1
|
Vázquez-González C, Castagneyrol B, Muiruri EW, Barbaro L, Abdala-Roberts L, Barsoum N, Fründ J, Glynn C, Jactel H, McShea WJ, Mereu S, Mooney KA, Morillas L, Nock CA, Paquette A, Parker JD, Parker WC, Roales J, Scherer-Lorenzen M, Schuldt A, Verheyen K, Weih M, Yang B, Koricheva J. Tree diversity enhances predation by birds but not by arthropods across climate gradients. Ecol Lett 2024; 27:e14427. [PMID: 38698677 DOI: 10.1111/ele.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Pontevedra, España
| | | | - Evalyne W Muiruri
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Luc Barbaro
- Dynafor, INRAE-INPT, University of Toulouse, Castanet-Tolosan, France
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nadia Barsoum
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
- Animal Network Ecology, Department of Biology, Universität Hamburg, Hamburg, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Carolyn Glynn
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hervé Jactel
- BIOGECO, University of Bordeaux, INRAE, Bordeaux, France
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute 1500 Remount Road, Front Royal, Virginia, USA
| | - Simone Mereu
- Institute of BioEconomy, National Research Council of Italy, Sassari, Italy
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Lourdes Morillas
- Department of Plant Biology and Ecology, University of Sevilla, C/ Professor García González s/n, Sevilla, Spain
| | - Charles A Nock
- College of Natural and Applied Sciences, Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Front Royal, Maryland, USA
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Ontario, Canada
| | - Javier Roales
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra, Seville, Spain
| | | | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bo Yang
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen, China
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
2
|
Yang W, Zhang S, Li A, Yang J, Pang S, Hu Z, Wang Z, Han X, Zhang X. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA. LIFE SCIENCES 2024; 67:778-788. [PMID: 38212459 DOI: 10.1007/s11427-023-2416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 01/13/2024]
Abstract
Anthropogenic environmental changes may affect community assembly through mediating both deterministic (e.g., competitive exclusion and environmental filtering) and stochastic processes (e.g., birth/death and dispersal/colonization). It is traditionally thought that environmental changes have a larger mediation effect on stochastic processes in structuring soil microbial community than aboveground plant community; however, this hypothesis remains largely untested. Here we report an unexpected pattern that nitrogen (N) deposition has a larger mediation effect on stochastic processes in structuring plant community than soil microbial community (those <2 mm in diameter, including archaea, bacteria, fungi, and protists) in the Eurasian steppe. We performed a ten-year nitrogen deposition experiment in a semiarid grassland ecosystem in Inner Mongolia, manipulating nine rates (0-50 g N m-2 per year) at two frequencies (nitrogen added twice or 12 times per year) under two grassland management strategies (fencing or mowing). We separated the compositional variation of plant and soil microbial communities caused by each treatment into the deterministic and stochastic components with a recently-developed method. As nitrogen addition rate increased, the relative importance of stochastic component of plant community first increased and then decreased, while that of soil microbial community first decreased and then increased. On the whole, the relative importance of stochastic component was significantly larger in plant community (0.552±0.035; mean±standard error) than in microbial community (0.427±0.035). Consistently, the proportion of compositional variation explained by the deterministic soil and community indices was smaller for plant community (0.172-0.186) than microbial community (0.240-0.767). Meanwhile, as nitrogen addition rate increased, the linkage between plant and microbial community composition first became weaker and then became stronger. The larger stochasticity in plant community relative to microbial community assembly suggested that more stochastic strategies (e.g., seeds addition) should be adopted to maintain above- than below-ground biodiversity under the pressure of nitrogen deposition.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuhan Zhang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuang Pang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonghao Hu
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ximei Zhang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Yoneya K, Miki T, Takabayashi J. Initial herbivory and exposure to herbivory-induced volatiles enhance arthropod species richness by diversifying community assemblages. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1031664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant ecological traits affect the species identity of plant-colonizing arthropods, which in turn induces species-specific trait changes in plants, forming feedback between plants and arthropods. Such feedback can amplify initial differences in species composition, leading to large variations (i.e., high β diversity). We hypothesized that the differences in plant initial conditions have sustained effects on arthropod community composition and species richness. To test this hypothesis, we monitored arthropod community assembly on a willow tree species, Salix eriocarpa, which was experimentally manipulated into three initial treatments: undamaged (in chamber 1); damaged by the specialist leaf beetle, Plagiodera versicolora (chamber 2); and “exposed” plants that were undamaged but were exposed to volatiles from damaged plants (in chamber 2). The arrival and population dynamics of the leaf beetle were affected by the plant’s initial condition (chamber 1 vs. 2), which could result from the microscale environmental heterogeneity between chambers (chamber effect) and/or from the herbivory-related impacts (direct herbivory and exposure to induced volatiles in chamber 2). The community composition on damaged and exposed plants became significantly different on day 32. In addition, the divergence in composition between plant individuals was significantly smaller in undamaged plants (chamber 1) than in damaged and exposed plants (chamber 2) on day 60. The compositional variations (β diversity) between chambers, between treatments, and between days, comprised a large proportion (two third) of the total species richness (γ diversity) in the whole community of arthropods. These results suggest that plant initial condition is a key driver of community assembly and the maintenance of species diversity.
