1
|
Peacor SD, Dorn NJ, Smith JA, Peckham NE, Cherry MJ, Sheriff MJ, Kimbro DL. A skewed literature: Few studies evaluate the contribution of predation-risk effects to natural field patterns. Ecol Lett 2022; 25:2048-2061. [PMID: 35925978 PMCID: PMC9545701 DOI: 10.1111/ele.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
A narrative in ecology is that prey modify traits to reduce predation risk, and the trait modification has costs large enough to cause ensuing demographic, trophic and ecosystem consequences, with implications for conservation, management and agriculture. But ecology has a long history of emphasising that quantifying the importance of an ecological process ultimately requires evidence linking a process to unmanipulated field patterns. We suspected that such process-linked-to-pattern (PLP) studies were poorly represented in the predation risk literature, which conflicts with the confidence often given to the importance of risk effects. We reviewed 29 years of the ecological literature which revealed that there are well over 4000 articles on risk effects. Of those, 349 studies examined risk effects on prey fitness measures or abundance (i.e., non-consumptive effects) of which only 26 were PLP studies, while 275 studies examined effects on other interacting species (i.e., trait-mediated indirect effects) of which only 35 were PLP studies. PLP studies were narrowly focused taxonomically and included only three that examined unmanipulated patterns of prey abundance. Before concluding a widespread and influential role of predation-risk effects, more attention must be given to linking the process of risk effects to unmanipulated patterns observed across diverse ecosystems.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Nathan J Dorn
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California - Davis, Davis, California, USA
| | - Nicole E Peckham
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| | - Michael J Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - David L Kimbro
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Rao R, Shen H. Onchidium reevesii may be able to distinguish low-frequency sound to discriminate the state of tides. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2065439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rongcheng Rao
- National Experimental Teaching Demonstration Center, Shanghai Key Laboratory of Systematic Classification and Evolution of Marine Animals, Shanghai Ocean University, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, People’s Republic of China
| | - Heding Shen
- National Experimental Teaching Demonstration Center, Shanghai Key Laboratory of Systematic Classification and Evolution of Marine Animals, Shanghai Ocean University, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Kimbro DL, Stallings CD, White JW. Diminishing returns in habitat restoration by adding biogenic materials: a test using estuarine oysters and recycled oyster shell. Restor Ecol 2020. [DOI: 10.1111/rec.13227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David L. Kimbro
- Department of Marine and Environmental Sciences, Marine Science Center Northeastern University Nahant MA 01908 U.S.A
| | | | - James W. White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station Oregon State University Newport OR 97365 U.S.A
| |
Collapse
|
4
|
Kimbro DL, Tillotson HG, White JW. Environmental forcing and predator consumption outweigh the nonconsumptive effects of multiple predators on oyster reefs. Ecology 2020; 101:e03041. [PMID: 32134508 DOI: 10.1002/ecy.3041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 01/23/2020] [Indexed: 11/05/2022]
Abstract
The ability to predict how predators structure ecosystems has been shown to depend on identifying both consumptive effects (CEs) and nonconsumptive effects (NCEs) of predators on prey fitness. Prey populations may also be affected by interactions between multiple predators across life stages of the prey and by environmental factors such as disturbance. However, the intersection of these multiple drivers of prey dynamics has yet to be empirically evaluated. We addressed this knowledge gap using eastern oysters (Crassostrea virginica), a species known to suffer NCEs, as the focal prey. Over 4 months, we manipulated orthogonally the life stage (none, juvenile, adult, or both) at which oysters experienced simulated predation (CE) and exposure to olfactory cues of a juvenile oyster predator (crab), adult predator (conch), sequentially the crab and then the conch, or none. We replicated this experiment at three sites along an environmental gradient in a Florida (USA) estuary. For both juvenile and adult oysters, survival was reduced solely by CEs, and variation in growth was best explained by among-site variation in water flow, with a much smaller and negative effect of predator cue. Adults exposed to conch cue exhibited reduced growth (an NCE), but this effect was outweighed by a positive CE on growth: Surviving oysters grew faster at lower densities. Finally, conch cue reduced larval settlement (another NCE), but this was swamped by among-site variation in larval supply. This research highlights how strong environmental gradients and predator CEs may outweigh the influence of NCEs, even in prey known to respond to predator cues. These findings serve as a cautionary tale for the importance of evaluating NCE processes over temporal scales and across environmental gradients relevant to prey demography.
