1
|
Wan NF, Fu L, Dainese M, Hu YQ, Pødenphant Kiær L, Isbell F, Scherber C. Plant genetic diversity affects multiple trophic levels and trophic interactions. Nat Commun 2022; 13:7312. [PMID: 36437257 PMCID: PMC9701765 DOI: 10.1038/s41467-022-35087-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Intraspecific genetic diversity is an important component of biodiversity. A substantial body of evidence has demonstrated positive effects of plant genetic diversity on plant performance. However, it has remained unclear whether plant genetic diversity generally increases plant performance by reducing the pressure of plant antagonists across trophic levels for different plant life forms, ecosystems and climatic zones. Here, we analyse 4702 effect sizes reported in 413 studies that consider effects of plant genetic diversity on trophic groups and their interactions. We found that that increasing plant genetic diversity decreased the performance of plant antagonists including invertebrate herbivores, weeds, plant-feeding nematodes and plant diseases, while increasing the performance of plants and natural enemies of herbivores. Structural equation modelling indicated that plant genetic diversity increased plant performance partly by reducing plant antagonist pressure. These results reveal that plant genetic diversity often influences multiple trophic levels in ways that enhance natural pest control in managed ecosystems and consumer control of plants in natural ecosystems for sustainable plant production.
Collapse
Affiliation(s)
- Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liwan Fu
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Matteo Dainese
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lars Pødenphant Kiær
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Adenauerallee 127, 53113, Bonn, Germany
| |
Collapse
|
2
|
Paul RL, Pearse IS, Ode PJ. Fine‐scale plant defence variability increases top‐down control of an herbivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan L. Paul
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
3
|
Bustos‐Segura C, Cuny MAC, Benrey B. Parasitoids of leaf herbivores enhance plant fitness and do not alter caterpillar‐induced resistance against seed beetles. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Carlos Bustos‐Segura
- Laboratory of Evolutionary Entomology Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Maximilien A. C. Cuny
- Laboratory of Evolutionary Entomology Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
4
|
Wetzel WC, Aflitto NC, Thaler JS. Plant genotypic diversity interacts with predation risk to influence an insect herbivore across its ontogeny. Ecology 2018; 99:2338-2347. [PMID: 30047598 DOI: 10.1002/ecy.2472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/07/2018] [Accepted: 07/10/2018] [Indexed: 11/11/2022]
Abstract
A growing number of studies have manipulated intraspecific plant diversity and found dramatic changes in the densities of associated insect herbivores and their predators. While these studies have been essential for quantifying the net ecological consequences of intraspecific plant diversity, they have been less effective at uncovering the ways in which plant diversity alters trophic interactions within arthropod communities. We manipulated intraspecific plant diversity and predation risk in the field in a factorial design to reveal how a mixture of plant genotypes changes the response of an herbivorous beetle (Leptinotarsa decemlineata) to a common stink bug predator (Podisus maculiventris). We repeated the manipulations twice across the ontogeny of the beetle to examine how the effects of diversity on the predator-prey interaction differ between larval and adult stages. We found that intraspecific plant diversity, mixtures of susceptible and resistant varieties of potato (Solanum tuberosum), reduced larval survival by 20% and adult oviposition by 34%, which surprisingly put survival and oviposition lower in the mixed-genotype plots than in the resistant monocultures. Moreover, we found that predation risk reduced larval survival 25% and 11% in resistant and susceptible monocultures, respectively, but had no effect in the mixture. This result indicated that our genotypic mixing treatment interacted nonadditively with predation risk such that plant diversity altered the predator-prey interaction by changing the responses of the beetles to their stink bug predators. In addition, even though predation risk reduced larval survival, it increased adult overwintering survival by 9%, independently of plant treatment, suggesting that these interactions change through ontogeny. A key implication of our study is that plant diversity influences arthropod communities not only by changing resource quality, as past studies have suggested, but also by changing interactions between species within the arthropod community.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nicholas C Aflitto