Collapse
|
4
|
On the qualitative study of a two-trophic plant-herbivore model. J Math Biol 2022; 85:34. [PMID: 36121566 DOI: 10.1007/s00285-022-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
The coexistence of plant-herbivore populations in an ecological system is a fundamental topic of research in mathematical ecology. Plant-herbivore interactions are often described by using discrete-time models in the case of non-overlapping generations: such generations have some specific time interval of life and their old generations are replaced by new generations after some regular interval of time. Keeping in mind the dynamical reliability of continuous-time models we presented two discrete-time plant-herbivore models. Mainly, by applying Euler's forward method a discrete-time plant-herbivore model is obtained from a continuous-time plant-herbivore model. In addition, a dynamically consistent discrete-time plant-herbivore model is obtained by applying a nonstandard difference scheme. Moreover, local stability is discussed and the existence of bifurcation about positive equilibrium is shown under some mathematical conditions. To control bifurcation and chaos, a modified hybrid technique is developed. Finally, to support our theocratical results and to show the dynamical reliability of the nonstandard difference scheme some numerical examples are provided.
Collapse
|
5
|
Seifert CL, Strutzenberger P, Fiedler K. Ecological specialisation and range size determine intraspecific body size variation in a speciose clade of insect herbivores. OIKOS 2022. [DOI: 10.1111/oik.09338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlo L. Seifert
- Dept of Nature Forest Conservation, Georg‐August‐Univ. of Göttingen Göttingen Germany
| | | | - Konrad Fiedler
- Dept of Botany and Biodiversity Research, Univ. of Vienna Vienna Austria
| |
Collapse
|
6
|
Martins PM, Poulin R, Gonçalves-Souza T. Drivers of parasite β-diversity among anuran hosts depend on scale, realm and parasite group. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200367. [PMID: 34538138 DOI: 10.1098/rstb.2020.0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A robust understanding of what drives parasite β-diversity is an essential step towards explaining what limits pathogens' geographical spread. We used a novel global dataset (latitude -39.8 to 61.05 and longitude -117.84 to 151.49) on helminths of anurans to investigate how the relative roles of climate, host composition and spatial distance to parasite β-diversity vary with spatial scale (global, Nearctic and Neotropical), parasite group (nematodes and trematodes) and host taxonomic subset (family). We found that spatial distance is the most important driver of parasite β-diversity at the global scale. Additionally, we showed that the relative effects of climate concerning distance increase at the regional scale when compared with the global scale and that trematodes are generally more responsive to climate than nematodes. Unlike previous studies done at the regional scale, we did not find an effect of host composition on parasite β-diversity. Our study presents a new contribution to parasite macroecological theory, evidencing spatial and taxonomic contingencies of parasite β-diversity patterns, which are related to the zoogeographical realm and host taxonomic subset, respectively. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Paulo Mateus Martins
- Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil.,Laboratório de Síntese Ecológica e Conservação da Biodiversidade [Ecological Synthesis and Biodiversity Conservation Lab], Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Thiago Gonçalves-Souza
- Laboratório de Síntese Ecológica e Conservação da Biodiversidade [Ecological Synthesis and Biodiversity Conservation Lab], Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Shinohara N, Yoshida T. Temporal changes of local and regional processes in the assembly of herbivorous insect communities. OIKOS 2021. [DOI: 10.1111/oik.08350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoto Shinohara
- Dept of Agricultural and Life Sciences, Univ. of Tokyo Bunkyo Tokyo Japan
| | - Takehito Yoshida
- Research Inst. for Humanity and Nature Kamigamo, Kita‐ku Kyoto Japan
- Dept of General Systems Studies, Univ. of Tokyo Meguro Tokyo Japan
| |
Collapse
|
8
|
Mertens D, Bouwmeester K, Poelman EH. Intraspecific variation in plant-associated herbivore communities is phylogenetically structured in Brassicaceae. Ecol Lett 2021; 24:2314-2327. [PMID: 34331409 PMCID: PMC9291228 DOI: 10.1111/ele.13852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
