directed dispersal was initially considered uncommon in diffuse mutualisms (i.e. those involving many species), partly because plants rarely influence post-removal propagule fate without specialized adaptations. This rationale implies that donor plants play an active role in directed dispersal by manipulating vector behaviour after propagule removal. However, even in most classic examples of directed dispersal, participating plants do not influence animal behaviour after propagule removal. Instead, such plants may take advantage of vector attraction to favourable plant microsites, indicating a need to expand upon current interpretations of directed dispersal. We contend that directed dispersal can emerge whenever propagules are disproportionately delivered to favourable microsites as a result of predictably skewed vector behaviour. Thus, we propose distinguishing active and passive forms of directed dispersal. In active directed dispersal, the donor plant achieves disproportionate arrival to favourable microsites by influencing vector behaviour after propagule removal. By contrast, passive directed dispersal occurs when the donor plant takes advantage of vector behaviour to arrive at favourable microsites. Whereas predictable post-removal vector behaviour is dictated by characteristics of the donor plant in active directed dispersal, characteristics of the destination dictate predictable post-removal vector behaviour in passive directed dispersal. Importantly, this passive form of directed dispersal may emerge in more plant-animal dispersal relationships because specialized adaptations in donor plants that influence post-removal vector behaviour are not required. We explore the occurrence and consequences of passive directed dispersal using the unifying generalized gravity model of dispersal. This model successfully describes vectored dispersal by incorporating the influence of the environment (i.e. attractiveness of microsites) on vector movement. When applying gravity models to dispersal, the three components of Newton's gravity equation (i.e. gravitational force, object mass, and distance between centres of mass) become analogous to propagules moving towards a location based on characteristics of the donor plant, the destination, and relocation processes. The generalized gravity model predicts passive directed dispersal in plant-animal dispersal relationships when (i) animal vectors are predictably attracted to specific destinations, (ii) animal vectors disproportionately disperse propagules to those destinations, and (iii) those destinations are also favourable microsites for the dispersed plants. Our literature search produced evidence for these three conditions broadly, and we identified 13 distinct scenarios where passive directed dispersal likely occurs because vector behaviour is predictably skewed towards favourable microsites. We discuss the wide applicability of passive directed dispersal to plant-animal mutualisms and provide new insights into the vulnerability of those mutualisms to global change.
Collapse
Affiliation(s)
- David S Mason
- Wildlife Ecology and Conservation, University of Florida, PO Box 110430, 1745 McCarty Drive, Gainesville, FL, 32611-0410, USA
| | - Carolina Baruzzi
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, PO Box 110410, 1745 McCarty Drive, Gainesville, FL, 32611-0410, USA
| | - Marcus A Lashley
- Wildlife Ecology and Conservation, University of Florida, PO Box 110430, 1745 McCarty Drive, Gainesville, FL, 32611-0410, USA
| |
Collapse
|
22
|
Nathoo R, Garant D, Réale D, Bergeron P. The feast and the famine: spring body mass variations and life-history traits in a pulse resource ecosystem. Am Nat 2022; 200:598-606. [DOI: 10.1086/720729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Banko PC, Peck RW, Yelenik SG, Paxton EH, Bonaccorso F, Montoya‐Aiona K, Hughes RF, Perakis S. Hypotheses and lessons from a native moth outbreak in a low‐diversity, tropical rainforest. Ecosphere 2022. [DOI: 10.1002/ecs2.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul C. Banko
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Robert W. Peck
- Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo Hawai‘i National Park Hawai'i USA
| | - Stephanie G. Yelenik
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
- Rocky Mountain Research Center U.S. Forest Service Reno Nevada USA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Frank Bonaccorso
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Kristina Montoya‐Aiona
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - R. Flint Hughes
- Institute for Pacific Island Forestry U.S. Forest Service Hilo Hawai'i USA
