1
|
Marshall BT, Russell SR, Florisson JH, Saunders BJ, Newman SJ, Harvey ES. The influence of artificial reef structural complexity on fish assemblage composition. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107103. [PMID: 40179461 DOI: 10.1016/j.marenvres.2025.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE built artificial reefs (ARs) are becoming an increasingly popular tool for enhancing recreational fishing activities. This study examined the establishment of fish assemblages at a new AR site in the Exmouth Gulf, Western Australia (King Reef). A remotely operated vehicle fitted with stereo-video (stereo-ROV) was used to survey the fish assemblages associated with four different artificial reef modules (Fish Towers, Apollos, Abitats, and Pyramids). The observation of recreationally targeted species at the AR provides evidence of its potential to contribute to local recreational fisheries. There were differences in the fish assemblages associated with the different modules with the Fish Towers (large subsurface steel buoys) having the highest mean fish abundance and biomass. The design of the modules that are incorporated into an AR design have a considerable influence in shaping the assemblage and biomass of fishes at an AR site. Some differences between module types were not immediately obvious due to the close spacing of modules which created a relatively contiguous fish assemblage across the whole reef field. These results indicate that the characteristics of purpose-built structures that influence the associated fish assemblage can be manipulated to create a design that can fulfil a specific purpose, such as promoting the recruitment and attraction of targeted species to enhance recreational fishing opportunities.
Collapse
Affiliation(s)
- Brooke T Marshall
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Western Australia, Australia.
| | - Sam R Russell
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Western Australia, Australia; Recfishwest, 3/45 Northside Dr, Hillarys, 6025, Western Australia, Australia
| | - James H Florisson
- Recfishwest, 3/45 Northside Dr, Hillarys, 6025, Western Australia, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, WA, 6025, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Western Australia, Australia
| |
Collapse
|
2
|
Kumar A, Singh D, Kumar S, Chauhan N, Singh S. Sunflower mapping using machine learning algorithm in Google Earth Engine platform. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1208. [PMID: 39556277 DOI: 10.1007/s10661-024-13369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
The sunflower crop is one of the most pro sources of vegetable oil globally. It is cultivated all around the world including Haryana, in India. However, its mapping is limited due to the requirement of huge computation power, large data storage capacity, small farm holdings, and information gap on appropriate algorithms and spectral band combinations. Thus, the current work has been done to identify an appropriate machine learning (ML) algorithm (after comparing random forest (RF) and support vector machine (SVM) reported as the best classifiers for land use and land cover) and best band combinations (among the six combinations (including Sentinel-Optical, Sentinel-SAR, and combined-Optical-SAR in single data and time series manner) for Sunflower crop mapping in Ambala and Kurukshetra districts of Haryana using Google Earth Engine (GEE) cloud platform. GEE cloud-computing system combined with RF and SVM provided Sunflower map with an accuracy ranging from 0.0% to 90% in various bands and classifiers combinations but was the highest for the RF with single date optical data. The SVM classifier tuned with parameters like kernel type, degree, gamma, and cost provided better overall accuracy for the classification of land use and land cover along with Sunflower ranging from 98.09% to 98.44% and Kappa coefficient ranging from 0.96 to 0.97 for optical data and combination of SAR and optical time series. The platform is efficient and applicable for a larger part of the country to map Sunflower and other crops with currently identified combinations of satellite data and methodology due to the availability of satellite images, advanced ML algorithms, and analytical modules on a single platform.
Collapse
Affiliation(s)
- Amit Kumar
- Haryana Space Applications Centre, CCS HAU Campus, Hisar, Haryana, India
| | - Dharmendra Singh
- Haryana Space Applications Centre, CCS HAU Campus, Hisar, Haryana, India.
| | - Sunil Kumar
- Haryana Space Applications Centre, CCS HAU Campus, Hisar, Haryana, India
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, India
| | - Nitin Chauhan
- Haryana Space Applications Centre, CCS HAU Campus, Hisar, Haryana, India
| | - Sultan Singh
- Haryana Space Applications Centre, CCS HAU Campus, Hisar, Haryana, India
| |
Collapse
|
3
|
Morton JP, Hensel MJS, DeLaMater DS, Angelini C, Atkins RL, Prince KD, Williams SL, Boyd AD, Parsons J, Resetarits EJ, Smith CS, Valdez S, Monnet E, Farhan R, Mobilian C, Renzi J, Smith D, Craft C, Byers JE, Alber M, Pennings SC, Silliman BR. Mesopredator release moderates trophic control of plant biomass in a Georgia salt marsh. Ecology 2024:e4452. [PMID: 39468868 DOI: 10.1002/ecy.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/30/2024]
Abstract
Predators regulate communities through top-down control in many ecosystems. Because most studies of top-down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short-term and small-scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass, Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3-year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2 plots. Our nekton exclusions increased densities of plant-grazing snails and juvenile deposit-feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect on Spartina biomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects on Spartina than mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer-term experiments can illuminate community dynamics not previously understood, even in well-studied ecosystems such as salt marshes.
Collapse
Affiliation(s)
- Joseph P Morton
- Duke University Marine Lab, Beaufort, North Carolina, USA
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | - Marc J S Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester, Virginia, USA
| | | | - Christine Angelini
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | - Rebecca L Atkins
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kimberly D Prince
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | | | - Anjali D Boyd
- Duke University Marine Lab, Beaufort, North Carolina, USA
| | - Jennifer Parsons
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Emlyn J Resetarits
- Department of Biological Sciences, Barnard College, Columbia University, New York, New York, USA
| | - Carter S Smith
- Duke University Marine Lab, Beaufort, North Carolina, USA
| | | | - Evan Monnet
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Roxanne Farhan
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Courtney Mobilian
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Julianna Renzi
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Dontrece Smith
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Christopher Craft
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Merryl Alber
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | |
Collapse
|
4
|
Reustle JW, Belgrad BA, Pettis E, Smee DL. Hurricanes temporarily weaken human-ecosystem linkages in estuaries. Oecologia 2024; 205:545-559. [PMID: 39009889 DOI: 10.1007/s00442-024-05592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Intense disturbances such as hurricanes may drastically affect ecosystems, producing both acute and long-term changes along coastlines. By disrupting human activities (e.g., fishing), hurricanes can provide an opportunity to quantify the effects of these activities on coastal ecosystems. We performed predator-exclusion experiments on oyster reefs in 2016, one-year before a category-4 hurricane ("Harvey") and again in 2018 one-year post-hurricane where the storm made landfall. Additionally, we examined 8 years (2011-2018) of fisheries-independent data to gauge how fishing pressure and fish populations were affected by the storm in three locations that varied in storm impacts. In the month following Hurricane Harvey, fishing effort dropped by 90% in the area with wind and flooding damage, and predatory fish species commonly targeted by anglers were 300% more abundant than the year prior to the hurricane. The locations without damage to fishing infrastructure did not experience declines in fishing pressure or changes in fish abundance, regardless of flooding disturbance. Reef fish and invertebrate communities directly affected by the storm were significantly different after the hurricane and were ~ 30% more diverse. With low fishing pressure, sportfish CPUE were 1.7-6.9 × higher immediately after the hurricane. Intermediate consumers, such as crabs that prey on oysters, were 45% less abundant and 10% smaller. These results indicate that hurricanes can temporarily disrupt human-ecosystem linkages and reconstitute top-down control by sportfish in estuarine food webs. Disturbance events that interrupt or weaken those interactions may yield indirect ecological benefits and provide insights into the effects of human activities on food webs.
Collapse
Affiliation(s)
- Joseph W Reustle
- Department of Marine and Environmental Science, Hampton University, Hampton, VA, 23368, USA.
| | | | - Evan Pettis
- Texas Parks and Wildlife Department, Rockport, TX, 78382, USA
| | - Delbert L Smee
- Dauphin Island Sea Lab, Dauphin Island, AL, 36695, USA
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
5
|
Hughes BB, Beheshti KM, Tinker MT, Angelini C, Endris C, Murai L, Anderson SC, Espinosa S, Staedler M, Tomoleoni JA, Sanchez M, Silliman BR. Top-predator recovery abates geomorphic decline of a coastal ecosystem. Nature 2024; 626:111-118. [PMID: 38297171 DOI: 10.1038/s41586-023-06959-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/09/2023] [Indexed: 02/02/2024]
Abstract
The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.