As a result of co‐evolution between plants and herbivores, related plants often interact with similar herbivore communities. Variation in plant–herbivore interactions is determined by variation in underlying functional traits and by ecological and stochastic processes. Hence, typically, only a subset of possible interactions is realised on individual plants. We show that insect herbivore communities assembling on individual plants are structured by plant phylogeny among 12 species in two phylogenetic lineages of Brassicaceae. This community sorting to plant phylogeny was retained when splitting the community according to herbivore feeding guilds. Relative abundance of herbivores as well as the size of the community structured community dissimilarity among plant species. Importantly, the amount of intraspecific variation in realised plant–herbivore interactions is also phylogenetically structured. We argue that variability in realised interactions that are not directly structured by plant traits is ecologically relevant and must be considered in the evolution of plant defences.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
9
|
Seifert CL, Jorge LR, Volf M, Wagner DL, Lamarre GPA, Miller SE, Gonzalez‐Akre E, Anderson‐Teixeira KJ, Novotný V. Seasonality affects specialisation of a temperate forest herbivore community. OIKOS 2021. [DOI: 10.1111/oik.08265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Carlo L. Seifert
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Leonardo R. Jorge
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
| | - David L. Wagner
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Greg P. A. Lamarre
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Scott E. Miller
- National Museum of Natural History, Smithsonian Inst. Washington D.C. USA
| | - Erika Gonzalez‐Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Inst. Front Royal VA USA
| | | | - Vojtěch Novotný
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
- ForestGEO, Smithsonian Tropical Research Inst. Balboa Ancon Panama
| |
Collapse
|
10
|
Seifert CL, Lamarre GPA, Volf M, Jorge LR, Miller SE, Wagner DL, Anderson-Teixeira KJ, Novotný V. Vertical stratification of a temperate forest caterpillar community in eastern North America. Oecologia 2019; 192:501-514. [PMID: 31872269 DOI: 10.1007/s00442-019-04584-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.
Collapse
Affiliation(s)
- Carlo L Seifert
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Greg P A Lamarre
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Leonardo R Jorge
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Scott E Miller
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Kristina J Anderson-Teixeira
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama.,Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Vojtěch Novotný
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Abdullah NA, Radzi SNF, Asri LN, Idris NS, Husin S, Sulaiman A, Khamis S, Sulaiman N, Hazmi IR. Insect community in riparian zones of Sungai Sepetang, Sungai Rembau and Sungai Chukai of Peninsular Malaysia. Biodivers Data J 2019; 7:e35679. [PMID: 31582889 PMCID: PMC6761210 DOI: 10.3897/bdj.7.e35679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
Riparian areas hold vast number of flora and fauna with exceptional contributions to the ecosystem. A study was conducted in Sungai Sepetang, Sungai Rembau and Sungai Chukai to identify the insect community in a riparian zone of Peninsular Malaysia. Sampling was conducted in six consecutive months from December 2017 to May 2018 during both day and night using sweep nets. Twenty sampling stations (S1-S20) had been assembled along the riverbanks with an average distance of 200 m between each station. The 17,530 collected insects were from 11 orders and consisted of Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, Orthoptera, Blattodea, Thysanoptera, Mantodea and Odonata. The three most abundant orders were Diptera (33.84%; 5933 individuals), Coleoptera (28.82%; 5053 individuals) and Hemiptera (25.62%: 4491 individuals). The collected insect community consisted of different guilds such as the scavenger, predator, herbivore, pollinator and parasitoid. Sungai Sepetang and Sungai Rembau were dominated by mangrove flora, Sonneratiacaseolaris (Myrtales: Lythraceae), while Sungai Chukai was dominated by Barringtoniaracemosa. There was a significant difference (p < 0.05) in the composition of insects between the three rivers though clustering analysis showed that the insect communities in Sungai Sepetang and Sungai Rembau were 100% similar compared to Sungai Chukai which consisted of a totally different community. There is a significant negative correlation between abundance of insects with salinity and wind speed at Sungai Chukai and Sungai Sepetang.