| | - Steven Perakis
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon USA
| |
Collapse
|
24
|
Suzuki Y, Mukaimine W. Prey–predator interactions and body size relationships between annual cicadas and spiders in Japan. J NAT HIST 2022. [DOI: 10.1080/00222933.2021.2019340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuya Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima-shi, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Wataru Mukaimine
- Doctoral Program in Biology, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
25
|
Zwolak R, Clement D, Sih A, Schreiber SJ. Mast seeding promotes evolution of scatter-hoarding. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200375. [PMID: 34657470 PMCID: PMC8520775 DOI: 10.1098/rstb.2020.0375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
Many plant species worldwide are dispersed by scatter-hoarding granivores: animals that hide seeds in numerous, small caches for future consumption. Yet, the evolution of scatter-hoarding is difficult to explain because undefended caches are at high risk of pilferage. Previous models have attempted to solve this problem by giving cache owners large advantages in cache recovery, by kin selection, or by introducing reciprocal pilferage of 'shared' seed resources. However, the role of environmental variability has been so far overlooked in this context. One important form of such variability is masting, which is displayed by many plant species dispersed by scatterhoarders. We use a mathematical model to investigate the influence of masting on the evolution of scatter-hoarding. The model accounts for periodically varying annual seed fall, caching and pilfering behaviour, and the demography of scatterhoarders. The parameter values are based mostly on research on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). Starvation of scatterhoarders between mast years decreases the population density that enters masting events, which leads to reduced seed pilferage. Satiation of scatterhoarders during mast events lowers the reproductive cost of caching (i.e. the cost of caching for the future rather than using seeds for current reproduction). These reductions promote the evolution of scatter-hoarding behaviour especially when interannual variation in seed fall and the period between masting events are large. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Dale Clement
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew Sih
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Sebastian J. Schreiber
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
26
|
Hacket-Pain A, Bogdziewicz M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200379. [PMID: 34657461 PMCID: PMC8520772 DOI: 10.1098/rstb.2020.0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61‐614 Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint‐Martin‐d'Hères, 38400 France
| |
Collapse
|
27
|
Davidson KH, Starzomski BM, El‐Sabaawi R, Hocking MD, Reynolds JD, Wickham SB, Darimont CT. Marine subsidy promotes spatial and dietary niche variation in an omnivore, the Keen's mouse ( Peromyscus keeni). Ecol Evol 2021; 11:17700-17722. [PMID: 35003633 PMCID: PMC8717356 DOI: 10.1002/ece3.8225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Marine-derived resource subsidies can generate intrapopulation variation in the behaviors and diets of terrestrial consumers. How omnivores respond, given their multiple trophic interactions, is not well understood. We sampled mice (Peromyscus keeni) and their food sources at five sites on three islands of the Central Coast of British Columbia, Canada, to test predictions regarding variation in the spatial behavior and consumption of marine-subsidized foods among individuals. About 50% of detections (n = 27 recaptures) occurred at traps closest to shoreline (25 m), with capture frequencies declining significantly inland (up to 200 m). Stable isotope signatures (δ 13C and δ 15N), particularly δ 15N, in plant foods, forest arthropod prey, and mouse feces were significantly enriched near shorelines compared with inland, while δ 13C patterns were more variable. Bayesian isotope mixing models applied to isotope values in mouse hair indicated that over one-third (35-37%) of diet was comprised of beach-dwelling arthropods, a marine-derived food source. Males were more abundant near the shoreline than females and consumed more marine-derived prey, regardless of reproductive status or availability of other food sources. Our results identify how multiple pathways of marine nutrient transfer can subsidize terrestrial omnivores and how subsets of recipient populations can show variation in spatial and dietary response.