Collapse
Affiliation(s)
- Brent B Hughes
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA.
| | - Kathryn M Beheshti
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Nhydra Ecological Research, Head of St Margarets Bay, Nova Scotia, Canada
| | - Christine Angelini
- Department of Environmental Engineering Sciences, Engineering School for Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Charlie Endris
- Moss Landing Marine Laboratories, Geological Oceanography Lab, Moss Landing, CA, USA
| | - Lee Murai
- Division of Regional Assistance, California Department of Water Resources, West Sacramento, CA, USA
| | - Sean C Anderson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sarah Espinosa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Joseph A Tomoleoni
- Western Ecological Research Center, U.S. Geological Survey, Santa Cruz, CA, USA
| | - Madeline Sanchez
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Brian R Silliman
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| |
Collapse
|
6
|
Kohzu A, Matsuzaki SIS, Komuro S, Komatsu K, Takamura N, Nakagawa M, Imai A, Fukushima T. Identifying the true drivers of abrupt changes in ecosystem state with a focus on time lags: Extreme precipitation can determine water quality in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163097. [PMID: 37011685 DOI: 10.1016/j.scitotenv.2023.163097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
A better understanding of abrupt ecosystem changes is needed to improve prediction of future ecosystem states under climate change. Chronological analysis based on long-term monitoring data is an effective way to estimate the frequency and magnitude of abrupt ecosystem changes. In this study, we used abrupt-change detection to differentiate changes of algal community composition in two Japanese lakes and to identify the causes of long-term ecological transitions. Additionally, we focused on finding statistically significant relationships between abrupt changes to aid with factor analysis. To estimate the strengths of driver-response relationships underlying abrupt algal transitions, the timing of the algal transitions was compared to that of abrupt changes in climate and basin characteristics to identify any synchronicities between them. The timing of abrupt algal changes in the two study lakes corresponded most closely to that of heavy runoff events during the past 30-40 years. This strongly suggests that changes in the frequency of extreme events (e.g., heavy rain, prolonged drought) have a greater effect on lake chemistry and community composition than do shifts in the means of climate and basin factors. Our analysis of synchronicity (with a focus on time lags) could provide an easy method to identify better adaptative strategies for future climate change.
Collapse
Affiliation(s)
- Ayato Kohzu
- Regional Environmental Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shin-Ichiro S Matsuzaki
- Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shunsuke Komuro
- Ibaraki Kasumigaura Environmental Science Center, 1853 Okijyuku, Tsuchiura, Ibaraki 300-0023, Japan
| | - Kazuhiro Komatsu
- Regional Environmental Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Department of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-0928, Japan
| | - Noriko Takamura
- Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Megumi Nakagawa
- Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akio Imai
- Regional Environmental Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takehiko Fukushima
- Ibaraki Kasumigaura Environmental Science Center, 1853 Okijyuku, Tsuchiura, Ibaraki 300-0023, Japan
| |
Collapse
|
7
|
She W, Gu J, Holyoak M, Yan C, Qi J, Wan X, Liu S, Xu L, Roberts NJ, Zhang Z, Jiang G. Impacts of top predators and humans on the mammal communities of recovering temperate forest regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160812. [PMID: 36493822 DOI: 10.1016/j.scitotenv.2022.160812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Top predators are important drivers in shaping ecological community structure via top-down effects. However, the ecological consequences and mechanisms of top predator loss under accelerated human impacts have rarely been quantitatively assessed due to the limited availability of long-term community data. With increases in top predator populations in northern China over the past two decades, forests with varying densities of top predators and humans provide an opportunity to study their ecological effects on mammal communities. We hypothesized a priori of conceptual models and tested these using structural equation models (SEMs) with multi-year camera trap data, aiming to reveal the underlying independent ecological effects of top predators (tigers, bears, and leopards) and humans on mammal communities. We used random forest models and correlations among species pairs to validate results. We found that top predator reduction could be related to augmented populations of large ungulates ("large ungulate release") and mesopredators ("mesopredator release"), consistent with observations of mammal communities in other ecosystems. Additionally, top predator reduction could be related to reduced small mammal abundance. Hierarchical SEMs identified three bottom-up pathways from forest quality to human activities, large ungulates, and some small mammals, and five top-down pathways from human activities and top predators to some small mammals, large ungulates, and mesopredators. Furthermore, our results suggest that humans showed predominant top-down effects on multiple functional groups, partially replacing the role of top predators, rather than be mediated by them; effects of humans and top predators appeared largely independent. Effects of humans on top predators were non-significant. This study provides novel insights into the effects of top predators and humans as super-predators on mammal communities in forest ecosystems and presents cues of bottom-up effects that can be translated into actionable management plans for improving forest quality, thereby supporting top predator recovery and work/life activities of local people.
Collapse
Affiliation(s)
- Wen She
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Jiayin Gu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Chuan Yan
- Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jinzhe Qi
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyan Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100083, China
| | - Nathan James Roberts
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Rankin C, Gaston T, Sadat‐Noori M, Glamore W, Morton J, Chalmers A. Innovative Tidal Control Successfully Promotes Saltmarsh Restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caleb Rankin
- University of Newcastle, Australia, School of Environmental and Life Sciences
| | - Troy Gaston
- University of Newcastle, Australia, School of Environmental and Life Sciences
| | - Mahmood Sadat‐Noori
- UNSW Sydney, Australia, School of Civil and Environmental Engineering, Water Research Laboratory
| | - William Glamore
- UNSW Sydney, Australia, School of Civil and Environmental Engineering, Water Research Laboratory
| | - Jason Morton
- Avondale University, Australia, School of Education and Science
| | - Anita Chalmers
- University of Newcastle, Australia, School of Environmental and Life Sciences
| |
Collapse
|
9
|
Seasonal and Zonal Succession of Bacterial Communities in North Sea Salt Marsh Sediments. Microorganisms 2022; 10:microorganisms10050859. [PMID: 35630305 PMCID: PMC9146408 DOI: 10.3390/microorganisms10050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Benthic microbial communities of intertidal zones perform important biogeochemical processes and provide accessible nutrients for higher organisms. To unravel the ecosystem services of salt marsh microbial communities, we analyzed bacterial diversity and metabolic potential along the land–sea transition zone on seasonal scales on the German North Sea Island of Spiekeroog. Analysis of bacterial community was based on amplicon sequencing of 16S rRNA genes and –transcripts. Insights into potential community function were obtained by applying the gene prediction tool tax4fun2. We found that spatial variation of community composition was greater than seasonal variations. Alphaproteobacteria (15%), Gammaproteobacteria (17%) and Planctomycetes (11%) were the most abundant phyla across all samples. Differences between the DNA-based resident and RNA-based active communities were most pronounced within the Planctomycetes (17% and 5%) and Cyanobacteriia (3% and 12%). Seasonal differences were seen in higher abundance of Gammaproteobacteria in March 2015 (25%) and a cyanobacterial summer bloom, accounting for up to 70% of the active community. Taxonomy-based prediction of function showed increasing potentials for nitrification, assimilatory nitrate and sulfate reduction from sea to land, while the denitrification and dissimilatory sulfate reduction increased towards the sea. In conclusion, seasonal differences mainly occurred by blooming of individual taxa, while the overall community composition strongly corresponded to locations. Shifts in their metabolism could drive the salt marsh’s function, e.g., as a potential nitrogen sink.
Collapse
|
10
|
Causal relationships among sea level rise, marsh crab activity, and salt marsh geomorphology. Proc Natl Acad Sci U S A 2022; 119:2111535119. [PMID: 35197284 PMCID: PMC8892326 DOI: 10.1073/pnas.2111535119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Di Muri C, Rosati I, Bardelli R, Cilenti L, Li Veli D, Falco S, Vizzini S, Katselis G, Kevrekidis K, Glamuzina L, Mancinelli G. An individual-based dataset of carbon and nitrogen isotopic data of Callinectes sapidus in invaded Mediterranean waters. Biodivers Data J 2022; 10:e77516. [PMID: 35115881 PMCID: PMC8807565 DOI: 10.3897/bdj.10.e77516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background The characterisation of functional traits of non-indigenous and invasive species is crucial to assess their impact within invaded habitats. Successful biological invasions are often facilitated by the generalist diet of the invaders which can modify their trophic position and adapt to new ecosystems determining changes in their structure and functioning. Invasive crustaceans are an illustrative example of such mechanisms since their trophic habits can determine important ecological impacts on aquatic food webs. The Atlantic blue crab Callinectessapidus is currently established and considered invasive in the Mediterranean Sea where it has been recorded for the first time between 1947 and 1949. In the last decade, the blue crab colonised most of the eastern and central Mediterranean Sea and the Black Sea and it is currently widening its distribution towards the western region of the basin. New information Stable isotope analysis is increasingly used to investigate the trophic habits of invasive marine species. Here, we collated individual measures of the blue crab δ13C and δ15N values and of its potential invertebrate prey into a geo-referenced dataset. The dataset includes 360 records with 236 isotopic values of the blue crab and 224 isotopic data of potential prey collected from five countries and 12 locations between 2014 and 2019. This dataset allows the estimation of the trophic position of the blue crab within a variety of invaded ecosystems, as well as advanced quantitative comparisons of the main features of its isotopic niche.
Collapse
|
12
|
Beheshti K, Endris C, Goodwin P, Pavlak A, Wasson K. Burrowing crabs and physical factors hasten marsh recovery at panne edges. PLoS One 2022; 17:e0249330. [PMID: 34986154 PMCID: PMC8730443 DOI: 10.1371/journal.pone.0249330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Salt marsh loss is projected to increase as sea-level rise accelerates with global climate change. Salt marsh loss occurs along both lateral creek and channel edges and in the marsh interior, when pannes expand and coalesce. Often, edge loss is attributed to erosive processes whereas dieback in the marsh interior is linked to excessive inundation or deposition of wrack, but remains poorly understood. We conducted a two-year field investigation in a central California estuary to identify key factors associated with panne contraction or expansion. Our study explored how an abundant burrowing crab, shown to have strong negative effects on marsh biomass near creek edges, affects panne dynamics. We also explored which physical panne attributes best predicted their dynamics. To our knowledge, ours is the first study of panne dynamics in a California marsh, despite how ubiquitous pannes are as a feature of marshes in the region and how often extensive marsh dieback occurs via panne expansion. Overall, we found that pannes contracted during the study period, but with variable rates of marsh recovery across pannes. Our model incorporating both physical and biological factors explained 86% of the variation in panne contraction. The model revealed a positive effect of crab activity, sediment accretion, and a composite of depth and elevation on panne contraction, and a negative effect of panne size and distance to nearest panne. The positive crab effects detected in pannes contrast with negative effects we detected near creek edges in a previous study, highlighting the context-dependence of top-down and bioturbation effects in marshes. As global change continues and the magnitude and frequency of disturbances increases, understanding the dynamics of marsh loss in the marsh interior as well as creek banks will be critical for the management of these coastal habitats.