Collapse
Affiliation(s)
- Nur-Athirah Abdullah
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Siti Nur Fatehah Radzi
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Lailatul-Nadhirah Asri
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Nor Shafikah Idris
- Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Shahril Husin
- TNB Research Sdn. Bhd, No. 1, Lorong Ayer Hitam, Kawasan Institut Penyelidikan, 43000, Kajang, Selangor, Malaysia TNB Research Sdn. Bhd No. 1, Lorong Ayer Hitam, Kawasan Institut Penyelidikan, 43000, Kajang, Selangor Malaysia
| | - Azman Sulaiman
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Shamsul Khamis
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Norela Sulaiman
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Izfa Riza Hazmi
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| |
Collapse
|
12
|
Ground-Dwelling Arthropod Community Responses to Recent and Repeated Wildfires in Conifer Forests of Northern New Mexico, USA. FORESTS 2019. [DOI: 10.3390/f10080667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasing frequency and severity of wildfires in semi-arid conifer forests as a result of global change pressures has raised concern over potential impacts on biodiversity. Ground-dwelling arthropod communities represent a substantial portion of diversity in conifer forests, and could be particularly impacted by wildfires. In addition to direct mortality, wildfires can affect ground-dwelling arthropods by altering understory characteristics and associated deterministic community assembly processes (e.g., environmental sorting). Alternatively, disturbances have been reported to increase the importance of stochastic community assembly processes (e.g., probabilistic dispersal and colonization rates). Utilizing pitfall traps to capture ground-dwelling arthropods within forest stands that were burned by one or two wildfires since 1996 in the Jemez Mountains of northern New Mexico, United States (USA), we examined the potential influences of deterministic versus stochastic processes on the assembly of these diverse understory communities. Based on family-level and genera-level arthropod identifications, we found that the multivariate community structures differed among the four fire groups surveyed, and were significantly influenced by the quantities of duff, litter, and coarse woody debris, in addition to tree basal area and graminoid cover. Taxon diversity was positively related to duff quantities, while taxon turnover was positively linked to exposed-rock cover and the number of logs on the ground. Despite the significant effects of these understory properties on the arthropod community structure, a combination of null modeling and metacommunity analysis revealed that both deterministic and stochastic processes shape the ground-dwelling arthropod communities in this system. However, the relative influence of these processes as a function of time since the wildfires or the number of recent wildfires was not generalizable across the fire groups. Given that different assembly processes shaped arthropod communities among locations that had experienced similar disturbances over time, increased efforts to understand the processes governing arthropod community assembly following disturbance is required in this wildfire-prone landscape.
Collapse
|
13
|
Manalebish Debalike Asfaw, Semu Mitiku Kassa, Lungu EM, Woldeamlak Bewket. Effects of temperature and rainfall in plant–herbivore interactions at different altitude. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Makhado RA, Potgieter MJ, Luus‐Powell WJ. Effects of pruning on the concentration of macronutrients in Colophospermum mopaneleaves. Afr J Ecol 2019. [DOI: 10.1111/aje.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Mlynarek JJ, Grégoire Taillefer A, Wheeler TA. Saproxylic Diptera assemblages in a temperate deciduous forest: implications for community assembly. PeerJ 2018; 6:e6027. [PMID: 30533313 PMCID: PMC6284445 DOI: 10.7717/peerj.6027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/29/2018] [Indexed: 12/04/2022] Open
Abstract
Saproxylic insects, those associated directly or indirectly with decaying wood for all or part of their life cycle, compose a large proportion of forest organisms. Flies (Diptera) are often the most abundant and species-rich group of insects in forest microhabitats, yet most work to date on saproxylic insect diversity and ecology has focused on beetles (Coleoptera). We compared saproxylic Diptera assemblages reared from two tree species (sugar maple and American beech) at two stages of decay (early/young and advanced/old) for a total of 20 logs in an eastern Canadian Nearctic old-growth forest. We found that communities are distinct within both species type and decay stage of wood. Early decay stage wood is more variable in community composition than later decay stage; however, as the age of the decaying wood increases, the abundance of Diptera increases significantly. Most indicator species are discernible in later decay stage and wood type. We venture to suggest that stochastic and deterministic processes may play a role in driving Diptera communities in temperate deciduous forests. To retain the highest saproxylic Diptera diversity in a forest, a variety of decaying wood types at different stages of decomposition is necessary.