Collapse
Affiliation(s)
- Katie H. Davidson
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | - Brian M. Starzomski
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rana El‐Sabaawi
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Morgan D. Hocking
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Ecofish Research Ltd.VictoriaBritish ColumbiaCanada
| | - John D. Reynolds
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Sara B. Wickham
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Present address:
School of Environment, Resources and SustainabilityUniversity of WaterlooWaterlooOntarioCanada
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Raincoast Conservation FoundationSidneyBritish ColumbiaCanada
| |
Collapse
|
28
|
Riggi LG, Lundin O, Berggren Å. Mass-flowering red clover crops have positive effects on bumblebee richness and diversity after bloom. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Tao Z, Shen C, Qin W, Gui Y, Wang Y, Siemann E, Huang W. Magnitude and timing of resource pulses interact to affect plant invasion. OIKOS 2021. [DOI: 10.1111/oik.08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
| | - Changchao Shen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Wenchao Qin
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Yinfeng Gui
- College of Horticulture and Forestry Sciences, Huazhong Agricultural Univ. Wuhan Hubei China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan Univ. Kunming China
| | | | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
| |
Collapse
|
30
|
Kuhn AL, Kominoski JS, Armitage AR, Charles SP, Pennings SC, Weaver CA, Maddox TR. Buried hurricane legacies: increased nutrient limitation and decreased root biomass in coastal wetlands. Ecosphere 2021. [DOI: 10.1002/ecs2.3674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Amanda L. Kuhn
- Department of Biological Sciences Florida International University Miami Florida 33199 USA
| | - John S. Kominoski
- Department of Biological Sciences Florida International University Miami Florida 33199 USA
| | - Anna R. Armitage
- Department of Marine Biology Texas A&M University at Galveston P.O. Box 1675 Galveston Texas 77553 USA
| | - Sean P. Charles
- Department of Biological Sciences Florida International University Miami Florida 33199 USA
| | - Steven C. Pennings
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| | - Carolyn A. Weaver
- Department of Life Sciences Texas A&M University – Corpus Christi Corpus Christi Texas 78412 USA
| | - Tom R. Maddox
- Stable Isotope Ecology Laboratory Center for Applied Isotope Studies University of Georgia Athens Georgia 30602 USA
| |
Collapse
|
31
|
Cumming GS, Henry DAW, Mutumi GL, Ndlovu M. Understanding arid‐region waterbird community dynamics during lake dry‐downs. Ecosphere 2021. [DOI: 10.1002/ecs2.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Graeme S. Cumming
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
| | - Dominic A. W. Henry
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- Endangered Wildlife Trust Johannesburg 1685 South Africa
- Statistics in Ecology, Environment and Conservation Department of Statistical Sciences University of Cape Town Cape Town 7701 South Africa
| | - Gregory L. Mutumi
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- Life and Environmental Sciences University of California–Merced Merced California USA
| | - Mduduzi Ndlovu
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- School of Biology and Environmental Sciences University of Mpumalanga Mbombela 1200 South Africa
| |
Collapse
|
32
|
Insect-mediated apparent competition between mammals in a boreal food web. Proc Natl Acad Sci U S A 2021; 118:2022892118. [PMID: 34282006 DOI: 10.1073/pnas.2022892118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the important role of animal-mediated interactions in the top-down restructuring of plant communities is well documented, less is known of their ensuing repercussions at higher trophic levels. We demonstrate how typically decoupled ecological interactions may become intertwined such that the impact of an insect pest on forest structure and composition alters predator-prey interactions among large mammals. Specifically, we show how irruptions in a common, cyclic insect pest of the boreal forest, the spruce budworm (Choristoneura fumiferana), modulated an indirect trophic interaction by initiating a flush in deciduous vegetation that benefited moose (Alces alces), in turn strengthening apparent competition between moose and threatened boreal caribou (Rangifer tarandus caribou) via wolf (Canis lupus) predation. Critically, predation on caribou postoutbreak was exacerbated by human activity (salvage logging). We believe our observations of significant, large-scale reverberating consumer-producer-consumer interactions are likely to be common in nature.