Collapse
Affiliation(s)
- Kathryn Beheshti
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States of America
- Marine Science Institute, University of California, Santa Barbara, CA, United States of America
- * E-mail:
| | - Charlie Endris
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, CA, United States of America
| | - Peter Goodwin
- Center for Environmental Science, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Annabelle Pavlak
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States of America
| | - Kerstin Wasson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States of America
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, CA, United States of America
| |
Collapse
|
13
|
Baumann JH, Zhao L, Stier AC, Bruno JF. Remoteness does not enhance coral reef resilience. GLOBAL CHANGE BIOLOGY 2022; 28:417-428. [PMID: 34668280 PMCID: PMC8671335 DOI: 10.1111/gcb.15904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
Collapse
Affiliation(s)
- Justin H. Baumann
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3300 USA
- Biology Department, Bowdoin College, Brunswick, Maine, 04011 USA
- Correspondence to: or
| | - Lily Zhao
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - John F. Bruno
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Correspondence to: or
| |
Collapse
|
14
|
Beheshti KM, Williams SL, Boyer KE, Endris C, Clemons A, Grimes T, Wasson K, Hughes BB. Rapid enhancement of multiple ecosystem services following the restoration of a coastal foundation species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02466. [PMID: 34614246 PMCID: PMC9285811 DOI: 10.1002/eap.2466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The global decline of marine foundation species (kelp forests, mangroves, salt marshes, and seagrasses) has contributed to the degradation of the coastal zone and threatens the loss of critical ecosystem services and functions. Restoration of marine foundation species has had variable success, especially for seagrasses, where a majority of restoration efforts have failed. While most seagrass restorations track structural attributes over time, rarely do restorations assess the suite of ecological functions that may be affected by restoration. Here we report on the results of two small-scale experimental seagrass restoration efforts in a central California estuary where we transplanted 117 0.25-m2 plots (2,340 shoots) of the seagrass species Zostera marina. We quantified restoration success relative to persistent reference beds, and in comparison to unrestored, unvegetated areas. Within three years, our restored plots expanded ~8,500%, from a total initial area of 29 to 2,513 m2 . The restored beds rapidly began to resemble the reference beds in (1) seagrass structural attributes (canopy height, shoot density, biomass), (2) ecological functions (macrofaunal species richness and abundance, epifaunal species richness, nursery function), and (3) biogeochemical functions (modulation of water quality). We also developed a multifunctionality index to assess cumulative functional performance, which revealed restored plots are intermediate between reference and unvegetated habitats, illustrating how rapidly multiple functions recovered over a short time period. Our comprehensive study is one of few published studies to quantify how seagrass restoration can enhance both biological and biogeochemical functions. Our study serves as a model for quantifying ecosystem services associated with the restoration of a foundation species and demonstrates the potential for rapid functional recovery that can be achieved through targeted restoration of fast-growing foundation species under suitable conditions.
Collapse
Affiliation(s)
- Kathryn M. Beheshti
- Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCalifornia95060USA
| | - Susan L. Williams
- Department of Ecology and Evolutionary BiologyUniversity of California, DavisDavisCalifornia95616USA
| | - Katharyn E. Boyer
- Estuary & Ocean Science CenterSan Francisco State UniversityTiburonCalifornia94920USA
| | - Charlie Endris
- Moss Landing Marine LaboratoriesMoss LandingCalifornia95039USA
| | - Annakate Clemons
- Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCalifornia95060USA
| | - Tracy Grimes
- Department of EcologySan Diego State UniversitySan DiegoCalifornia92182USA
| | - Kerstin Wasson
- Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCalifornia95060USA
- Elkhorn Slough National Estuarine Research ReserveRoyal OaksCalifornia95076USA
| | - Brent B. Hughes
- Department of BiologySonoma State UniversityRohnert ParkCalifornia94928USA
| |
Collapse
|
15
|
Kyzar T, Safak I, Cebrian J, Clark MW, Dix N, Dietz K, Gittman RK, Jaeger J, Radabaugh KR, Roddenberry A, Smith CS, Sparks EL, Stone B, Sundin G, Taubler M, Angelini C. Challenges and opportunities for sustaining coastal wetlands and oyster reefs in the southeastern United States. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113178. [PMID: 34225043 DOI: 10.1016/j.jenvman.2021.113178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Formed at the confluence of marine and fresh waters, estuaries experience both the seaside pressures of rising sea levels and increasing storm severity, and watershed and precipitation changes that are shifting the quality and quantity of freshwater and sediments delivered from upstream sources. Boating, shoreline hardening, harvesting pressure, and other signatures of human activity are also increasing as populations swell in coastal regions. Given this shifting landscape of pressures, the factors most threatening to estuary health and stability are often uncertain. To identify the greatest contemporary threats to coastal wetlands and oyster reefs across the southeastern United States (Mississippi to North Carolina), we summarized recent population growth and land-cover change and surveyed estuarine management and science experts. From 1996 to 2019, human population growth in the region varied from a 17% decrease to a 171% increase (mean = +43%) with only 5 of the 72 SE US counties losing population, and nearly half growing by more than 40%. Individual counties experienced between 999 and 19,253 km2 of new development (mean: 5725 km2), with 1-5% (mean: 2.6%) of undeveloped lands undergoing development over this period across the region. Correspondingly, our survey of 169 coastal experts highlighted development, shoreline hardening, and upstream modifications to freshwater flow as the most important local threats facing coastal wetlands. Similarly, experts identified development, upstream modifications to freshwater flow, and overharvesting as the most important local threats to oyster reefs. With regards to global threats, experts categorized sea level rise as the most pressing to wetlands, and acidification and precipitation changes as the most pressing to oyster reefs. Survey respondents further identified that more research, driven by collaboration among scientists, engineers, industry professionals, and managers, is needed to assess how precipitation changes, shoreline hardening, and sea level rise are affecting coastal ecosystem stability and function. Due to the profound role of humans in shaping estuarine health, this work highlights that engaging property owners, recreators, and municipalities to implement strategies to improve estuarine health will be vital for sustaining coastal systems in the face of global change.
Collapse
Affiliation(s)
- Tricia Kyzar
- Department of Urban and Regional Planning, University of Florida, Gainesville, FL, USA.
| | - Ilgar Safak
- Department of Civil and Coastal Engineering, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA; Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Eski Silahtaraga Elektrik Santrali, 34060, Eyupsultan, Istanbul, Turkey
| | - Just Cebrian
- Northern Gulf Institute, Mississippi State University, Stennis Space Center, MS, USA
| | - Mark W Clark
- Department of Soil and Water Sciences, University of Florida, Gainesville, FL, USA
| | - Nicole Dix
- Guana Tolomato Matanzas National Estuarine Research Reserve, Ponte Vedra, FL, USA
| | - Kaitlyn Dietz
- Guana Tolomato Matanzas National Estuarine Research Reserve, Ponte Vedra, FL, USA
| | - Rachel K Gittman
- Department of Biology and Coastal Studies Institute, Eastern Carolina University, Greenville, NC, USA
| | - John Jaeger
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Kara R Radabaugh
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | - Annie Roddenberry
- Florida Fish and Wildlife Conservation Commission, New Smyrna Beach, FL, USA
| | - Carter S Smith
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC, USA
| | - Eric L Sparks
- Coastal Research and Extension Center, Mississippi State University, Biloxi, MS, USA; Mississippi-Alabama Sea Grant Consortium, Ocean Springs, MS, USA
| | - Benjamin Stone
- South Carolina Department of Natural Resources, Marine Resources Division, Charleston, SC, USA
| | - Gary Sundin
- South Carolina Department of Natural Resources, Marine Resources Division, Charleston, SC, USA
| | - Michelle Taubler
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Christine Angelini
- Department of Civil and Coastal Engineering, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA; Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Hočevar S, Kuparinen A. Marine food web perspective to fisheries-induced evolution. Evol Appl 2021; 14:2378-2391. [PMID: 34745332 PMCID: PMC8549614 DOI: 10.1111/eva.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Fisheries exploitation can cause genetic changes in heritable traits of targeted stocks. The direction of selective pressure forced by harvest acts typically in reverse to natural selection and selects for explicit life histories, usually for younger and smaller spawners with deprived spawning potential. While the consequences that such selection might have on the population dynamics of a single species are well emphasized, we are just beginning to perceive the variety and severity of its propagating effects within the entire marine food webs and ecosystems. Here, we highlight the potential pathways in which fisheries-induced evolution, driven by size-selective fishing, might resonate through globally connected systems. We look at: (i) how a size truncation may induce shifts in ecological niches of harvested species, (ii) how a changed maturation schedule might affect the spawning potential and biomass flow, (iii) how changes in life histories can initiate trophic cascades, (iv) how the role of apex predators may be shifting and (v) whether fisheries-induced evolution could codrive species to depletion and biodiversity loss. Globally increasing effective fishing effort and the uncertain reversibility of eco-evolutionary change induced by fisheries necessitate further research, discussion and precautionary action considering the impacts of fisheries-induced evolution within marine food webs.