Collapse
Affiliation(s)
- David L Kimbro
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Hanna G Tillotson
- Department of Biology, Florida State University, Tallahassee, Florida, 32306, USA.,Florida Department of Environmental Protection, Tallahassee, Florida, 32399, USA
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| |
Collapse
|
5
|
Grabowski JH, Gouhier TC, Byers JE, Dodd LF, Hughes AR, Piehler MF, Kimbro DL. Regional environmental variation and local species interactions influence biogeographic structure on oyster reefs. Ecology 2019; 101:e02921. [PMID: 31652333 DOI: 10.1002/ecy.2921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 11/11/2022]
Abstract
Although species interactions are often assumed to be strongest at small spatial scales, they can interact with regional environmental factors to modify food web dynamics across biogeographic scales. The eastern oyster (Crassostrea virginica) is a widespread foundational species of both ecological and economic importance. The oyster and its associated assemblage of fish and macroinvertebrates is an ideal system to investigate how regional differences in environmental variables influence trophic interactions and food web structure. We quantified multiple environmental factors, oyster reef properties, associated species, and trophic guilds on intertidal oyster reefs within 10 estuaries along 900 km of the southeastern United States. Geographical gradients in fall water temperature and mean water depth likely influenced regional (i.e., the northern, central and southern sections of the SAB) variation in oyster reef food web structure. Variation in the biomass of mud crabs, an intermediate predator, was mostly (84.1%) explained by reefs within each site, and did not differ substantially among regions; however, regional variation in the biomass of top predators and of juvenile oysters also contributed to biogeographic variation in food web structure. In particular, region explained almost half (40.2%) of the variation in biomass of predators of blue crab, a top predator that was prevalent only in the central region where water depth was greater. Field experiments revealed that oyster mortality due to predation was greatest in the central region, suggesting spatial variation in the importance of trophic cascades. However, high oyster recruitment in the middle region probably compensates for this enhanced predation, potentially explaining why relatively less variation (17.9%) in oyster cluster biomass was explained by region. Region also explained over half of the variation in biomass of mud crab predators (55.2%), with the southern region containing almost an order of magnitude more biomass than the other two regions. In this region, higher water temperatures in the fall corresponded with higher biomass of fish that consume mud crabs and of fish that consume juvenile and forage fish, whereas biomas of their prey (mud crabs and juvenile and forage fish, respectively) was generally low in the southern region. Collectively, these results show how environmental gradients interact with trophic cascades to structure food webs associated with foundation species across biogeographic regions.
Collapse
Affiliation(s)
- Jonathan H Grabowski
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - Luke F Dodd
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, North Carolina, 3431 Arendell Street, Morehead City, 28557, USA
| | - A Randall Hughes
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| | - Michael F Piehler
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, North Carolina, 3431 Arendell Street, Morehead City, 28557, USA
| | - David L Kimbro
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
6
|
Jellison BM, Gaylord B. Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web. Oecologia 2019; 190:955-967. [DOI: 10.1007/s00442-019-04459-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
|
7
|
Renzi JJ, He Q, Silliman BR. Harnessing Positive Species Interactions to Enhance Coastal Wetland Restoration. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00131] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Carroll JM, Church MB, Finelli CM. Periwinkle climbing response to water- and airbone predator chemical cues may depend on home-marsh geography. PeerJ 2018; 6:e5744. [PMID: 30294513 PMCID: PMC6171496 DOI: 10.7717/peerj.5744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
The salt marsh periwinkle, Littorina irrorata, exhibits a spatial refuge from predation by climbing the stems of Spartina alterniflora in order to avoid benthic predators. Salt marsh periwinkles have a broad geographic distribution, and for many species, responses to predators also varies with biogeography. This study sought to determine if the geographical location of the home marsh influenced the response of periwinkles (climbing height) to blue crab predator cues both via air and water. Snails from Louisiana (LA) climbed higher in general than those from North Carolina (NC), regardless of chemical cue. However, LA snails climbed 11 cm higher in the presence of waterborne predators than control snails with no cue, while NC snails only climbed five cm higher in the same comparisons. Airborne chemical cue tended to have snails climbing at intermediate heights. These responses were significantly enhanced when both populations of snails were housed together. Periwinkle response to predator cues was stronger in LA than NC, and so it is possible that the behavioral response of these snails to predators varies with biogeography of the home marsh. Also interestingly, the results of this study also suggest that cue delivery is probably occurring via mechanisms other than water, and potentially via airborne cues. Therefore, salt marsh periwinkles likely respond to numerous cues that initiate behavioral responses, including airborne cues, and these responses may vary by home-marsh geography.