Collapse
|
33
|
Lancaster J, Downes BJ. Multiyear resource enrichment creates persistently higher species diversity in a landscape-scale field experiment. Ecology 2021; 102:e03451. [PMID: 34165780 DOI: 10.1002/ecy.3451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 05/14/2021] [Indexed: 11/11/2022]
Abstract
Short-term resource enrichment can increase species diversity in communities, but prolonged resource enrichment may result in either a diversity collapse or persistent high species diversity if fluctuation-dependent mechanisms of species coexistence are triggered. We tested the effects of resource enrichment on stream invertebrates by boosting densities of benthic detritus. In a 22-km stream length, we used wooden stakes to enhance retention of detritus at 40-m-long sites; other sites acted as controls. Detritus and invertebrates were sampled prior to treatment and then 1, 2, and 5 yr later. Previously, we reported that detrital densities, species diversity, and densities increased at enrichment sites after 12 months. Here we report that similar increases occurred 2 and 5 yr after manipulation. Prolonged resource enrichment produced persistently higher species diversity without loss of any taxa from the species pool, despite strong shifts in faunal composition in response to environmental variation, including a 1-in-100-yr flood. Detritus densities set upper limits to the densities of common taxa. Positive relations between invertebrate and detritus densities (density-resource relationships) took a variety of forms and showed that detritus was an essential resource for some taxa and a substitutable resource for others. Species varied in the minimum amount of detritus required for presence at a site, and population densities increased strongly from low densities when detritus was increased. These outcomes suggest that fluctuation-dependent mechanisms of coexistence enabled new taxa to coexist at manipulation sites, with relative nonlinear averaging of competition and the storage effect most likely to be in play. Two characteristics of the study stream underpin diversity increases with resource enrichment: overall low background densities of detritus and species that are able to disperse successfully from upstream areas where detritus is more abundant. Thus, the effects of resource enrichment are context dependent.
Collapse
Affiliation(s)
- Jill Lancaster
- School of Geography, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Barbara J Downes
- School of Geography, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
34
|
Prati S, Henriksen EH, Smalås A, Knudsen R, Klemetsen A, Sánchez-Hernández J, Amundsen PA. The effect of inter‐ and intraspecific competition on individual and population niche widths: a four‐decade study on two interacting salmonids. OIKOS 2021. [DOI: 10.1111/oik.08375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sebastian Prati
- Dept of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic Univ. of Norway Tromsø Norway
| | - Eirik Haugstvedt Henriksen
- Dept of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic Univ. of Norway Tromsø Norway
| | - Aslak Smalås
- Dept of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic Univ. of Norway Tromsø Norway
| | - Rune Knudsen
- Dept of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic Univ. of Norway Tromsø Norway
| | - Anders Klemetsen
- Dept of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic Univ. of Norway Tromsø Norway
| | - Javier Sánchez-Hernández
- Depto de Biología, Geología, Física y Química Inorgánica, Univ. Rey Juan Carlos, Móstoles Madrid Spain
| | - Per-Arne Amundsen
- Dept of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic Univ. of Norway Tromsø Norway
| |
Collapse
|
35
|
Carcasses at Fixed Locations Host a Higher Diversity of Necrophilous Beetles. INSECTS 2021; 12:insects12050412. [PMID: 34064338 PMCID: PMC8147763 DOI: 10.3390/insects12050412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Whereas vertebrate scavengers have a higher diversity reported at randomly placed carcasses, the drivers of insect diversity on carrion, such as the exposure type (fixed versus random) or the carrion species, are still incompletely understood. We analyzed beetle diversity at differently exposed carcasses in the low-range mountain forest of the Bavarian Forest National Park in Germany. We tested if scavenging beetles, similarly to vertebrate scavengers, show a higher diversity at randomly placed carcasses compared to easily manageable fixed places. Ninety-two beetle species at 29 exposed wildlife carcasses (roe, red deer, and red foxes) were detected. Beetle diversity was higher at fixed locations possessing extended highly nutrient-rich cadaver decomposition islands as important refuges for threatened red-listed species, such as Necrobia violacea (Coleoptera: Cleridae). Particularly noticeable in our insect traps were the following two rare species, the “primitive” carrion beetle Necrophilus subterraneus (Coleoptera: Agyrtidae) and the false clown beetle Sphaerites glabratus (Coleoptera: Sphaeritidae). In Europe, only the species S. glabratus out of the genus Sphaerites is present. This emphasizes the importance of carrion for biodiversity conservation. We clearly show the relevance of leaving and additional providing wildlife carcasses in a dedicated place in protected forests for preserving very rare and threatened beetle species as essential members of the decomposing community. Abstract In contrast to other necromass, such as leaves, deadwood, or dung, the drivers of insect biodiversity on carcasses are still incompletely understood. For vertebrate scavengers, a richer community was shown for randomly placed carcasses, due to lower competition. Here we tested if scavenging beetles similarly show a higher diversity at randomly placed carcasses compared to easily manageable fixed places. We sampled 12,879 individuals and 92 species of scavenging beetles attracted to 17 randomly and 12 at fixed places exposed and decomposing carcasses of red deer, roe deer, and red foxes compared to control sites in a low range mountain forest. We used rarefaction-extrapolation curves along the Hill-series to weight diversity from rare to dominant species and indicator species analysis to identify differences between placement types, the decay stage, and carrion species. Beetle diversity decreased from fixed to random locations, becoming increasingly pronounced with weighting of dominant species. In addition, we found only two indicator species for exposure location type, both representative of fixed placement locations and both red listed species, namely Omosita depressa and Necrobia violacea. Furthermore, we identified three indicator species of Staphylinidae (Philonthus marginatus and Oxytelus laqueatus) and Scarabaeidae (Melinopterus prodromus) for larger carrion and one geotrupid species Anoplotrupes stercorosus for advanced decomposition stages. Our study shows that necrophilous insect diversity patterns on carcasses over decomposition follow different mechanisms than those of vertebrate scavengers with permanently established carrion islands as important habitats for a diverse and threatened insect fauna.