Collapse
Affiliation(s)
- Julia J Mlynarek
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada.,Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Amélie Grégoire Taillefer
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada.,BioÉco Environnement, Pincourt, QC, Canada
| | - Terry A Wheeler
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
16
|
Mukherjee S, Banerjee S, Basu P, Saha GK, Aditya G. Butterfly-plant network in urban landscape: Implication for conservation and urban greening. ACTA OECOLOGICA 2018. [DOI: 10.1016/j.actao.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Asfaw MD, Kassa SM, Lungu EM. Co-existence thresholds in the dynamics of the plant–herbivore interaction with Allee effect and harvest. INT J BIOMATH 2018. [DOI: 10.1142/s1793524518500572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the interaction between plants and herbivores that live in the same ecosystem, understanding the conditions in which co-existence equilibrium occurs answers a major question in Ecology. In this interaction, plants serve as food for herbivores on the food chain. Then the livelihood of herbivores highly depends on the availability of food, in this case the availability of plants. Moreover, the abundance of the plant density alone does not guarantee the non-extinction of the herbivore population as they are assumed to reproduce sexually. With this motivation, in this paper a predator–prey mathematical model is reformulated such that the death rate of the herbivore population is dependent on the plant density and their emergence is also governed by the Allee effect. Using the mathematical theory of dynamical system, threshold conditions are obtained for the non-extinction of the herbivore population and a trapping region is obtained to ensure co-existence of the population. Moreover, it has been shown that the dynamics of the population is significantly sensitive to the feeding rate and the harvest rate of the herbivore population.
Collapse
Affiliation(s)
| | - Semu Mitiku Kassa
- Department of Mathematics, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Edward M. Lungu
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| |
Collapse
|
18
|
Hazen RF, Moody KN, Blum MJ. Neutral and non-neutral factors shape an emergent plant–antagonist interaction. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9935-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Abstract
Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.
Collapse
|
20
|
Harrison JG, Philbin CS, Gompert Z, Forister GW, Hernandez‐Espinoza L, Sullivan BW, Wallace IS, Beltran L, Dodson CD, Francis JS, Schlageter A, Shelef O, Yoon SA, Forister ML. Deconstruction of a plant‐arthropod community reveals influential plant traits with nonlinear effects on arthropod assemblages. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joshua G. Harrison
- Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno NV USA
- Department of Biology University of Nevada Reno NV USA
| | | | | | - Glen W. Forister
- Bohart Museum of Entomology University of California Davis CA USA
| | | | - Benjamin W. Sullivan
- Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno NV USA
- Department of Natural Resources and Environmental Science University of Nevada Reno NV USA
| | - Ian S. Wallace
- Department of Biochemistry and Molecular Biology University of Nevada Reno NV USA
| | - Lyra Beltran
- Department of Biology University of Nevada Reno NV USA
| | | | - Jacob S. Francis
- Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno NV USA
- Department of Biology University of Nevada Reno NV USA
| | | | - Oren Shelef
- Department of Biology University of Nevada Reno NV USA
| | - Su'ad A. Yoon
- Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno NV USA
- Department of Biology University of Nevada Reno NV USA
| | - Matthew L. Forister
- Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno NV USA
- Department of Biology University of Nevada Reno NV USA
| |
Collapse
|
21
|
Vidal MC, Murphy SM. Bottom‐up vs. top‐down effects on terrestrial insect herbivores: a meta‐analysis. Ecol Lett 2017; 21:138-150. [DOI: 10.1111/ele.12874] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Mayra C. Vidal
- Department of Biological Sciences University of Denver Denver CO USA
| | - Shannon M. Murphy
- Department of Biological Sciences University of Denver Denver CO USA
| |
Collapse
|
22
|
Marquis RJ, Salazar D, Baer C, Reinhardt J, Priest G, Barnett K. Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology 2017; 97:2939-2951. [PMID: 27870033 DOI: 10.1002/ecy.1534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/27/2016] [Accepted: 07/07/2016] [Indexed: 11/06/2022]
Abstract
Fifty years ago, Ehrlich and Raven proposed that insect herbivores have driven much of plant speciation, particularly at tropical latitudes. There have been no explicit tests of their hypotheses. Indeed there were no proposed mechanisms either at the time or since by which herbivores might generate new plant species. Here we outline two main classes of mechanisms, prezygotic and postzygotic, with a number of scenarios in each by which herbivore-driven changes in host plant secondary chemistry might lead to new plant lineage production. The former apply mainly to a sympatric model of speciation while the latter apply to a parapatric or allopatric model. Our review suggests that the steps of each mechanism are known to occur individually in many different systems, but no scenario has been thoroughly investigated in any one system. Nevertheless, studies of Dalechampia and its herbivores and pollinators, and patterns of defense tradeoffs in trees on different soil types in the Peruvian Amazon provide evidence consistent with the original hypotheses of Ehrlich and Raven. For herbivores to drive sympatric speciation, our findings suggest that interactions with both their herbivores and their pollinators should be considered. In contrast, herbivores may drive speciation allopatrically without any influence by pollinators. Finally, there is evidence that these mechanisms are more likely to occur at low latitudes and thus more likely to produce new species in the tropics. The mechanisms we outline provide a predictive framework for further study of the general role that herbivores play in diversification of their host plants.