Collapse
Affiliation(s)
- Sara Hočevar
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
17
|
Beheshti KM, Wasson K, Angelini C, Silliman BR, Hughes BB. Long‐term study reveals top‐down effect of crabs on a California salt marsh. Ecosphere 2021. [DOI: 10.1002/ecs2.3703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kathryn M. Beheshti
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95064 USA
| | - Kerstin Wasson
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95064 USA
- Elkhorn Slough National Estuarine Research Reserve Royal Oaks California 95076 USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences Engineering School of Sustainable Infrastructure and Environment University of Florida Gainesville Florida 32611 USA
| | - Brian R. Silliman
- Division of Marine Science and Conservation Nicholas School of the Environment Duke University Beaufort North Carolina 28516 USA
| | - Brent B. Hughes
- Department of Biology Sonoma State University Rohnert Park California 94928 USA
| |
Collapse
|
18
|
Moore AC, Schmitz OJ. Do predators have a role to play in wetland ecosystem functioning? An experimental study in New England salt marshes. Ecol Evol 2021; 11:10956-10967. [PMID: 34429894 PMCID: PMC8366883 DOI: 10.1002/ece3.7880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
The historical ecological paradigm of wetland ecosystems emphasized the role of physical or "bottom-up" factors in maintaining functions and services. However, recent studies have shown that the loss of predators in coastal salt marshes can lead to a significant reduction in wetland extent due to overgrazing of vegetation by herbivores. Such studies indicate that consumers or "top-down" factors may play a much larger role in the maintenance of wetland ecosystems than was previously thought. The objective of this study was to evaluate whether altering top-down control by manipulating the presence of predators can lead to measurable changes in salt marsh ecosystem properties. Between May and August of 2015 and 2016, we established exclosure and enclosure cages within three New England coastal wetland areas and manipulated the presence of green crab predators to assess how they and their fiddler and purple marsh crab prey affect changes in ecosystem properties. Predator presence was associated with changes in soil nitrogen and aboveground biomass at two of the three field sites, though the magnitude and direction of these effects varied from site to site. Further, path analysis results indicate that across field sites, a combination of bottom-up and top-down factors influenced changes in measured variables. These results challenge the growing consensus that consumers have strong effects, indicating instead that predator impacts may be highly context-dependent.
Collapse
|
19
|
Vu HD, Pennings SC. Directional movement of consumer fronts associated with creek heads in salt marshes. Ecology 2021; 102:e03447. [PMID: 34161605 DOI: 10.1002/ecy.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 11/10/2022]
Abstract
Consumers often deplete local resources and aggregate along edges of remaining resources, forming "consumer fronts." We examined the factors that promote Sesarma reticulatum crab aggregations at saltmarsh creek heads to explain the directional but slow movement of these fronts. We also created artificial creek heads to test the hypothesis that hydrological conditions at creek heads create superior habitat for crabs. Soil temperatures were ˜11-12% cooler, hydrogen sulfide concentrations lower (0.0 vs. ˜0.58 mg/L), and dissolved oxygen concentrations twofold higher at the creek head versus the marsh platform. In the artificial creek-head experiment, altering hydrological conditions led to lower dissolved sulfide levels, higher dissolved oxygen levels, and increased densities of crab burrows and Sesarma crabs. Moreover, the elevation of the soil surface declined rapidly at artificial creek heads versus controls, suggesting that crabs were increasing erosion. Our results suggest that abiotic conditions for crabs are better at the leading edge of the creek head than the trailing edge, explaining the directional movement of the front. Moreover, the speed at which the front propagates appears to be limited by the rate at which the creekhead erodes, rather than by crab mobility. The directional and slow movement of Sesarma fronts compared to consumer fronts of other invertebrates appears to result from the inextricable link between Sesarma and marsh geomorphology, whereas other consumer fronts are associated mostly with food resources.
Collapse
Affiliation(s)
- Huy D Vu
- Department of Biology and Biochemistry, University of Houston, Houston Texas, 77204, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston Texas, 77204, USA
| |
Collapse
|
20
|
Qian W, Chen J, Zhang Q, Wu C, Ma Q, Silliman BR, Wu J, Li B, He Q. Top-down control of foundation species recovery during coastal wetland restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144854. [PMID: 33486186 DOI: 10.1016/j.scitotenv.2020.144854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Restoration has been increasingly adopted to halt trends in coastal wetland loss globally. Existing restoration often assumes that once abiotic stress is relieved, disturbances are prevented, and invasive species are eradicated, coastal wetlands will recover if propagules of native species are supplied either through natural dispersal or planting. Whether other factors including consumers can help explain the often suboptimal performance of existing restoration remains poorly understood. In a series of field experiments in the Yangtze estuary, we examined the relative importance of abiotic stress and crab grazing in regulating the recovery of the native foundation plant species Scirpus mariqueter in salt marsh areas where exotic cordgrass was successfully eradicated. We found that grazing by herbivorous crabs, rather than abiotic stress, was the primary obstacle restricting the recovery of planted Scirpus. This negative effect of crab grazing varied predictably across elevation and was strongest at low elevations where abiotic conditions were positive for Scirpus. These findings highlight that i) measures to control crab grazing are needed to enhance the success of Scirpus restoration, even in areas where abiotic conditions are set to be optimal, and ii) restoration measures purely focused on reducing abiotic stress could be ineffective or suboptimal in field conditions, likely jeopardizing restoration investment and success. Since top-down control of foundation plant species is common in many coastal wetlands and can be especially important in degraded systems where herbivores are abundant, we urge that future coastal wetland restoration assesses for the impacts of grazers and, when present, apply intervention measures.
Collapse
Affiliation(s)
- Wanqing Qian
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jianshe Chen
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qun Zhang
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Shanghai Academy of Landscape Architecture Science and Planning, NO. 899 Longwu Road, Shanghai 200232, China
| | - Changlu Wu
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qiang Ma
- Chongming Dongtan National Nature Reserve, Shanghai 202183, China
| | - Brian R Silliman
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke Unviersity, Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Jihua Wu
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bo Li
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qiang He
- Coastal Ecology Lab, National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
21
|
van Doan C, Pfander M, Guyer AS, Zhang X, Maurer C, Robert CA. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO 2, temperature, and precipitation patterns. Ecol Evol 2021; 11:4182-4192. [PMID: 33976802 PMCID: PMC8093683 DOI: 10.1002/ece3.7314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Climate change will profoundly alter the physiology and ecology of plants, insect herbivores, and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on the third trophic level remain rare. Here, we assessed how exposure to elevated CO2, increased temperature, and decreased precipitation directly affect the performance and predation success of species from four major groups of herbivore natural enemies: an entomopathogenic nematode, a wolf spider, a ladybug, and a parasitoid wasp. A four-day exposure to future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature, and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but it was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores may be well adapted to short-term changes in climatic conditions. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate-dependent changes in multitrophic interaction networks.
Collapse
Affiliation(s)
- Cong van Doan
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| | - Marc Pfander
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Anouk S. Guyer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
AgroscopeWädenswilSwitzerland
| | - Xi Zhang
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Corina Maurer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
Agroecology and EnvironmentAgroscopeZürichSwitzerland
| | - Christelle A.M. Robert
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| |
Collapse
|
22
|
Raymond WW, Hughes BB, Stephens TA, Mattson CR, Bolwerk AT, Eckert GL. Testing the generality of sea otter‐mediated trophic cascades in seagrass meadows. OIKOS 2021. [DOI: 10.1111/oik.07681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wendel W. Raymond
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Brent B. Hughes
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
- Dept of Biology, Sonoma State Univ. Rohnert Park CA USA
| | - Tiffany A. Stephens
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Catherine R. Mattson
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Ashley T. Bolwerk
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Ginny L. Eckert
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| |
Collapse
|
23
|
Trophic ecology of the Atlantic blue crab Callinectes sapidus as an invasive non-native species in the Aegean Sea. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02506-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Wasson K, Tanner KE, Woofolk A, McCain S, Suraci JP. Top-down and sideways: Herbivory and cross-ecosystem connectivity shape restoration success at the salt marsh-upland ecotone. PLoS One 2021; 16:e0247374. [PMID: 33617558 PMCID: PMC7899356 DOI: 10.1371/journal.pone.0247374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Wetland restoration provides remarkable opportunities to understand vegetation dynamics and to inform success of future projects through rigorous restoration experiments. Salt marsh restoration typically focuses on physical factors such as sediment dynamics and elevation. Despite many demonstrations of strong top-down effects on salt marshes, the potential for consumers to affect salt marsh restoration projects has rarely been quantified. Recently, major restoration projects at the Elkhorn Slough National Estuarine Research Reserve in central California, USA provided an opportunity to examine how herbivory influences restoration success. We quantified the strength of consumer effects by comparing caged to uncaged plantings, and compared effects among plant species and sites. We used camera traps to detect which herbivores were most common and how their abundance varied spatially. Beyond characterizing consumer effects, we also tested management strategies for reducing negative effects of herbivory at the restoration sites, including caging, mowing, and acoustic playbacks of predator sounds. We found extremely strong consumer effects at sites with extensive stands of exotic forbs upland of the high marsh; uncaged restoration plants suffered heavy herbivory and high mortality, while most caged plants survived. Brush rabbits (Sylvilagus bachmani) were by far the most frequent consumers of these high marsh plants. Our work thus provides the first evidence of mammal consumers affecting salt marsh restoration success. Mowing of tall exotic forb cover adjacent to the marsh at one restoration site greatly reduced consumption, and nearly all monitored plantings survived at a second restoration site where construction had temporarily eliminated upland cover. Playbacks of predator sounds did not significantly affect restoration plantings, but restoration efforts in marsh communities vulnerable to terrestrial herbivory may benefit from concurrent restoration of predator communities in the upland habitats surrounding the marsh. A landscape approach is thus critical for recognizing linkages between terrestrial and marine vegetation.