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Jennifer S Thaler
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
5
|
Adam N, Kallenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC. Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS One 2018; 13:e0197221. [PMID: 29874269 PMCID: PMC5991399 DOI: 10.1371/journal.pone.0197221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plant genetic diversity structures animal communities and affects plant population productivity. However, few studies have investigated which traits are involved and the mechanisms mediating these effects. We studied the consequences of varying the expression of a single biosynthetic gene in jasmonate (JA) defense hormones, which are essential for defense against herbivores but constrain plant growth, in experimental mesocosm populations of wild tobacco (Nicotiana attenuata) plants under attack from three native herbivores. Empoasca leafhoppers preferentially attack JA-deficient N. attenuata plants in nature, and the specialist Tupiocoris notatus mirids avoid Empoasca-damaged plants. However, in experimental mesocosm populations having equal numbers of wild-type (WT) and JA-deficient plants that are silenced in the expression of the biosynthetic gene lipoxygenase 3 (LOX3), Empoasca sp. attacked both genotypes. Empoasca sp. damage, rather than JA, determined T. notatus damage, which was reduced in mixed populations. The growth of specialist Manduca sexta larvae was reduced on WT vs. asLOX3 monocultures, but differed in mixtures depending on caterpillar density. However, seed capsule number remained similar for WT and asLOX3 plants in mixtures, not in monocultures, in two experimental scenarios reflecting high and low caterpillar attack. At high caterpillar density, WT plants growing in mixtures produced more seed capsules than those growing in monocultures while seed production of asLOX3 plants did not differ by population type. However, at low caterpillar density, asLOX3 plants growing in mixed populations produced more seed capsules than those growing in monoculture, while seed capsule production did not differ for WT by population type. Thus, mixed populations had a more stable output of seed capsules under the two scenarios. This may result from a balance between JA-mediated herbivore defense and plant competitive ability in mixed populations.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
6
|
Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta‐analysis. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13062] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Koricheva
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| | - Dexter Hayes
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| |
Collapse
|
7
|
Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dáttilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchanková A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Zhukovich V, Slade EM. Higher predation risk for insect prey at low latitudes and elevations. Science 2018; 356:742-744. [PMID: 28522532 DOI: 10.1126/science.aaj1631] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/06/2017] [Indexed: 11/02/2022]
Abstract
Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution.
Collapse
Affiliation(s)
- Tomas Roslin
- Spatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Post Office Box 7044, SE-750 07 Uppsala, Sweden. .,Spatial Foodweb Ecology Group, Department of Agricultural Sciences, Post Office Box 27, FI-00014 University of Helsinki, Finland
| | - Bess Hardwick
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, Post Office Box 27, FI-00014 University of Helsinki, Finland
| | - Vojtech Novotny
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences (CAS), Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,The New Guinea Binatang Research Center, Post Office Box 604, Madang, Papua New Guinea
| | - William K Petry
- Department of Ecology and Evolutionary Biology, University of California-Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.,Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Nigel R Andrew
- Insect Ecology Lab, Centre of Excellence for Behavioural and Physiological Ecology, University of New England, NSW, Australia, 2351, Australia
| | - Ashley Asmus
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Isabel C Barrio
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada.,Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7 IS-101 Reykjavik, Iceland
| | - Yves Basset
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences (CAS), Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama City, Republic of Panama
| | - Andrea Larissa Boesing
- Department of Ecology, University of São Paulo, Rua do Matão 321, T-14, CEP 05508-900, São Paulo, SP, Brazil
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, People's Republic of China