Collapse
Affiliation(s)
- Robert J Marquis
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Diego Salazar
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA.,Department of Integrative Biology, University of California-Berkeley, 3040 Valley Life Sciences Bldg #3140, Berkeley, California, 94720, USA
| | - Christina Baer
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Jason Reinhardt
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA.,Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N., St. Paul, Minnesota, 55108, USA
| | - Galen Priest
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Kirk Barnett
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
23
|
Makhado RA, Potgieter MJ, Luus-Powell WJ, Mapaure I. Effects of pruning on the concentration of trace elements in Colophospermum mopaneleaves. Afr J Ecol 2017. [DOI: 10.1111/aje.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rudzani A. Makhado
- Department of Biodiversity; University of Limpopo; P/Bag X1106 Sovenga South Africa
| | - Martin J. Potgieter
- Department of Biodiversity; University of Limpopo; P/Bag X1106 Sovenga South Africa
| | | | - Isaac Mapaure
- Research & Publications Office; University of Namibia; P/Bag 13301, 340 Mandume Ndemufayo Ave, Pionierspark Windhoek Namibia
| |
Collapse
|
24
|
David AS, Quiram GL, Sirota JI, Seabloom EW. Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (Lythrum salicariaL.). Mycologia 2017; 108:625-37. [DOI: 10.3852/15-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Aaron S. David
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Avenue, Saint Paul, Minnesota 55108
| | - Gina L. Quiram
- University of Minnesota, College of Continuing Education, 1994 Buford Ave, Saint Paul, Minnesota 55108
| | - Jennie I. Sirota
- University of Minnesota, Natural Resources, Science and Management Program, 1530 Cleveland Avenue, Saint Paul, Minnesota 55108
| | - Eric W. Seabloom
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Avenue, Saint Paul, Minnesota 55108
| |
Collapse
|
25
|
Ferrenberg S, Martinez AS, Faist AM. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance. PeerJ 2016; 4:e2545. [PMID: 27761333 PMCID: PMC5068348 DOI: 10.7717/peerj.2545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. METHODS Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. RESULTS Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. DISCUSSION Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies.
Collapse
Affiliation(s)
- Scott Ferrenberg
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
| | - Alexander S. Martinez
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Akasha M. Faist
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
26
|
López-Carretero A, Boege K, Díaz-Castelazo C, Domínguez Z, Rico-Gray V. Influence of plant resistance traits in selectiveness and species strength in a tropical plant-herbivore network. AMERICAN JOURNAL OF BOTANY 2016; 103:1436-1448. [PMID: 27539260 DOI: 10.3732/ajb.1600045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Plant-herbivore networks are highly specialized in their interactions, yet they are highly variable with regard to the relative importance of specific host species for herbivores. How host species traits determine specialization and species strength in this antagonistic network is still an unanswered question that we addressed in this study. METHODS We assessed plant cover and antiherbivore resistance traits to assess the extent to which they accounted for the variation in specialization and strength of interactions among species in a plant-herbivore network. We studied a tropical antagonistic network including a diverse herbivore-host plant assemblages in different habitat types and climatic seasons, including host plants with different life histories. KEY RESULTS Particular combinations of leaf toughness, trichome density, and phenolic compounds influenced herbivore specialization and host species strength, but with a significant spatiotemporal variation among plant life histories. Conversely, plant-herbivore network parameters were not influenced by plant cover. CONCLUSIONS Our study highlights the importance of species-specific resistance traits of plants to understand the ecological and evolutionary consequences of plant-herbivore interaction networks. The novelty of our research lies in the use of a trait-based approach to understand the variation observed in diverse plant-herbivore networks.