Collapse
Affiliation(s)
- John M Carroll
- Department of Biology, Georgia Southern University, Statesboro, GA, USA.,Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Morgan B Church
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Christopher M Finelli
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|
9
|
Haggerty MB, Anderson TW, Long JD. Fish predators reduce kelp frond loss via a trait-mediated trophic cascade. Ecology 2018; 99:1574-1583. [PMID: 29729184 DOI: 10.1002/ecy.2380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/06/2018] [Indexed: 11/10/2022]
Abstract
Although trophic cascades were originally believed to be driven only by predators eating prey, there is mounting evidence that such cascades can be generated in large part via non-consumptive effects. This is especially important in cascades affecting habitat-forming foundation species that in turn, influence associated communities. Here, we use laboratory and field experiments to identify a trait-mediated indirect interaction between predators and an abundant kelp in a marine temperate reef system. Predation risk from a microcarnivorous fish, the señorita, suppressed grazing by the host-specific seaweed limpet, which in turn, influenced frond loss of the habitat-forming feather boa kelp. This trophic cascade was pronounced because minor amounts of limpet grazing decreased the strength required to break kelp fronds. Cues from fish predators mitigated kelp loss by decreasing limpet grazing; we found 86% of this indirect interaction between predator and kelp was attributed to the non-consumptive effect in the laboratory and 56% when applying the same effect size calculations to the field. In field manipulations, the non-consumptive effect of señorita was as strong as the total predator effect and most importantly, as strong as the uncaged, "open" treatment with natural levels of predators. Our findings demonstrate that the mere presence of this fish reduces frond loss of the feather boa kelp through a trait-mediated trophic cascade. Moreover, despite large volumes of water, current flow, and wave energy, we clearly demonstrate a strong non-consumptive effect via an apparent chemical cue from señorita, suggesting that chemically mediated trait-driven cascades may be more prevalent in subtidal marine systems than we are currently aware.
Collapse
Affiliation(s)
- Miranda B Haggerty
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, 92182-4614, USA
| | - Todd W Anderson
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, 92182-4614, USA
| | - Jeremy D Long
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, 92182-4614, USA
| |
Collapse
|
10
|
Hanley TC, Kimbro DL, Hughes AR. Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure. Ecology 2017; 98:1884-1895. [DOI: 10.1002/ecy.1862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Torrance C. Hanley
- Department of Marine and Environmental Science Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| | - David L. Kimbro
- Department of Marine and Environmental Science Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| | - Anne Randall Hughes
- Department of Marine and Environmental Science Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| |
Collapse
|
11
|
Kimbro DL, Grabowski JH, Hughes AR, Piehler MF, White JW. Nonconsumptive effects of a predator weaken then rebound over time. Ecology 2017; 98:656-667. [PMID: 27987303 DOI: 10.1002/ecy.1702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 01/20/2023]
Abstract
Predators can influence prey traits and behavior (nonconsumptive effects [NCEs]), often with cascading effects for basal resources and ecosystem function. But critiques of NCE experiments suggest that their duration and design produce results that describe the potential importance of NCEs rather than their actual importance. In light of these critiques, we re-evaluated a toadfish (predator), crab (prey), and oyster (resource) NCE-mediated trophic cascade. In a 4-month field experiment, we varied toadfish cue (NCE) and crab density (approximating variation in predator consumptive effects, CE). Toadfish initially benefitted oyster survival by causing crabs to reduce consumption. But this NCE weakened over time (possibly due to prey hunger), so that after 2 months, crab density (CE) dictated oyster survivorship, regardless of cue. However, the NCE ultimately re-emerged on reefs with a toadfish cue, increasing oyster survivorship. At no point did the effect of toadfish cue on mud crab foraging behavior alter oyster population growth or sediment organic matter on the reef, which is a measure of benthic-pelagic coupling. Instead, both decreased with increasing crab density. Thus, within a system shown to exhibit strong NCEs in short-term experiments (days) our study supported predictions from theoretical models: (a) within the generation of individual prey, the relative influence of NCEs appears to cycle over longer time periods (months); and (b) predator CEs, not NCEs, drive longer-term resource dynamics and ecosystem function. Thus, our study implies that the impacts of removing top predators via activities such as hunting and overfishing will cascade to basal resources and ecosystem properties primarily through density-mediated interactions.