Collapse
Affiliation(s)
- Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, California, United States of America
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
- * E-mail:
| | - Karen E. Tanner
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| | - Andrea Woofolk
- Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, California, United States of America
| | - Sean McCain
- California Department of Fish and Wildlife, Sacramento, California, United States of America
| | - Justin P. Suraci
- Environmental Studies, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
25
|
Raynal J, Weeks R, Pressey R, Adams A, Barnett A, Cooke S, Sheaves M. Habitat-dependent outdoor recreation and conservation organizations can enable recreational fishers to contribute to conservation of coastal marine ecosystems. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Walker JB, Rinehart SA, White WK, Grosholz ED, Long JD. Local and regional variation in effects of burrowing crabs on plant community structure. Ecology 2020; 102:e03244. [PMID: 33191507 DOI: 10.1002/ecy.3244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022]
Abstract
Burrowing animals can profoundly influence the structure of surrounding communities, as well as the performance of individual species. Changes in the community structure of burrowing animals or plants together with changing abiotic parameters could shift the influence of burrowers on surrounding habitats. For example, prior studies in salt marshes suggest that fiddler crabs stimulate cordgrass production, but leaf-grazing crabs suppress cordgrass production. Unfortunately, testing this prediction and others are impeded because few studies have examined crab impacts on the plant community and across multiple sites, multiple years, or both. This challenges our ability to predict how burrowing animals will influence plant community structure, and when and where these impacts will occur. We manipulated the densities of the dominant burrowing crabs in plant assemblages dominated by Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica) at three sites in southern California for three years (2016, 2017, 2018). Crab impacts on plant community structure differed among each of our three sites. In contrast to our predictions, (1) leaf-grazing crabs (Pachygrapsus crassipes) had positive effects on cordgrass cover at one site and no effect on cordgrass production at a nearby site in the same marsh and (2) fiddler crabs (Uca crenulata) did not stimulate cordgrass production at another marsh. Because crabs affected traits of cordgrass, but not pickleweed, in the direction consistent with changes in cordgrass cover, we propose that marsh-specific crab effects on community structure were largely mediated through changes in cordgrass, as opposed to pickleweed. Importantly, crabs facilitated cordgrass during marsh-wide cordgrass loss, suggesting that crabs may mitigate environmental stress for this ecologically important plant. Because cordgrass abundance can be a critical measure of marsh functioning and is often a restoration target, we suggest that managing cordgrass populations would benefit from additional information about crab populations and their impacts among years, and among and within marshes.
Collapse
Affiliation(s)
- Janet B Walker
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, California, 92182, USA.,Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Shelby A Rinehart
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91905, Israel
| | - Wendi K White
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, California, 92182, USA
| | - Edwin D Grosholz
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Jeremy D Long
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, California, 92182, USA
| |
Collapse
|
27
|
He Q, Li H, Xu C, Sun Q, Bertness MD, Fang C, Li B, Silliman BR. Consumer regulation of the carbon cycle in coastal wetland ecosystems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190451. [PMID: 33131445 DOI: 10.1098/rstb.2019.0451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Despite escalating anthropogenic alteration of food webs, how the carbon cycle in ecosystems is regulated by food web processes remains poorly understood. We quantitatively synthesize the effects of consumers (herbivores, omnivores and carnivores) on the carbon cycle of coastal wetland ecosystems, 'blue carbon' ecosystems that store the greatest amount of carbon per unit area among all ecosystems. Our results reveal that consumers strongly affect many processes of the carbon cycle. Herbivores, for example, generally reduce carbon absorption and carbon stocks (e.g. aboveground plant carbon by 53% and aboveground net primary production by 23%) but may promote some carbon emission processes (e.g. litter decomposition by 32%). The average strengths of these effects are comparable with, or even times higher than, changes driven by temperature, precipitation, nitrogen input, CO2 concentration, and plant invasions. Furthermore, consumer effects appear to be stronger on aboveground than belowground carbon processes and vary markedly with trophic level, body size, thermal regulation strategy and feeding type. Despite important knowledge gaps, our results highlight the powerful impacts of consumers on the carbon cycle and call for the incorporation of consumer control into Earth system models that predict anthropogenic climate change and into management strategies of Earth's carbon stocks. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Haoran Li
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Changlin Xu
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qingyan Sun
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Mark D Bertness
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02516, USA
| | - Changming Fang
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Bo Li
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Brian R Silliman
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| |
Collapse
|
28
|
Aguilera MA, Valdivia N, Broitman BR, Jenkins SR, Navarrete SA. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 2020; 101:e03150. [PMID: 32730670 DOI: 10.1002/ecy.3150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 11/06/2022]
Abstract
Ongoing climate change is shifting the geographic distributions of some species, potentially imposing rapid changes in local community structure and ecosystem functioning. Besides changes in population-level interspecific interactions, such range shifts may also cause changes in functional structure within the host assemblages, which can result in losses or gains in ecosystem functions. Because consumer-resource dynamics are central to community regulation, functional reorganization driven by introduction of new consumer species can have large consequences on ecosystem functions. Here we experimentally examine the extent to which the recent poleward range expansion of the intertidal grazer limpet Scurria viridula along the coast of Chile has altered the role of the resident congeneric limpet S. zebrina, and whether the net collective impacts, and functional structure, of the entire herbivore guild have been modified by the introduction of this new member. We examined the functional role of Scurria species in controlling ephemeral algal cover, bare rock availability, and species richness and diversity, and compared the effects in the region of range overlap against their respective "native" abutted ranges. Experiments showed depression of per capita effects of the range-expanded species within the region of overlap, suggesting environmental conditions negatively affect individual performance. In contrast, effects of S. zebrina were commonly invariant at its range edge. When comparing single species versus polycultures, effects on bare rock cover were altered by the presence of the other Scurria species, suggesting competition between Scurria species. Importantly, although the magnitude of S. viridula effects at the range overlap was reduced, its addition to the herbivore guild seems to complement and intensify the role of the guild in reducing green algal cover, species richness and increasing bare space provision. Our study thus highlights that range expansion of an herbivore can modify the functional guild structure in the recipient community. It also highlights the complexity of predicting how functional structure may change in the face of natural or human-induced range expansions. There is a need for more field-based examination of regional functional compensation, complementarity, or inhibition before we can construct a conceptual framework to anticipate the consequences of species range expansions.
Collapse
Affiliation(s)
- Moisés A Aguilera
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Ossandón 877, Coquimbo, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5110236, Chile.,Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile
| | - Bernardo R Broitman
- Departamento de Ciencias Biológicas, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Viña de Mar, Chile
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| |
Collapse
|
29
|
Smee DL, Reustle JW, Belgrad BA, Pettis EL. Storms promote ecosystem resilience by alleviating fishing. Curr Biol 2020; 30:R869-R870. [PMID: 32750343 DOI: 10.1016/j.cub.2020.06.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Marine ecosystems face numerous challenges from natural and anthropogenic sources. For example, excessive rainfall from storms rapidly lowers salinity, which can destroy coastal foundation species and their associated fauna [1], while fishing can alter coastal food webs, reduce biodiversity, and lower ecosystem resilience [2]. Concurrently, mass disruptions to fishing activity are common following disasters such as hurricanes, oil spills, and tsunamis, which may lead to increased populations of harvested species [3]. However, our understanding of how these disturbances interact to affect communities remains limited. We examined effects on estuarine communities following fishing disruptions and salinity changes caused by a tropical cyclone. Our results indicate that recreational fishing had large effects on fish populations that cascaded down the food web. Further, although destructive, hurricanes and other disturbances that simultaneously curtail human activities may promote recovery. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Delbert L Smee
- Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA; Department of Marine Sciences, University of South Alabama, Mobile, AL 36688, USA.
| | | | | | - Evan L Pettis
- Texas Parks and Wildlife Department, Rockport, TX 78382, USA
| |
Collapse
|
30
|
Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proc Natl Acad Sci U S A 2020; 117:17891-17902. [PMID: 32661151 PMCID: PMC7395507 DOI: 10.1073/pnas.1917869117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human disturbances, climate change, and their combined effects on species distributions and environmental conditions are increasingly modifying the organization of our world’s oceans, forests, grasslands, wetlands, tundras, and reefs. Here, we reveal that these contemporary conditions can trigger the emergence of novel keystone species. Across the southeastern US coastal plain, sea-level rise is outpacing salt marsh vertical accretion, causing these grasslands to be tidally inundated for longer and softening marsh substrates to levels optimal for crab burrowing. Using field experiments, measurements, surveys, and models, we show that these conditions amplify the burrowing and grazing effects of a previously inconspicuous crab, enabling it to redefine predator–prey interactions, eco-geomorphic feedbacks, and the mechanisms by which salt marshes are responding to climate change. Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer—the marsh crab Sesarma reticulatum—is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting “Sesarma-grazed” creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma-grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions.