| | - Erin K Cameron
- Metapopulation Research Centre, Department of Biosciences, Post Office Box 65, FI-00014, University of Helsinki, Finland.,Center for Macroecology, Evolution and Climate Change, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, København, Denmark
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, CP 91070, Xalapa, Veracruz, Mexico
| | - David A Donoso
- Instituto de Ciencias Biológicas, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador
| | - Pavel Drozd
- University of Ostrava, Faculty of Science-Department of Biology and Ecology, Chittussiho 10, 710 00 Slezská Ostrava, Czech Republic
| | - Claudia L Gray
- Evolutionarily Distinct and Globally Endangered (EDGE) of Existence, Conservation Programmes, Zoological Society of London, Regent's Park, London NW1 4RY, UK.,Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David S Hik
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | - Sarah J Hill
- Insect Ecology Lab, Centre of Excellence for Behavioural and Physiological Ecology, University of New England, NSW, Australia, 2351, Australia
| | - Tapani Hopkins
- Zoological Museum, Biodiversity Unit, FI-20014 University of Turku, Finland
| | - Shuyin Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303 Yunnan, People's Republic of China
| | - Bonny Koane
- The New Guinea Binatang Research Center, Post Office Box 604, Madang, Papua New Guinea
| | - Benita Laird-Hopkins
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama City, Republic of Panama
| | | | - Owen T Lewis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sol Milne
- University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Isaiah Mwesige
- Makerere University Biological Field Station, Post Office Box 409, Fort Portal, Uganda
| | - Akihiro Nakamura
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303 Yunnan, People's Republic of China
| | - Colleen S Nell
- Department of Ecology and Evolutionary Biology, University of California-Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Elizabeth Nichols
- Department of Ecology, University of São Paulo, Rua do Matão 321, T-14, CEP 05508-900, São Paulo, SP, Brazil.,Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Alena Prokurat
- State Institution of Education, Zditovo High School, Zditovo, Belarus
| | - Katerina Sam
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences (CAS), Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Niels M Schmidt
- Arctic Research Centre, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark.,Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Alison Slade
- 40 Town End Lane, Lepton, Huddersfield, HD8 ONA, UK
| | - Victor Slade
- 40 Town End Lane, Lepton, Huddersfield, HD8 ONA, UK
| | - Alžběta Suchanková
- University of Ostrava, Faculty of Science-Department of Biology and Ecology, Chittussiho 10, 710 00 Slezská Ostrava, Czech Republic
| | - Tiit Teder
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, EE-51014 Tartu, Estonia
| | - Saskya van Nouhuys
- Metapopulation Research Centre, Department of Biosciences, Post Office Box 65, FI-00014, University of Helsinki, Finland
| | - Vigdis Vandvik
- Department of Biology, University of Bergen, Post Office Box 7800, 5020 Bergen, Norway
| | - Anita Weissflog
- Department of Plant Ecology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Vital Zhukovich
- State Institution of Education, Zditovo High School, Zditovo, Belarus
| | - Eleanor M Slade
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, Post Office Box 27, FI-00014 University of Helsinki, Finland.,Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.,Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| |
Collapse
|
8
|
Abdala-Roberts L, Pratt R, Pratt JD, Mooney KA. Traits underlying community consequences of plant intra-specific diversity. PLoS One 2017; 12:e0183493. [PMID: 28886028 PMCID: PMC5590834 DOI: 10.1371/journal.pone.0183493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/05/2017] [Indexed: 11/19/2022] Open
Abstract
A plant's performance and interactions with other trophic levels are recorgnized to be contingent upon plant diversity and underlying associational dynamics, but far less is known about the plant traits driving such phenomena. We manipulated diversity in plant traits using pairs of plant and a substitutive design to elucidate the mechanisms underlying diversity effects operating at a fine spatial scale. Specifically, we measured the effects of diversity in sex (sexual monocultures vs. male and female genotypes together) and growth rate (growth rate monocultures vs. fast- and slow-growing genotypes together) on growth of the shrub Baccharis salicifolia and on above- and belowground consumers associated with this plant. We compared effects on associate abundance (# associates per plant) vs. density (# associates per kg plant biomass) to elucidate