Collapse
Affiliation(s)
- David L Kimbro
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Jonathan H Grabowski
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - A Randall Hughes
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Michael F Piehler
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, 28557, USA
| | - J Wilson White
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
| |
Collapse
|
12
|
Zimmer RK, Ferrier GA, Kim SJ, Kaddis CS, Zimmer CA, Loo JA. A multifunctional chemical cue drives opposing demographic processes and structures ecological communities. Ecology 2016; 97:2232-2239. [PMID: 27859065 PMCID: PMC5116919 DOI: 10.1002/ecy.1455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022]
Abstract
Foundation species provide critical resources to ecological community members and are key determinants of biodiversity. The barnacle Balanus glandula is one such species and dominates space among the higher reaches of wave-swept shores (Northeastern Pacific Ocean). This animal produces a cuticular glycoprotein (named "MULTIFUNCin") of 199.6 kDa, and following secretion, a 390 kDa homodimer in native form. From field and lab experiments, we found that MULTIFUNCin significantly induces habitat selection by conspecific larvae, while simultaneously acting as a potent feeding stimulant to a major barnacle predator (whelk, Acanthinucella spirata). Promoting immigration via settlement on the one hand, and death via predation on the other, MULTIFUNCin drives opposing demographic processes toward structuring predator and prey populations. As shown here, a single compound is not restricted to a lone species interaction or sole ecological function. Complex biotic interactions therefore can be shaped by simple chemosensory systems and depend on the multifunctional properties of select bioactive proteins.
Collapse
Affiliation(s)
- Richard K. Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Moreton Bay Research Station, Centre for Marine Science, and School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Queensland, Australia
| | - Graham A. Ferrier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Steven J. Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Catherine S. Kaddis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Cheryl Ann Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Moreton Bay Research Station, Centre for Marine Science, and School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Queensland, Australia
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Griffin JN, Toscano BJ, Griffen BD, Silliman BR. Does relative abundance modify multiple predator effects? Basic Appl Ecol 2015. [DOI: 10.1016/j.baae.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA. PLoS One 2015; 10:e0125095. [PMID: 26275296 PMCID: PMC4537192 DOI: 10.1371/journal.pone.0125095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022] Open
Abstract
Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary’s salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs.
Collapse
|
15
|
Hughes AR, Hanley TC, Orozco NP, Zerebecki RA. Consumer trait variation influences tritrophic interactions in salt marsh communities. Ecol Evol 2015; 5:2659-72. [PMID: 26257878 PMCID: PMC4523361 DOI: 10.1002/ece3.1564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.
Collapse
Affiliation(s)
| | - Torrance C Hanley
- Marine Science Center, Northeastern University Nahant, Massachusetts
| | - Nohelia P Orozco
- Coastal and Marine Laboratory, Florida State University St. Teresa, Florida
| | - Robyn A Zerebecki
- Marine Science Center, Northeastern University Nahant, Massachusetts
| |
Collapse
|
16
|
Nonconsumptive Effects of Predation and Impaired Chemosensory Risk Assessment on an Aquatic Prey Species. INTERNATIONAL JOURNAL OF ECOLOGY 2015. [DOI: 10.1155/2015/894579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Weak levels of acidity impair chemosensory risk assessment by aquatic species which may result in increased predator mortalities in the absence of compensatory avoidance mechanisms. Using replicate populations of wild juvenile Atlantic salmon (Salmo salar) in neutral and acidic streams, we conducted a series of observational studies and experiments to identify differences in behaviours that may compensate for the loss of chemosensory information on predation risk. Comparing the behavioural strategies of fish between neutral and acidic streams may elucidate the influence of environmental degradation on nonconsumptive effects (NCEs) of predation. Salmon in acidic streams are more active during the day than their counterparts in neutral streams, and are more likely to avoid occupying territories offering fewer physical refugia from predators. Captive cross-population transplant experiments indicate that at equal densities, salmon in acidic streams do not demonstrate relative decreases in growth rate as a result of their different behavioural strategies. Instead, altering diel activity patterns to maximize visual information use and occupying relatively safer territories appear sufficient to offset increased predation risk in acidic streams. Additional strategies such as elevated foraging rates during active periods or adopting riskier foraging tactics are necessary to account for the observed similarities in growth rates.