Collapse
|
31
|
McElroy EJ, Sustaita D, McBrayer LD. Applied Functional Biology: Linking Ecological Morphology to Conservation and Management. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synopsis
Many researchers work at the interface of organisms and environment. Too often, the insights that organismal, or functional, biologists can bring to the understanding of natural history, ecology, and conservation of species are overlooked. Likewise, natural resource managers are frequently focused on the management of populations and communities, while ignoring key functional traits that might explain variation in abundance and shifts in species composition at these ecological levels. Our intention for this symposium is two-fold: (1) to bring to light current and future research in functional and ecological morphology applicable to concerns and goals of wildlife management and conservation and (2) to show how such studies can result in measurable benchmarks useful to regulatory agencies. Symposium topics reveal past, present, and future collaborations between functional morphologists/biomechanists and conservation/wildlife biologists. During the SICB 2020 Annual Meeting, symposium participants demonstrated how data gathered to address fundamental questions regarding the causes and consequences of organismal form and function can also help address issues of conservation and wildlife management. Here we review how these, and other, studies of functional morphology, biomechanics, ecological development morphology and performance can inform wildlife conservation and management, principally by identifying candidate functional traits that have clear fitness consequences and population level implications.
Collapse
Affiliation(s)
- Eric J McElroy
- Department of Biology, College of Charleston, Charleston, SC 29412, USA
| | - Diego Sustaita
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Lance D McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
32
|
Noto AE, Hughes AR. Intraspecific diversity at two trophic levels influences plant–herbivore interactions. Ecosphere 2020. [DOI: 10.1002/ecs2.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Akana E. Noto
- Northeastern University Marine Science Center 430 Nahant Road Nahant Massachusetts 01908 USA
| | - A. Randall Hughes
- Northeastern University Marine Science Center 430 Nahant Road Nahant Massachusetts 01908 USA
| |
Collapse
|
33
|
Moore A, Fauset E, Asher F. Consumer impacts on ecosystem functions in coastal wetlands: The data gap. Ecosphere 2020. [DOI: 10.1002/ecs2.3042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Alexandria Moore
- Center for Biodiversity and Conservation American Museum of Natural History New York New York10024USA
| | - Emma Fauset
- Science Research Mentoring Program Department of Education American Museum of Natural History New York New York10024USA
| | - Frederick Asher
- Science Research Mentoring Program Department of Education American Museum of Natural History New York New York10024USA
| |
Collapse
|
34
|
Effects of Changing Vegetation Composition on Community Structure, Ecosystem Functioning, and Predator–Prey Interactions at the Saltmarsh-Mangrove Ecotone. DIVERSITY 2019. [DOI: 10.3390/d11110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decreasing frequency of freeze events due to climate change is enabling the poleward range expansion of mangroves. As these tropical trees expand poleward, they are replacing herbaceous saltmarsh vegetation. Mangroves and saltmarsh vegetation are ecosystem engineers that are typically viewed as having similar ecosystem functions. However, few studies have investigated whether predation regimes, community structure, and ecosystem functions are shifting at the saltmarsh-mangrove ecotone. In this study, we manipulated predator access to marsh and mangrove creekside habitats to test their role in mediating vegetation and invertebrate structure and stability in a two-year experiment. We also conducted a survey to evaluate how shifting vegetation is modifying structural complexity, invertebrate communities, and ecosystem functioning at the ecotone. Excluding larger (> 2 cm diameter) predators did not affect vegetation or invertebrate structure or stability in either saltmarsh or mangrove habitats. The survey revealed that the two habitat types consistently differ in structural metrics, including vegetation height, inter-stem distance, and density, yet they support similar invertebrate and algal communities, soil properties, and predation rates. We conclude that although mangrove range expansion immediately modifies habitat structural properties, it is not altering larger predator consumptive effects, community stability, community composition, or some other ecosystem functions and properties at the ecotone.
Collapse
|
35
|
Wasson K, Raposa K, Almeida M, Beheshti K, Crooks JA, Deck A, Dix N, Garvey C, Goldstein J, Johnson DS, Lerberg S, Marcum P, Peter C, Puckett B, Schmitt J, Smith E, Laurent KS, Swanson K, Tyrrell M, Guy R. Pattern and scale: evaluating generalities in crab distributions and marsh dynamics from small plots to a national scale. Ecology 2019; 100:e02813. [PMID: 31291466 DOI: 10.1002/ecy.2813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 11/11/2022]
Abstract
The generality of ecological patterns depends inextricably on the scale at which they are examined. We investigated patterns of crab distribution and the relationship between crabs and vegetation in salt marshes at multiple scales. By using consistent monitoring protocols across 15 U.S. National Estuarine Research Reserves, we were able to synthesize patterns from the scale of quadrats to the entire marsh landscape to regional and national scales. Some generalities emerged across marshes from our overall models, and these are useful for informing broad coastal management policy. We found that crab burrow distribution within a marsh could be predicted by marsh elevation, distance to creek and soil compressibility. While these physical factors also affected marsh vegetation cover, we did not find a strong or consistent overall effect of crabs at a broad scale in our multivariate model, though regressions conducted separately for each site revealed that crab burrows were negatively correlated with vegetation cover at 4 out of 15 sites. This contrasts with recent smaller-scale studies and meta-analyses synthesizing such studies that detected strong negative effects of crabs on marshes, likely because we sampled across the entire marsh landscape, while targeted studies are typically limited to low-lying areas near creeks, where crab burrow densities are highest. Our results suggest that sea-level rise generally poses a bigger threat to marshes than crabs, but there will likely be interactions between these physical and biological factors. Beyond these generalities across marshes, we detected some regional differences in crab community composition, richness, and abundance. However, we found striking differences among sites within regions, and within sites, in terms of crab abundance and relationships to marsh integrity. Although generalities are broadly useful, our findings indicate that local managers cannot rely on data from other nearby systems, but rather need local information for developing salt marsh management strategies.
Collapse
Affiliation(s)
- Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, 1700 Elkhorn Road, Royal Oaks, California, 95076, USA.,University of California, Santa Cruz, 115 McAllister Way, Santa Cruz, California, 95060, USA
| | - Kenneth Raposa
- Narragansett Bay National Estuarine Research Reserve, P.O. Box 151, Prudence Island, Rhode Island, 02872, USA
| | - Monica Almeida
- Tijuana River National Estuarine Research Reserve, 301 Caspian Way, Imperial Beach, California, 91932, USA
| | - Kathryn Beheshti
- University of California, Santa Cruz, 115 McAllister Way, Santa Cruz, California, 95060, USA
| | - Jeffrey A Crooks
- Tijuana River National Estuarine Research Reserve, 301 Caspian Way, Imperial Beach, California, 91932, USA
| | - Anna Deck
- San Francisco Bay National Estuarine Research Reserve, Estuary & Ocean Science Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California, 94920, USA
| | - Nikki Dix
- Guana Tolomato Matanzas National Estuarine Research Reserve, 505 Guana River Road, Ponte Vedra Beach, Florida, 32082, USA
| | - Caitlin Garvey
- University of Connecticut, 75 North Eagleville, Storrs, Connecticut, 06269, USA
| | - Jason Goldstein
- Wells National Estuarine Research Reserve, Maine Coastal Ecology Center, 342 Laudholm Farm Road, Wells, Maine, 04090, USA
| | - David Samuel Johnson
- Virginia Institute of Marine Science, The College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia, 23062, USA
| | - Scott Lerberg
- Chesapeake Bay National Estuarine Research Reserve of Virginia, Virginia Institute of Marine Science, The College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia, 23062, USA
| | - Pamela Marcum
- Guana Tolomato Matanzas National Estuarine Research Reserve, 505 Guana River Road, Ponte Vedra Beach, Florida, 32082, USA
| | - Christopher Peter
- Great Bay National Estuarine Research Reserve, 89 Depot Road, Greenland, New Hampshire, 03840, USA
| | - Brandon Puckett
- North Carolina National Estuarine Research Reserve, 101 Pivers Island Road, Beaufort, North Carolina, 28516, USA
| | - Jenni Schmitt
- South Slough National Estuarine Research Reserve, P.O. Box 5417, Charleston, Oregon, 97420, USA
| | - Erik Smith
- North Inlet - Winyah Bay National Estuarine Research Reserve, Baruch Marine Field Laboratory, University of South Carolina, P.O. Box 1630, Georgetown, South Carolina, 29442, USA
| | - Kari St Laurent
- Delaware National Estuarine Research Reserve, 818 Kitts Hummock Road, Dover, Delaware, 19901, USA
| | - Katie Swanson
- Mission-Aransas National Estuarine Research Reserve, University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, Texas, 78373, USA
| | - Megan Tyrrell
- Waquoit Bay National Estuarine Research Reserve, 131 Waquoit Highway, Waquoit, Massachusetts, 02536, USA
| | - Rachel Guy
- Sapelo Island National Estuarine Research Reserve, P.O. Box 15, Sapelo Island, Georgia, 31327, USA
| |
Collapse
|
36
|
Yando ES, Osland MJ, Jones SF, Hester MW. Jump‐starting coastal wetland restoration: a comparison of marsh and mangrove foundation species. Restor Ecol 2019. [DOI: 10.1111/rec.12963] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Erik S. Yando
- Coastal Plant Ecology Lab, Department of BiologyUniversity of Louisiana at Lafayette Lafayette LA U.S.A
- The Mangrove Lab, Department of GeographyNational University of Singapore Singapore
| | - Michael J. Osland
- U.S. Geological SurveyWetland and Aquatic Research Center Lafayette LA U.S.A
| | - Scott F. Jones
- Coastal Plant Ecology Lab, Department of BiologyUniversity of Louisiana at Lafayette Lafayette LA U.S.A
- U.S. Geological SurveyWestern Ecological Research Center Davis CA U.S.A
| | - Mark W. Hester
- Coastal Plant Ecology Lab, Department of BiologyUniversity of Louisiana at Lafayette Lafayette LA U.S.A
| |
Collapse
|
37
|