Collapse
Affiliation(s)
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Zaira Domínguez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Víctor Rico-Gray
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
27
|
Zhang X, Johnston ER, Liu W, Li L, Han X. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. GLOBAL CHANGE BIOLOGY 2016; 22:198-207. [PMID: 26340501 DOI: 10.1111/gcb.13080] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Both 'species fitness difference'-based deterministic processes, such as competitive exclusion and environmental filtering, and 'species fitness difference'-independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) - (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) - (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional-based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism-dominated view.
Collapse
Affiliation(s)
- Ximei Zhang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wei Liu
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
28
|
Cárdenas RE, Hättenschwiler S, Valencia R, Argoti A, Dangles O. Plant herbivory responses through changes in leaf quality have no effect on subsequent leaf-litter decomposition in a neotropical rain forest tree community. THE NEW PHYTOLOGIST 2015; 207:817-829. [PMID: 25771942 DOI: 10.1111/nph.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
It is commonly accepted that plant responses to foliar herbivory (e.g. plant defenses) can influence subsequent leaf-litter decomposability in soil. While several studies have assessed the herbivory-decomposability relationship among different plant species, experimental tests at the intra-specific level are rare, although critical for a mechanistic understanding of how herbivores affect decomposition and its consequences at the ecosystem scale. Using 17 tree species from the Yasuní National Park, Ecuadorian Amazonia, and applying three different herbivore damage treatments, we experimentally tested whether the plant intra-specific responses to herbivory, through changes in leaf quality, affect subsequent leaf-litter decomposition in soil. We found no effects of herbivore damage on the subsequent decomposition of leaf litter within any of the species tested. Our results suggest that leaf traits affecting herbivory are different from those influencing decomposition. Herbivore damage showed much higher intra-specific than inter-specific variability, while we observed the opposite for decomposition. Our findings support the idea that interactions between consumers and their resources are controlled by different factors for the green and the brown food-webs in tropical forests, where herbivory may not necessarily generate any direct positive or negative feedbacks for nutrient cycling.
Collapse
Affiliation(s)
- Rafael E Cárdenas
- Museo de Zoología QCAZ, Laboratorio de Entomología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
- Institut de Recherche pour le Développement (IRD), UR 072, LEGS-CNRS, UPR 9034, CNRS, Gif-sur-Yvette, Cedex, 91198, France
- Université Paris-Sud 11, Orsay, Cedex, 91405, France
| | - Stephan Hättenschwiler
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE UMR 5175 - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Renato Valencia
- Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Adriana Argoti
- Museo de Zoología QCAZ, Laboratorio de Entomología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Olivier Dangles
- Institut de Recherche pour le Développement (IRD), UR 072, LEGS-CNRS, UPR 9034, CNRS, Gif-sur-Yvette, Cedex, 91198, France
- Université Paris-Sud 11, Orsay, Cedex, 91405, France
| |
Collapse
|
29
|
|
30
|
Colonization of Solidago altissima by the specialist aphid Uroleucon nigrotuberculatum: effects of genetic identity and leaf chemistry. J Chem Ecol 2015; 41:129-38. [PMID: 25616613 DOI: 10.1007/s10886-015-0546-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
In dominant old-field plant species, genotypic variation in traits important for herbivorous insects may explain variation in insect species abundance. While the importance of plant genetic identity on arthropod abundance has been demonstrated, specific factors that drive genotype choice by insects remain largely unknown. Sixteen genotypes of the widely distributed plant species Solidago altissima were used to investigate the possible role of nutrients and terpene secondary metabolites in shaping the abundance of a common specialist aphid, Uroleucon nigrotuberculatum. Ramets were propagated in a greenhouse and then transferred to a natural field setting. After 76 days, aphid abundance was quantified and leaf tissue assayed for nutrients and terpenes. Aphids/g plant biomass significantly differed among genotypes, with a 30-fold difference observed among plant genotypes. Leaf nitrogen, C:N ratio and water did not vary among genotypes. Of eight terpenes quantified, five were influenced by plant genotype. Aphid abundance increased marginally with the concentration of the monoterpene β-pinene in leaf tissue (P = 0.056). A partial least squares analysis determined that nutritional chemicals did not explain aphid responses, while 49% of the variation in aphid colonization among genotypes was explained by terpenes. This study is one of the first to demonstrate that variation in allelochemicals may be related to differences in the abundance of a key herbivore among genotypes of a plant species that exhibits large intraspecific genetic variation.