Collapse
|
36
|
Pavey CR. A nomadic avian predator displays flexibility in prey choice during episodic outbreaks of rodents in arid Australia. Oecologia 2021; 196:211-222. [PMID: 33934187 DOI: 10.1007/s00442-021-04926-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
In environments driven by unpredictable resource pulses, populations of many consumer species experience dramatic fluctuations in abundance and spatial extent. Predator-prey relationships in these acyclic systems are poorly understood in particular with respect to the level of prey specialisation shown by nomadic predators. To understand the dynamics of such a system I examined the response to rodent outbreaks by the letter-winged kite (Elanus scriptus) in the Simpson Desert, Australia; a region that experiences major pulses in primary productivity, driven by unpredictable rainfall events. The kite feeds on small mammals and is the only night-hunting species in the Accipitridae. Letter-winged kites irrupted in the area on only three occasions during 20 years of sampling (1999-2019) and remained for a maximum of 20 months. Each period of kite occupation occurred only during the increase and/or peak phase of rodent population cycles (which occurred three times during the study). During each period kite diet was dominated by small (10-50 g body mass) quadrupedal rodents (Pseudomys australis, P. hermannsburgensis, Mus musculus). Abundance of these species varied across the three outbreaks and kites typically captured them in proportion to availability. The large body mass (134 g) long-haired rat (Rattus villosissimus) was abundant during one outbreak but was infrequently consumed. The bipedal spinifex hopping-mouse (Notomys alexis) was within the kites' favoured prey size range (35 g) but was consistently avoided. The flexibility in prey selection by letter-winged kites appears to be an important adaptation for survival and reproduction by species exploiting acyclic rodent outbreaks.
Collapse
Affiliation(s)
- Chris R Pavey
- CSIRO Land and Water, Winnellie, PMB 44, Darwin, NT, 0822, Australia.
| |
Collapse
|
37
|
Winter bird gets the worm: consumption of earthworms (Lumbricidae) by striated caracaras (Phalcoboenus australis) in invasive Yorkshire fog (Holcus lanatus) in the Falkland Islands (Malvinas). Polar Biol 2021. [DOI: 10.1007/s00300-021-02845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
McCary MA, Jackson RD, Gratton C. Vegetation structure modulates ecosystem and community responses to spatial subsidies. Ecosphere 2021. [DOI: 10.1002/ecs2.3483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Matthew A. McCary
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin53706USA
| | - Randall D. Jackson
- Department of Agronomy University of Wisconsin‐Madison Madison Wisconsin53706USA
| | - Claudio Gratton
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin53706USA
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin53706USA
| |
Collapse
|
39
|
Sato T, Ueda R, Takimoto G. The effects of resource subsidy duration in a detritus-based stream ecosystem: A mesocosm experiment. J Anim Ecol 2021; 90:1142-1151. [PMID: 33560517 DOI: 10.1111/1365-2656.13440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022]
Abstract
Most resource subsidies are temporally variable, dynamically affecting the consumer populations, community structures and ecosystem functions of recipient ecosystems. Temporally variable resource subsidies are characterized by the duration, magnitude, timing and frequency of resource subsidy inputs. These different characteristics may have different mechanisms by which to affect recipient ecosystems. Few studies have examined the duration of resource subsidy inputs on recipient ecosystems, although there exist previous studies focusing on magnitude, timing and frequency. We provide the first experimental test of the effects of subsidy duration on a stream ecosystem by using an outdoor mesocosm experiment, in which we directly manipulated the subsidy duration (pulsed vs. prolonged) of terrestrial invertebrate input into the mesocosm. Given the same overall amount of terrestrial invertebrate subsidy was added, a prolonged subsidy allowed large-stage fish to effectively monopolize the subsidy over small-stage fish, which led small-stage fish to maintain their predation