Cooke SJ, Twardek WM, Reid AJ, Lennox RJ, Danylchuk SC, Brownscombe JW, Bower SD, Arlinghaus R, Hyder K, Danylchuk AJ. Searching for responsible and sustainable recreational fisheries in the Anthropocene. JOURNAL OF FISH BIOLOGY 2019; 94:845-856. [PMID: 30779138 DOI: 10.1111/jfb.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 05/24/2023]
Abstract
Recreational fisheries that use rod and reel (i.e., angling) operate around the globe in diverse freshwater and marine habitats, targeting many different gamefish species and engaging at least 220 million participants. The motivations for fishing vary extensively; whether anglers engage in catch-and-release or are harvest-oriented, there is strong potential for recreational fisheries to be conducted in a manner that is both responsible and sustainable. There are many examples of recreational fisheries that are well-managed where anglers, the angling industry and managers engage in responsible behaviours that both contribute to long-term sustainability of fish populations and the sector. Yet, recreational fisheries do not operate in a vacuum; fish populations face threats and stressors including harvest from other sectors as well as environmental change, a defining characteristic of the Anthropocene. We argue that the future of recreational fisheries and indeed many wild fish populations and aquatic ecosystems depends on having responsible and sustainable (R&S) recreational fisheries whilst, where possible, addressing, or at least lobbying for increased awareness about the threats to recreational fisheries emanating from outside the sector (e.g., climate change). Here, we first consider how the concepts of R&S intersect in the recreational fishing sector in an increasingly complex socio-cultural context. Next, we explore the role of the angler, angling industry and decision-makers in achieving R&S fisheries. We extend this idea further by considering the consequences of a future without recreational fisheries (either because of failures related to R&S) and explore a pertinent case study situated in Uttarakahand, India. Unlike other fisheries sectors where the number of participants is relatively small, recreational angling participants are numerous and widespread, such that if their actions are responsible, they have the potential to be a key voice for conservation and serve as a major force for good in the Anthropocene. What remains to be seen is whether this will be achieved, or if failure will occur to the point that recreational fisheries face increasing pressure to cease, as a result of external environmental threats, the environmental effects of recreational fishing and emerging ethical concerns about the welfare of angled fish.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Andrea J Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Robert J Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Shannon D Bower
- Natural Resources and Sustainable Development, Uppsala University, Visby, Gotland, Sweden
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries & Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kieran Hyder
- Centre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Andy J Danylchuk
- Fish Mission, Amherst, Massechussetts, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
38
|
Ross PM, Harvey K, Vecchio EM, Beckers D. Impact of fire and the recovery of molluscs in south‐east Australian salt marsh. ECOLOGICAL MANAGEMENT & RESTORATION 2019. [DOI: 10.1111/emr.12374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
High Spatial Resolution Remote Sensing for Salt Marsh Mapping and Change Analysis at Fire Island National Seashore. REMOTE SENSING 2019. [DOI: 10.3390/rs11091107] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salt marshes are changing due to natural and anthropogenic stressors such as sea level rise, nutrient enrichment, herbivory, storm surge, and coastal development. This study analyzes salt marsh change at Fire Island National Seashore (FIIS), a nationally protected area, using object-based image analysis (OBIA) to classify a combination of data from Worldview-2 and Worldview-3 satellites, topobathymetric Light Detection and Ranging (LiDAR), and National Agricultural Imagery Program (NAIP) aerial imageries acquired from 1994 to 2017. The salt marsh classification was trained and tested with vegetation plot data. In October 2012, Hurricane Sandy caused extensive overwash and breached a section of the island. This study quantified the continuing effects of the breach on the surrounding salt marsh. The tidal inundation at the time of image acquisition was analyzed using a topobathymetric LiDAR-derived Digital Elevation Model (DEM) to create a bathtub model at the target tidal stage. The study revealed geospatial distribution and rates of change within the salt marsh interior and the salt marsh edge. The Worldview-2/Worldview-3 imagery classification was able to classify the salt marsh environments accurately and achieved an overall accuracy of 92.75%. Following the breach caused by Hurricane Sandy, bayside salt marsh edge was found to be eroding more rapidly (F1, 1597 = 206.06, p < 0.001). However, the interior panne/pool expansion rates were not affected by the breach. The salt marsh pannes and pools were more likely to revegetate if they had a hydrological connection to a mosquito ditch (χ2 = 28.049, p < 0.001). The study confirmed that the NAIP data were adequate for determining rates of salt marsh change with high accuracy. The cost and revisit time of NAIP imagery creates an ideal open data source for high spatial resolution monitoring and change analysis of salt marsh environments.
Collapse
|
40
|
Renzi JJ, He Q, Silliman BR. Harnessing Positive Species Interactions to Enhance Coastal Wetland Restoration. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00131] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol Evol 2019; 34:369-383. [PMID: 30857757 DOI: 10.1016/j.tree.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
Abstract
Arguments for the need to conserve aquatic predator (AP) populations often focus on the ecological and socioeconomic roles they play. Here, we summarize the diverse ecosystem functions and services connected to APs, including regulating food webs, cycling nutrients, engineering habitats, transmitting diseases/parasites, mediating ecological invasions, affecting climate, supporting fisheries, generating tourism, and providing bioinspiration. In some cases, human-driven declines and increases in AP populations have altered these ecosystem functions and services. We present a social ecological framework for supporting adaptive management decisions involving APs in response to social and environmental change. We also identify outstanding questions to guide future research on the ecological functions and ecosystem services of APs in a changing world.
Collapse
|
42
|
Dazed, confused, and then hungry: pesticides alter predator-prey interactions of estuarine organisms. Oecologia 2019; 189:815-828. [PMID: 30830264 DOI: 10.1007/s00442-019-04361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Like predators, contaminant stressors such as pesticides may have large and interacting effects on natural communities by removing species or altering behaviors and species interactions. Yet, few studies in estuarine systems have evaluated the effects of a single, low-dose exposure to pesticides on key predators. Here, we investigated the effects of a common pyrethroid (resmethrin) + synergist (piperonyl butoxide; PBO) mixture used for mosquito abatement on two life stages (adult and juvenile) of an important invertebrate estuarine predator, prey, and fishery species: the blue crab (Callinectes sapidus). The effects of resmethrin with PBO (Res-PBO) were assessed using behavioral and mesocosm experiments to link effects on individuals with changes in predator-prey interactions: (1) In static non-renewal exposures, crabs exposed to 1:3, 10:30, or 100:300 µg l-1 Res-PBO or PBO-alone had increased mortality and reduced locomotor ability within 1-12 h, with higher effects in adults than juveniles. (2) In mesocosms, sublethal exposure to 1:3 µg l-1 Res-PBO altered abult and juvnile foraging ability by lowering the ability of adult crabs to cannibalize juvenile crabs but increasing juvenile crab foraging rates. Juvenile crabs were also more vulnerable to predation following pesticide exposure. Thus, a single, sublethal exposure to low, environmentally occurring pesticide concentrations reduced blue crab survivorship and locomotor functioning, and altered predator-prey interactions by changing foraging rates and increasing vulnerability to predators. Pesticide stressors may therefore play an important but underestimated role in shaping coastal ecosystems in which invertebrate predators are important and may contribute to U.S. blue crab population declines.
Collapse
|
43
|
Monkman GG, Kaiser MJ, Hyder K. Heterogeneous public and local knowledge provides a qualitative indicator of coastal use by marine recreational fishers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:495-505. [PMID: 30268716 DOI: 10.1016/j.jenvman.2018.08.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Marine recreational fishing (MRF) benefits individuals and economies, but can also impact fish stocks and associated ecosystems. Fish are an important resource providing direct economic benefit through commercial and recreational exploitation, and more esoteric ecosystem services. It is important to consider recreational fishing in marine spatial planning, but spatial information on coastal utilisation for MRF is frequently lacking. Public sources of local knowledge were reviewed and the frequency of unique references to sites extracted. Sites were georeferenced using a gazetteer compiled from the Ordnance Survey and United Kingdom Hydrographic Office named sea features gazetteer and local knowledge sources. Recreational fishing site densities were calculated across 2700 km of coastline and this proxy indicator of coastal utilisation validated against two independent surveys using permutative Monte Carlo sampling to control for sparse and non-independent data. Site density had fair agreement with independent surveys, but standardization by shore length reduced this agreement. Applying a 3 by 3 box filter convolution to the spatial layers improved the agreement between local knowledge derived predictions of activity and those of directed surveys, and permutation testing showed that agreement did not arise as a result of the convolution itself. High and low activity areas were more accurately predicted than areas of intermediate activity. Site density derived from heterogeneous participant and local knowledge can produce qualitative predictions of where recreational fishers fish, and applying a convolution can improve the predictive power of data so derived. However, this approach will be subject to unquantifiable bias and may fail to identify areas highly valued by marine recreational fishers. Thus it should be used in conjunction with other information in decision making and may be best suited to inform the early stage sampling design of on-site surveys or to complement other data sets in mapping areas of importance to recreational fishers.