the mechanisms underlying diversity effects; effects on abundance but not density suggest diversity effects are mediated by resource abundance (i.e. plant biomass) alone, whereas effects on density suggest diversity effects are mediated by plant-based heterogeneity or quality. Sexual diversity increased root growth but reduced the density (but not abundance) of the dietary generalist aphid Aphis gossypii and its associated aphid-tending ants, suggesting sex mixtures were of lower quality to this herbivore (e.g. via reduced plant quality), and that this effect indirectly influenced ants. Sexual diversity had no effect on the abundance or density of parasitoids attacking A. gossypii, the dietary specialist aphid Uroleucon macolai, or mycorrhizae. In contrast, growth rate diversity did not influence plant growth or any associates except for the dietary specialist aphid U. macolai, which increased in both abundance and density at high diversity, suggesting growth rate mixtures were of higher quality to this herbivore. These results highlight that plant associational and diversity effects on consumers are contingent upon the source of plant trait variation, and that the nature of such dynamics may vary both within and among trophic levels.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Riley Pratt
- University of California, Irvine, Department of Ecology and Evolutionary Biology, Irvine, California, United States of America
- Irvine Ranch Conservancy, Irvine, California, United States of America
| | - Jessica D. Pratt
- University of California, Irvine, Department of Ecology and Evolutionary Biology, Irvine, California, United States of America
| | - Kailen A. Mooney
- University of California, Irvine, Department of Ecology and Evolutionary Biology, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Stenberg JA. A Conceptual Framework for Integrated Pest Management. TRENDS IN PLANT SCIENCE 2017; 22:759-769. [PMID: 28687452 DOI: 10.1016/j.tplants.2017.06.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 05/11/2023]
Abstract
The concept of integrated pest management (IPM) has been accepted and incorporated in public policies and regulations in the European Union and elsewhere, but a holistic science of IPM has not yet been developed. Hence, current IPM programs may often be considerably less efficient than the sum of separately applied individual crop protection actions. Thus, there is a clear need to formulate general principles for synergistically combining traditional and novel IPM actions to improve efforts to optimize plant protection solutions. This paper addresses this need by presenting a conceptual framework for a modern science of IPM. The framework may assist attempts to realize the full potential of IPM and reduce risks of deficiencies in the implementation of new policies and regulations.
Collapse
Affiliation(s)
- Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden.
| |
Collapse
|
10
|
Gosney B, O'Reilly-Wapstra J, Forster L, Whiteley C, Potts B. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus. J Chem Ecol 2017; 43:532-542. [PMID: 28478546 DOI: 10.1007/s10886-017-0849-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
Abstract
Genetic variation in foundation trees can influence dependent communities, but little is known about the mechanisms driving these extended genetic effects. We studied the potential chemical drivers of genetic variation in the dependent foliar community of the focal tree Eucalyptus globulus. We focus on the role of cuticular waxes and compare the effects to that of the terpenes, a well-studied group of secondary compounds known to be bioactive in eucalypts. The canopy community was quantified based on the abundance of thirty-nine distinctive arthropod and fungal symptoms on foliar samples collected from canopies of 246 progeny from 13 E. globulus sub-races grown in a common garden trial. Cuticular waxes and foliar terpenes were quantified using gas chromatography - mass spectrometry (GC-MC). A total of 4 of the 13 quantified waxes and 7 of the 16 quantified terpenes were significantly associated with the dependent foliar community. Variation in waxes explained 22.9% of the community variation among sub-races, which was equivalent to that explained by terpenes. In combination, waxes and terpenes explained 35% of the genetic variation among sub-races. Only a small proportion of wax and terpene compounds showing statistically significant differences among sub-races were implicated in community level effects. The few significant waxes have previously shown evidence of divergent selection in E. globulus, which signals that adaptive variation in phenotypic traits may have extended effects. While highlighting the role of the understudied cuticular waxes, this study demonstrates the complexity of factors likely to lead to community genetic effects in foundation trees.