pressure on in-situ prey, that is, benthic invertebrates. On the other hand, a pulsed subsidy allowed small-stage fish to increase their feeding rate of the subsidy and to become away from foraging in-situ prey. Consequently, weaker indirect positive effects on in-situ benthic prey and leaf break-down rate were found with the prolonged versus pulsed subsidy. However, these indirect effects varied by the dominant benthic prey species, which differed in edibility for fish. Such predator-specific vulnerability of benthic prey can be important in mediating trophic cascades in detritus-based stream food webs. Phenological events that generate temporal subsidies (e.g. salmon spawning run and arthropod emergence) can be synchronized (pulsed) or desynchronized (prolonged) within and among species, depending on the degree of spatial and temporal environmental heterogeneity. The effects of subsidy duration would thus be important to better understand ecological processes in spatially and temporally coupled ecosystems.
Collapse
Affiliation(s)
- Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe, Japan
| | - Rui Ueda
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe, Japan
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
DeBruyn JM, Hoeland KM, Taylor LS, Stevens JD, Moats MA, Bandopadhyay S, Dearth SP, Castro HF, Hewitt KK, Campagna SR, Dautartas AM, Vidoli GM, Mundorff AZ, Steadman DW. Comparative Decomposition of Humans and Pigs: Soil Biogeochemistry, Microbial Activity and Metabolomic Profiles. Front Microbiol 2021; 11:608856. [PMID: 33519758 PMCID: PMC7838218 DOI: 10.3389/fmicb.2020.608856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vertebrate decomposition processes have important ecological implications and, in the case of human decomposition, forensic applications. Animals, especially domestic pigs (Sus scrofa), are frequently used as human analogs in forensic decomposition studies. However, recent research shows that humans and pigs do not necessarily decompose in the same manner, with differences in decomposition rates, patterns, and scavenging. The objective of our study was to extend these observations and determine if human and pig decomposition in terrestrial settings have different local impacts on soil biogeochemistry and microbial activity. In two seasonal trials (summer and winter), we simultaneously placed replicate human donors and pig carcasses on the soil surface and allowed them to decompose. In both human and pig decomposition-impacted soils, we observed elevated microbial respiration, protease activity, and ammonium, indicative of enhanced microbial ammonification and limited nitrification in soil during soft tissue decomposition. Soil respiration was comparable between summer and winter, indicating similar microbial activity; however, the magnitude of the pulse of decomposition products was greater in the summer. Using untargeted metabolomics and lipidomics approaches, we identified 38 metabolites and 54 lipids that were elevated in both human and pig decomposition-impacted soils. The most frequently detected metabolites were anthranilate, creatine, 5-hydroxyindoleacetic acid, taurine, xanthine, N-acetylglutamine, acetyllysine, and sedoheptulose 1/7-phosphate; the most frequently detected lipids were phosphatidylethanolamine and monogalactosyldiacylglycerol. Decomposition soils were also significantly enriched in metabolites belonging to amino acid metabolic pathways and the TCA cycle. Comparing humans and pigs, we noted several differences in soil biogeochemical responses. Soils under humans decreased in pH as decomposition progressed, while under pigs, soil pH increased. Additionally, under pigs we observed significantly higher ammonium and protease activities compared to humans. We identified several metabolites that were elevated in human decomposition soil compared to pig decomposition soil, including 2-oxo-4-methylthiobutanoate, sn-glycerol 3-phosphate, and tryptophan, suggesting different decomposition chemistries and timing between the two species. Together, our work shows that human and pig decomposition differ in terms of their impacts on soil biogeochemistry and microbial decomposer activities, adding to our understanding of decomposition ecology and informing the use of non-human models in forensic research.