Collapse
Affiliation(s)
- Graham G Monkman
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom.
| | - Michel J Kaiser
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom; Marine Stewardship Council, Marine House, 1 Snow Hill, London, EC1A 2DH, United Kingdom.
| | - Kieran Hyder
- Centre for Environment, Fisheries & Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, United Kingdom.
| |
Collapse
|
44
|
Wu J, Zhang J, Pan H, Ma H. Temporal variation in bottom-up and top-down effects differ among herbivores with different seasonality. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Assessing the effect of recreational scallop harvest on the distribution and behaviour of foraging marine turtles. ORYX 2018. [DOI: 10.1017/s0030605318000182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractThe impact of fisheries on marine megafauna is widely known but most studies have focused on commercial fisheries, overlooking the effect of local recreational fisheries. This is particularly important for marine turtles in near-shore habitats that overlap with recreational fisheries. We assessed the effect of recreational scallop fisheries on the distribution and behaviour of foraging marine turtles in the coastal waters of the upper Eastern Gulf of Mexico. Before and during the scallop season we quantified the density and overlap of marine turtles and vessels sighted, and satellite tracked four turtles to assess their distribution and behaviour. The relative distribution of marine turtles sighted during the scallop season overlapped with 48% of the area most frequently used by harvesters, and marine turtle activity hotspots shifted between seasons. In addition, during the scallop season the home range size of individual turtles appeared to decrease, and turtles displayed frequent changes in travel speed and directionality. We hypothesize that such changes are probably related to the distribution and movement of vessels and the abundant presence of people in the water. Our study highlights the importance of considering recreational fisheries and their local effect on marine megafauna for informing future adaptive management practices. However, further studies are needed to quantify the direct and indirect impacts of recreational fisheries and to assess the degree of risk of associated activities to marine turtle populations.
Collapse
|
46
|
Raposa KB, McKinney RA, Wigand C, Hollister JW, Lovall C, Szura K, Gurak, Jr. JA, McNamee J, Raithel C, Watson EB. Top-down and bottom-up controls on southern New England salt marsh crab populations. PeerJ 2018; 6:e4876. [PMID: 29868281 PMCID: PMC5984588 DOI: 10.7717/peerj.4876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/10/2018] [Indexed: 11/20/2022] Open
Abstract
Southern New England salt marsh vegetation and habitats are changing rapidly in response to sea-level rise. At the same time, fiddler crab (Uca spp.) distributions have expanded and purple marsh crab (Sesarma reticulatum) grazing on creekbank vegetation has increased. Sea-level rise and reduced predation pressure drive these changing crab populations but most studies focus on one species; there is a need for community-level assessments of impacts from multiple crab species. There is also a need to identify additional factors that can affect crab populations. We sampled crabs and environmental parameters in four Rhode Island salt marshes in 2014 and compiled existing data to quantify trends in crab abundance and multiple factors that potentially affect crabs. Crab communities were dominated by fiddler and green crabs (Carcinus maenas); S. reticulatum was much less abundant. Burrow sizes suggest that Uca is responsible for most burrows. On the marsh platform, burrows and Carcinus abundance were negatively correlated with elevation, soil moisture, and soil percent organic matter and positively correlated with soil bulk density. Uca abundance was negatively correlated with Spartina patens cover and height and positively correlated with Spartina alterniflora cover and soil shear strength. Creekbank burrow density increased dramatically between 1998 and 2016. During the same time, fishing effort and the abundance of birds that prey on crabs decreased, and water levels increased. Unlike in other southern New England marshes where recreational overfishing is hypothesized to drive increasing marsh crab abundance, we propose that changes in crab abundance were likely unrelated to recreational finfish over-harvest; instead, they better track sea-level rise and changing abundances of alternate predators, such as birds. We predict that marsh crab abundance will continue to expand with ongoing sea-level rise, at least until inundation thresholds for crab survival are exceeded.
Collapse
Affiliation(s)
- Kenneth B. Raposa
- Narragansett Bay National Estuarine Research Reserve, Prudence Island, RI, United States of America
| | - Richard A. McKinney
- ORD-NHEERL, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, RI, United States of America
| | - Cathleen Wigand
- ORD-NHEERL, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, RI, United States of America
| | - Jeffrey W. Hollister
- ORD-NHEERL, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, RI, United States of America
| | - Cassie Lovall
- Narragansett Bay National Estuarine Research Reserve, Prudence Island, RI, United States of America
| | - Katelyn Szura
- Department of Biological Sciences, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States of America
| | | | - Jason McNamee
- Rhode Island Department of Environmental Management, Jamestown, RI, United States of America
| | - Christopher Raithel
- Rhode Island Department of Environmental Management, Kingston, RI, United States of America
| | - Elizabeth B. Watson
- Department of Biodiversity, Earth and Environmental Sciences, Academy of Natural Sciences, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
47
|
Moore A. Context-dependent consumer control in New England tidal wetlands. PLoS One 2018; 13:e0197170. [PMID: 29771961 PMCID: PMC5957357 DOI: 10.1371/journal.pone.0197170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline.
Collapse
Affiliation(s)
- Alexandria Moore
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
48
|
Vu HD, Pennings SC. Predators mediate above‐ vs. belowground herbivory in a salt marsh crab. Ecosphere 2018. [DOI: 10.1002/ecs2.2107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Huy D. Vu
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| | - Steven C. Pennings
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| |
Collapse
|
49
|
Davidson TM, Altieri AH, Ruiz GM, Torchin ME. Bioerosion in a changing world: a conceptual framework. Ecol Lett 2018; 21:422-438. [PMID: 29314575 DOI: 10.1111/ele.12899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
Abstract
Bioerosion, the breakdown of hard substrata by organisms, is a fundamental and widespread ecological process that can alter habitat structure, biodiversity and biogeochemical cycling. Bioerosion occurs in all biomes of the world from the ocean floor to arid deserts, and involves a wide diversity of taxa and mechanisms with varying ecological effects. Many abiotic and biotic factors affect bioerosion by acting on the bioeroder, substratum, or both. Bioerosion also has socio-economic impacts when objects of economic or cultural value such as coastal defences or monuments are damaged. We present a unifying definition and advance a conceptual framework for (a) examining the effects of bioerosion on natural systems and human infrastructure and (b) identifying and predicting the impacts of anthropogenic factors (e.g. climate change, eutrophication) on bioerosion. Bioerosion is responding to anthropogenic changes in multiple, complex ways with significant and wide-ranging effects across systems. Emerging data further underscore the importance of bioerosion, and need for mitigating its impacts, especially at the dynamic land-sea boundary. Generalised predictions remain challenging, due to context-dependent effects and nonlinear relationships that are poorly resolved. An integrative and interdisciplinary approach is needed to understand how future changes will alter bioerosion dynamics across biomes and taxa.
Collapse
Affiliation(s)
- Timothy M Davidson
- Department of Biological Sciences, California State University, Sacramento, CA, USA.,Smithsonian Tropical Research Institute, Apartado, 0843-03092, Ancon, Panama.,Department of Botany, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Andrew H Altieri
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Ancon, Panama.,Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory M Ruiz
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Mark E Torchin
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Ancon, Panama
| |
Collapse
|
50
|
Dunn RP, Baskett ML, Hovel KA. Interactive effects of predator and prey harvest on ecological resilience of rocky reefs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1718-1730. [PMID: 28581670 DOI: 10.1002/eap.1581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
A major goal of ecosystem-based fisheries management is to prevent fishery-induced shifts in community states. This requires an understanding of ecological resilience: the ability of an ecosystem to return to the same state following a perturbation, which can strongly depend on species interactions across trophic levels. We use a structured model of a temperate rocky reef to explore how multi-trophic level fisheries impact ecological resilience. Increasing fishing mortality of prey (urchins) has a minor effect on equilibrium biomass of kelp, urchins, and spiny lobster predators, but increases resilience by reducing the range of predator harvest rates at which alternative stable states are possible. Size-structured predation on urchins acts as the feedback maintaining each state. Our results demonstrate that the resilience of ecosystems strongly depends on the interactive effects of predator and prey harvest in multi-trophic level fisheries, which are common in marine ecosystems but are unaccounted for by traditional management.
Collapse
Affiliation(s)
- Robert P Dunn
- Coastal and Marine Institute & Department of Biology, San Diego State University, San Diego, California, 92182, USA
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, 95616, USA
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, 95616, USA
| | - Kevin A Hovel
- Coastal and Marine Institute & Department of Biology, San Diego State University, San Diego, California, 92182, USA
| |
Collapse
|