Collapse
Affiliation(s)
- Benjamin Gosney
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | | | - Lynne Forster
- School of Agricultural Science, University of Tasmania, Private Bag 50, Hobart, TAS, 7001, Australia
| | - Carmen Whiteley
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad Potts
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
11
|
Leles B, Xiao X, Pasion BO, Nakamura A, Tomlinson KW. Does plant diversity increase top-down control of herbivorous insects in tropical forest? OIKOS 2017. [DOI: 10.1111/oik.03562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruno Leles
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Xue Xiao
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Bonifacio O. Pasion
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
- Dept of Biology; Univ. of Naples FredericoII; IT-80126 Naples Italy
- Univ. of Chinese Academy of Sciences; Beijing PR China
| | - Akihiro Nakamura
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Kyle W. Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| |
Collapse
|
12
|
Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere 2017. [DOI: 10.1002/ecs2.1637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pilar Fernandez-Conradi
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | - Hervé Jactel
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Arndt Hampe
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Maria José Leiva
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | | |
Collapse
|
13
|
Faeth SH, Oberhofer M, Saari S, Haskins KE, Shymanovich T. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments? Ecology 2017; 98:138-149. [PMID: 28052394 DOI: 10.1002/ecy.1626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022]
Abstract
Hybridization is common among plants, animals and microbes. However, the ecological consequences of hybridization for microbes are far less understood than for plants and animals. For symbiotic Epichloë fungi, hybridization is widespread and may augment the well-known benefits of the endophytes to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis but not based upon adaptation to stressful environments. Our results reinforce the notion of a complex interplay between endophyte and plant genotype and environmental factors that determine fitness of the symbiotum.
Collapse
Affiliation(s)
- Stanley H Faeth
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, 27402, USA
| | - Martina Oberhofer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Susanna Saari
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristin E Haskins
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Tatsiana Shymanovich
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, 27402, USA
| |
Collapse
|
14
|
Bustos-Segura C, Poelman EH, Reichelt M, Gershenzon J, Gols R. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecol Lett 2016; 20:87-97. [DOI: 10.1111/ele.12713] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Bustos-Segura
- Evolution, Ecology and Genetics Division; Research School of Biology; The Australian National University; Canberra ACT 2601 Australia
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; PO Box 16 6700 AA Wageningen The Netherlands
| | - Michael Reichelt
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Hans-Knöll-Str. 8 D-07745 Jena Germany
| | - Jonathan Gershenzon
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Hans-Knöll-Str. 8 D-07745 Jena Germany
| | - Rieta Gols
- Laboratory of Entomology; Wageningen University; PO Box 16 6700 AA Wageningen The Netherlands
| |
Collapse
|
15
|
Moreira X, Abdala-Roberts L, Zas R, Merlo E, Lombardero MJ, Sampedro L, Mooney KA. Masting behaviour in a Mediterranean pine tree alters seed predator selection on reproductive output. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:973-980. [PMID: 27500664 DOI: 10.1111/plb.12491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Context-dependency in species interactions is widespread and can produce concomitant patterns of context-dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context-dependency in plant-animal interactions. However, the evolutionary consequences of such dynamics are not well understood. Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six-year data (spanning one mast year and five non-mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes. Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non-masting years. These findings provide evidence that masting can alter the evolutionary outcome of plant-seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant-consumer evolutionary dynamics.
Collapse
Affiliation(s)
- X Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Spain.