Collapse
|
31
|
López-Carretero A, Díaz-Castelazo C, Boege K, Rico-Gray V. Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS One 2014; 9:e110430. [PMID: 25340790 PMCID: PMC4207832 DOI: 10.1371/journal.pone.0110430] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks.
Collapse
Affiliation(s)
| | | | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| | - Víctor Rico-Gray
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
32
|
Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJB, Letaw AD, Macdonald AAM, Maclean JE, Myers-Smith IH, Norris AR, Xue X. Assessing the relative importance of neutral stochasticity in ecological communities. OIKOS 2014. [DOI: 10.1111/oik.01493] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mark Vellend
- Dépt de Biologie; Univ. de Sherbrooke; Sherbrooke, QC J1K 2R1 Canada
| | - Diane S. Srivastava
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Kathryn M. Anderson
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Carissa D. Brown
- Dépt de Biologie; Univ. de Sherbrooke; Sherbrooke, QC J1K 2R1 Canada
| | - Jill E. Jankowski
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Elizabeth J. Kleynhans
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Nathan J. B. Kraft
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Alathea D. Letaw
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - A. Andrew M. Macdonald
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Janet E. Maclean
- Dept of Zoology and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | | | - Andrea R. Norris
- Dept of Forest Sciences; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| | - Xinxin Xue
- Dept of Botany and Biodiversity Research Centre; Univ. of British Columbia; Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
33
|
Nakadai R, Murakami M, Hirao T. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 2014; 175:1237-45. [PMID: 24879058 DOI: 10.1007/s00442-014-2964-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/05/2014] [Indexed: 12/01/2022]
Abstract
Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.
Collapse
|
34
|
White T. Experimental and observational evidence reveals that predators in natural environments do not regulate their prey: They are passengers, not drivers. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2013. [DOI: 10.1016/j.actao.2013.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Ikeda DH, Bothwell HM, Lau MK, O'Neill GA, Grady KC, Whitham TG. A genetics-based Universal Community Transfer Function for predicting the impacts of climate change on future communities. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Dana H. Ikeda
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Helen M. Bothwell
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Matthew K. Lau
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Gregory A. O'Neill
- Tree Improvement Branch; British Columbia Ministry of Forests, Lands and Natural Resource Operations; Kalamalka Forestry Centre; 3401 Reservoir Road Vernon British Columbia V1B 2C7 Canada
| | - Kevin C. Grady
- Merriam-Powell Center for Environmental Research; Northern Arizona University; Flagstaff Arizona 86011 USA
- School of Forestry; Northern Arizona University; Flagstaff Arizona 86011 USA
| | - Thomas G. Whitham
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona 86011 USA
- Merriam-Powell Center for Environmental Research; Northern Arizona University; Flagstaff Arizona 86011 USA
| |
Collapse
|
36
|
Holland EP, Pech RP, Ruscoe WA, Parkes JP, Nugent G, Duncan RP. Thresholds in plant–herbivore interactions: predicting plant mortality due to herbivore browse damage. Oecologia 2012. [PMID: 23188054 DOI: 10.1007/s00442-012-2523-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Lamarre GPA, Baraloto C, Fortunel C, Dávila N, Mesones I, Rios JG, Ríos M, Valderrama E, Pilco MV, Fine PVA. Herbivory, growth rates, and habitat specialization in tropical tree lineages: implications for Amazonian beta-diversity. Ecology 2012. [DOI: 10.1890/11-0397.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Barber NA, Wouk J. Winter predation by insectivorous birds and consequences for arthropods and plants in summer. Oecologia 2012; 170:999-1007. [PMID: 22644051 DOI: 10.1007/s00442-012-2367-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|