Collapse
Affiliation(s)
- Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katharina M Hoeland
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lois S Taylor
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jessica D Stevens
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michelle A Moats
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sreejata Bandopadhyay
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Stephen P Dearth
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Hector F Castro
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kaitlin K Hewitt
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Angela M Dautartas
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Giovanna M Vidoli
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Amy Z Mundorff
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Dawnie W Steadman
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
41
|
Mourant A, Lecomte N, Moreau G. Size matters: When resource accessibility by ecosystem engineering elicits wood-boring beetle demographic responses. Ecol Evol 2021; 11:784-795. [PMID: 33520166 PMCID: PMC7820143 DOI: 10.1002/ece3.7079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 11/10/2022] Open
Abstract
Episodic natural disturbances play a key role in ecosystem renewal, and ecological engineering could do so by transforming resource accessibility. While such coupling creates nontrophic and lasting interactions between resource consumers and ecosystem engineers, it is unclear how large the disturbance must be to sustain such coupling. Natural disturbances that occur from the ecological engineering by the Canadian beaver (Castor canadensis) modulate deadwood dynamics in many forest ecosystems. Relying on such episodes of fresh woody debris, primary wood-boring beetles, organisms that dig tunnels into those debris for reproduction, act as important deadwood decomposers in the ecosystem. Here, we investigate how the age and size of beaver disturbances act as predictors for primary wood-boring beetle abundance and species richness around beaver-altered habitat patches. To do so, we sampled beetles around 16 beaver-disturbed and unaltered watercourses within the Kouchibouguac National Park (Canada) and modeled beetle demographic responses to site conditions and their physical characteristics, distance from the watercourse, deadwood biomass, and the geographical location of the sites. Our results indicate that the size of the disturbance is positively associated with beetle abundance, which highlights unique deadwood dynamics inherent to large beaver ponds. The role of beavers in forest ecosystems by reaching multiple taxa at multiple spatiotemporal scales further exemplifies the need to study nontrophic interactions and their complex consequences in ecosystem management.
Collapse
Affiliation(s)
- Alexandre Mourant
- Département de biologieUniversité de MonctonMonctonNBCanada
- Canada Research Chair in Polar and Boreal EcologyUniversité de MonctonMonctonNBCanada
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal EcologyUniversité de MonctonMonctonNBCanada
| | - Gaétan Moreau
- Département de biologieUniversité de MonctonMonctonNBCanada
| |
Collapse
|
42
|
Simon FW, Vasseur DA. Variation cascades: resource pulses and top-down effects across time scales. Ecology 2020; 102:e03277. [PMID: 33354775 DOI: 10.1002/ecy.3277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022]
Abstract
Top-down and bottom-up theories of trophic control have been fundamental to our understanding of community dynamics and structure. However, most ecological theories have focused on equilibrium dynamics and do not provide predictions for communities' responses in temporally fluctuating environments. By deriving the frequency response of populations in different trophic communities, we extend the top-down and bottom-up theories of ecology to include how temporal fluctuations in potential primary productivity percolate up the food chain and are re-expressed as population variability. Moreover, by switching from a time-based representation into the frequency domain, we provide a unified method to compare how the time scale of perturbations determines communities' responses. At low frequencies, primary producers and secondary consumers have the highest temporal variability, while the primary consumers are relatively stable. Similar to the Exploitation Ecosystem Hypothesis, top-down effects drive this alternating pattern of variability. We define the top-down effect of consumers on the variability of lower trophic levels as a variation cascade. However, at intermediate frequencies, variation cascades can amplify temporal variation up the food chain. At high frequencies, variation cascades weaken, and fluctuations are attenuated up the food chain. In summary, we provide a novel theory for how communities will respond to fluctuations in productivity, and we show that indirect species interactions play a crucial role in determining community dynamics across the frequency spectrum.