| | - L Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autόnoma de Yucatán, Mérida, México
| | - R Zas
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Spain
| | - E Merlo
- Madera Plus Company, Ourense, Spain
| | - M J Lombardero
- Departamento de Producción Vegetal, Universidad de Santiago, Lugo, Spain
| | - L Sampedro
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Spain
| | - K A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Li S, Pennings SC. Disturbance in Georgia salt marshes: variation across space and time. Ecosphere 2016. [DOI: 10.1002/ecs2.1487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shanze Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control School of Environment Beijing Normal University Beijing 100875 China
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| | - Steven C. Pennings
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| |
Collapse
|
17
|
Abdala-Roberts L, Hernández-Cumplido J, Chel-Guerrero L, Betancur-Ancona D, Benrey B, Moreira X. Effects of plant intraspecific diversity across three trophic levels: Underlying mechanisms and plant traits. AMERICAN JOURNAL OF BOTANY 2016; 103:1810-1818. [PMID: 27756730 DOI: 10.3732/ajb.1600234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF STUDY Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. METHODS We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants). We established plots of three plants, classified as monocultures of one population source or polycultures with mixtures of three of the four population sources (N = 16 plots per level of diversity). Within each plot, plants were individually placed in pots and canopy contact was prevented, therefore eliminating diversity effects on consumers arising from changes in plant traits due to plant physical interactions. KEY RESULTS Plant diversity reduced damage by leaf-chewers as well as aphid abundance, and the latter effect in turn reduced ant abundance. In contrast, plant diversity increased the abundance of seed-eating beetles, but did not influence their associated parasitoids. There were no effects of diversity on seed traits potentially associated with seed predation, suggesting that differences in early season herbivory between monocultures and polycultures (a likely mechanism of diversity effects on plants since plant interactions were prevented) did not drive concomitant changes in plant traits. CONCLUSIONS This study emphasizes that effects of plant intraspecific diversity on consumers are contingent upon differences in associate responses within and among higher trophic levels and suggests possible mechanisms by which such effects propagate up this food web.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán. Km. 15.5 Carretera Mérida-Xmatkuil. 97000. Mérida, Yucatán, México
| | | | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km. 33.5, Colonia Chuburná de Hidalgo Inn. 97203. Mérida, Yucatán, México
| | - David Betancur-Ancona
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km. 33.5, Colonia Chuburná de Hidalgo Inn. 97203. Mérida, Yucatán, México
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28 36080 Pontevedra, Galicia, Spain
| |
Collapse
|
18
|
Fischer DG, Wimp GM, Hersch‐Green E, Bangert RK, LeRoy CJ, Bailey JK, Schweitzer JA, Dirks C, Hart SC, Allan GJ, Whitham TG. Tree genetics strongly affect forest productivity, but intraspecific diversity–productivity relationships do not. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dylan G. Fischer
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Gina M. Wimp
- Biology Department Georgetown University Reiss Science Building, 37th and O Streets NW Washington DC20057 USA
| | - Erika Hersch‐Green
- Department of Biological Sciences Michigan Technological University 1400 Townsend Drive Houghton MI49931‐1295 USA
| | - Randy K. Bangert
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
- School of Earth Sciences and Environmental Sustainability Northern Arizona University PO Box 5694 Flagstaff AZ86011 USA
| | - Carri J. LeRoy
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville TN37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville TN37996 USA
| | - Clarissa Dirks
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Stephen C. Hart
- Life & Environmental Sciences and Sierra Nevada Research Institute University of California Merced CA95344 USA
| | - Gerard J. Allan
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
| |
Collapse
|
19
|
Carmona D, Johnson MTJ. The genetics of chutes and ladders: a community genetics approach to tritrophic interactions. OIKOS 2016. [DOI: 10.1111/oik.03079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Diego Carmona
- Dept of Biology; Univ. of Toronto Mississauga; 3359 Mississauga Road Mississauga, ON L5L 1C6 Canada
| | - Marc T. J. Johnson