Collapse
|
17
|
Soomdat NN, Griffin JN, McCoy M, Hensel MJS, Buhler S, Chejanovski Z, Silliman BR. Independent and combined effects of multiple predators across ontogeny of a dominant grazer. OIKOS 2014. [DOI: 10.1111/oik.01579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole N. Soomdat
- Dept of Biology; Univ. of Florida; PO Box 118525, Gainesville FL 32611 USA
| | - John N. Griffin
- Dept of Biology; Univ. of Florida; PO Box 118525, Gainesville FL 32611 USA
- College of Science, Swansea Univ.; Swansea SA2 8PP UK
| | - Michael McCoy
- Dept of Biology; Univ. of Florida; PO Box 118525, Gainesville FL 32611 USA
- Dept of Biology; East Carolina Univ.; Greenville NC 27858 USA
| | - Marc J. S. Hensel
- Dept of Biology; Univ. of Florida; PO Box 118525, Gainesville FL 32611 USA
| | - Stephanie Buhler
- Dept of Biology; Univ. of Florida; PO Box 118525, Gainesville FL 32611 USA
| | | | - Brian R. Silliman
- Dept of Biology; Univ. of Florida; PO Box 118525, Gainesville FL 32611 USA
| |
Collapse
|
18
|
Kimbro DL, Byers JE, Grabowski JH, Hughes AR, Piehler MF. The biogeography of trophic cascades on US oyster reefs. Ecol Lett 2014; 17:845-54. [PMID: 24796892 DOI: 10.1111/ele.12293] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
Predators can indirectly benefit prey populations by suppressing mid-trophic level consumers, but often the strength and outcome of trophic cascades are uncertain. We manipulated oyster reef communities to test the generality of potential causal factors across a 1000-km region. Densities of oyster consumers were weakly influenced by predators at all sites. In contrast, consumer foraging behaviour in the presence of predators varied considerably, and these behavioural effects altered the trophic cascade across space. Variability in the behavioural cascade was linked to regional gradients in oyster recruitment to and sediment accumulation on reefs. Specifically, asynchronous gradients in these factors influenced whether the benefits of suppressed consumer foraging on oyster recruits exceeded costs of sediment accumulation resulting from decreased consumer activity. Thus, although predation on consumers remains consistent, predator influences on behaviour do not; rather, they interact with environmental gradients to cause biogeographic variability in the net strength of trophic cascades.
Collapse
Affiliation(s)
- David L Kimbro
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | | | | | | | | |
Collapse
|
19
|
A non-native prey mediates the effects of a shared predator on an ecosystem service. PLoS One 2014; 9:e93969. [PMID: 24718023 PMCID: PMC3981723 DOI: 10.1371/journal.pone.0093969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica) reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria). The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.
Collapse
|
20
|
Hughes AR, Moore AFP, Piehler MF. Independent and interactive effects of two facilitators on their habitat-providing host plant,Spartina alterniflora. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.01035.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Chemical Ecology of Marine Angiosperms: Opportunities at the Interface of Marine and Terrestrial Systems. J Chem Ecol 2013; 39:687-711. [DOI: 10.1007/s10886-013-0297-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
22
|
Pangle KL, Malinich TD, Bunnell DB, DeVries DR, Ludsin SA. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging. Ecosphere 2012. [DOI: 10.1890/es12-00224.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Hughes AR, Rooker K, Murdock M, Kimbro DL. Predator cue and prey density interactively influence indirect effects on basal resources in intertidal oyster reefs. PLoS One 2012; 7:e44839. [PMID: 22970316 PMCID: PMC3436757 DOI: 10.1371/journal.pone.0044839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/13/2012] [Indexed: 12/01/2022] Open
Abstract
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.
Collapse
Affiliation(s)
- A Randall Hughes
- Coastal and Marine Laboratory, Florida State University, St Teresa, Florida, United States of America.
| | | | | | | |
Collapse
|