Collapse
Affiliation(s)
- Franz W Simon
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 06520, USA
| | - David A Vasseur
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 06520, USA
| |
Collapse
|
43
|
From Marine Metacommunities to Meta-ecosystems: Examining the Nature, Scale and Significance of Resource Flows in Benthic Marine Environments. Ecosystems 2020. [DOI: 10.1007/s10021-020-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
McCary MA, Phillips JS, Ramiadantsoa T, Nell LA, McCormick AR, Botsch JC. Transient top‐down and bottom‐up effects of resources pulsed to multiple trophic levels. Ecology 2020; 102:e03197. [DOI: 10.1002/ecy.3197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Matthew A. McCary
- Department of Entomology University of Wisconsin Madison Wisconsin53706USA
| | - Joseph S. Phillips
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Tanjona Ramiadantsoa
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Lucas A. Nell
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Amanda R. McCormick
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Jamieson C. Botsch
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| |
Collapse
|
45
|
Iuliano B, Gratton C. Temporal Resource (Dis)continuity for Conservation Biological Control: From Field to Landscape Scales. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Barrere J, Boulanger V, Collet C, Walker E, Siat V, Henry L, Saïd S. How does oak mast seeding affect the feeding behavior of sympatric red and roe deer? Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Bailey CJ, Moore JW. Resource pulses increase the diversity of successful competitors in a multi‐species stream fish assemblage. Ecosphere 2020. [DOI: 10.1002/ecs2.3211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Colin J. Bailey
- Earth to Ocean Research Group Simon Fraser University 8888 University Dr. Burnaby British ColumbiaV5A 1S6USA
| | - Jonathan W. Moore
- Earth to Ocean Research Group Simon Fraser University 8888 University Dr. Burnaby British ColumbiaV5A 1S6USA
| |
Collapse
|
48
|
Wright AN, Yang LH, Piovia-Scott J, Spiller DA, Schoener TW. Consumer Responses to Experimental Pulsed Subsidies in Isolated versus Connected Habitats. Am Nat 2020; 196:369-381. [PMID: 32813995 DOI: 10.1086/710040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIncreases in consumer abundance following a resource pulse can be driven by diet shifts, aggregation, and reproductive responses, with combined responses expected to result in faster response times and larger numerical increases. Previous work in plots on large Bahamian islands has shown that lizards (Anolis sagrei) increased in abundance following pulses of seaweed deposition, which provide additional prey (i.e., seaweed detritivores). Numerical responses were associated with rapid diet shifts and aggregation, followed by increased reproduction. These dynamics are likely different on isolated small islands, where lizards cannot readily immigrate or emigrate. To test this, we manipulated the frequency and magnitude of seaweed resource pulses on whole small islands and in plots within large islands, and we monitored lizard diet and numerical responses over 4 years. We found that seaweed addition caused persistent increases in lizard abundance on small islands regardless of pulse frequency or magnitude. Increased abundance may have occurred because the initial pulse facilitated population establishment, possibly via enhanced overwinter survival. In contrast with a previous experiment, we did not detect numerical responses in plots on large islands, despite lizards consuming more marine resources in subsidized plots. This lack of a numerical response may be due to rapid aggregation followed by disaggregation or to stronger suppression of A. sagrei by their predators on the large islands in this study. Our results highlight the importance of habitat connectivity in governing ecological responses to resource pulses and suggest that disaggregation and changes in survivorship may be underappreciated drivers of pulse-associated dynamics.
Collapse
|
49
|
Stiegler J, Hoermann C, Müller J, Benbow ME, Heurich M. Carcass provisioning for scavenger conservation in a temperate forest ecosystem. Ecosphere 2020. [DOI: 10.1002/ecs2.3063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jonas Stiegler
- Department of Plant Ecology and Nature Conservation University of Potsdam Potsdam Germany
| | - Christian Hoermann
- Department of Wildlife Ecology and Management University of Freiburg Freiburg Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | - M. Eric Benbow
- Department of Entomology Michigan State University East Lansing Michigan USA
- Department of Osteopathic Medical Specialties Michigan State University East Lansing Michigan USA
- Ecology, Evolutionary Biology and Behavior Program Michigan State University East Lansing Michigan USA
| | - Marco Heurich
- Department of Wildlife Ecology and Management University of Freiburg Freiburg Germany
| |
Collapse
|
50
|
Affiliation(s)
- Louie H. Yang
- Department of Entomology and Nematology University of California Davis California
| |
Collapse
|