- Dept of Biology; Univ. of Toronto Mississauga; 3359 Mississauga Road Mississauga, ON L5L 1C6 Canada
| |
Collapse
|
20
|
Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA. Plant diversity effects on insect herbivores and their natural enemies: current thinking, recent findings, and future directions. CURRENT OPINION IN INSECT SCIENCE 2016; 14:1-7. [PMID: 27436639 DOI: 10.1016/j.cois.2015.10.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 06/06/2023]
Abstract
A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underpinning such effects. However, there are currently a number of key gaps in knowledge that have hindered the development of a predictive framework of plant diversity effects on consumers. For instance, we still know very little about how the magnitude of plant trait variation (e.g. intra-specific vs. inter-specific), as well as the identity and combined effects of plant, herbivore and natural enemy traits, mediate plant diversity effects on consumers. Moreover, the fine-scale mechanisms (e.g. changes in consumer behaviour or recruitment responses) underlying such diversity effects in many cases remain elusive or have been overlooked. In addition, most studies of plant diversity effects on associated consumers have been developed under a static, unidirectional (bottom-up) framework of effects on herbivores and predators without taking into account the potential for dynamic feedbacks across trophic levels. Here we seek to address these key gaps in knowledge as well as to capitalize on recent advances and emerging frameworks in plant biodiversity research. In doing so, we provide new insights as well as recommendations which will stimulate new research and advance this field of study.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Biological Mission of Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Department of Tropical Ecology, Autonomous University of Yucatan, Apartado Postal 4-116, Itzimna, 97000 Merida, Yucatan, Mexico
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Bastien Castagneyrol
- INRA, BIOGECO, UMR1202, 69 Route d'Arcachon, F-33610 Cestas, France; Univ. Bordeaux, BIOGECO, UMR 1202, F-33615 Pessac, France
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, 92697 Irvine, CA, USA
| |
Collapse
|
21
|
Richardson LL, Bowers MD, Irwin RE. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology 2016; 97:325-37. [DOI: 10.1890/15-0263.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Leif L. Richardson
- Department of Biological Sciences Dartmouth College Hanover New Hampshire 03755 USA
| | - M. Deane Bowers
- Ecology and Evolutionary Biology and Museum of Natural History University of Colorado at Boulder UCB 334 Boulder Colorado 80309 USA
| | - Rebecca E. Irwin
- Department of Biological Sciences Dartmouth College Hanover New Hampshire 03755 USA
| |
Collapse
|
22
|
Abdala‐Roberts L, Mooney KA, Quijano‐Medina T, Campos‐Navarrete MJ, González‐Moreno A, Parra‐Tabla V. Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. OIKOS 2015. [DOI: 10.1111/oik.02033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Luis Abdala‐Roberts
- Dept of Ecology and Evolutionary Biology Univ. of California Irvine 321 Steinhaus Hall Irvine CA 92697‐2525 USA
- Depto de Ecología Tropical Campus de Ciencias Biológicas y Agropecuarias, Univ. Autόnoma de Yucatán Apartado Postal 4‐116, Itzimná MX‐97000 Mérida, Yucatán México
| | - Kailen A. Mooney
- Dept of Ecology and Evolutionary Biology Univ. of California Irvine 321 Steinhaus Hall Irvine CA 92697‐2525 USA
| | | | - María José Campos‐Navarrete
- Depto de Ecología Tropical Campus de Ciencias Biológicas y Agropecuarias, Univ. Autόnoma de Yucatán Apartado Postal 4‐116, Itzimná MX‐97000 Mérida, Yucatán México
| | | | - Víctor Parra‐Tabla
- Depto de Ecología Tropical Campus de Ciencias Biológicas y Agropecuarias, Univ. Autόnoma de Yucatán Apartado Postal 4‐116, Itzimná MX‐97000 Mérida, Yucatán México
| |
Collapse
|
23
|
Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA. Latitudinal variation in herbivory: influences of climatic drivers, herbivore identity and natural enemies. OIKOS 2015. [DOI: 10.1111/oik.02040] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xoaquín Moreira
- Dept of Ecology and Evolutionary Biology; Univ. of California; Irvine CA 92697 USA
- Inst. of Biology, Laboratory of Evolutive Entomology, Univ. of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Luis Abdala-Roberts
- Dept of Ecology and Evolutionary Biology; Univ. of California; Irvine CA 92697 USA
| | - Víctor Parra-Tabla
- Depto de Ecología Tropical; Campus de Ciencias Biológicas y Agropecuarias, Univ. Autónoma de Yucatán; Apartado Postal 4-116, Itzimná 97000 Mérida Yucatán México
| | - Kailen A. Mooney
- Dept of Ecology and Evolutionary Biology; Univ. of California; Irvine CA 92697 USA
| |
Collapse
|