1
|
Bassi L, Hennecke J, Albracht C, Solbach MD, Rai A, Pinheiro Alves de Souza Y, Fox A, Zeng M, Döll S, Doan VC, Richter R, Kahl A, Von Sivers L, Winkler L, Eisenhauer N, Meyer ST, van Dam NM, Weigelt A. Plant species richness promotes the decoupling of leaf and root defence traits while species-specific responses in physical and chemical defences are rare. THE NEW PHYTOLOGIST 2025; 246:729-746. [PMID: 40013369 PMCID: PMC11923407 DOI: 10.1111/nph.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025]
Abstract
The increased positive impact of plant diversity on ecosystem functioning is often attributed to the accumulation of mutualists and dilution of antagonists in diverse plant communities. While increased plant diversity alters traits related to resource acquisition, it remains unclear whether it reduces defence allocation, whether this reduction differs between roots and leaves, or varies among species. To answer these questions, we assessed the effect of plant species richness, plant species identity and their interaction on the expression of 23 physical and chemical leaf and fine root defence traits of 16 plant species in a 19-yr-old biodiversity experiment. Only leaf mass per area, leaf and root dry matter content and root nitrogen, traits associated with both, resource acquisition and defence, responded consistently to species richness. However, species richness promoted a decoupling of these defences in leaves and fine roots, possibly in response to resource limitations in diverse communities. Species-specific responses were rare and related to chemical defence and mutualist collaboration, likely responding to species-specific antagonists' dilution and mutualists' accumulation. Overall, our study suggests that resource limitation in diverse communities might mediate the relationship between plant defence traits and antagonist dilution.
Collapse
Affiliation(s)
- Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, 06120, Germany
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098XH, The Netherlands
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institute, Quedlinburg, 06484, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, 50674, Germany
| | - Akanksha Rai
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, 0774526, Germany
| | - Yuri Pinheiro Alves de Souza
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- TUM School of Life Science, Chair of Environmental Microbiology, Technische Universität München, Freising, 85354, Germany
| | - Aaron Fox
- TUM School of Life Science, Chair of Environmental Microbiology, Technische Universität München, Freising, 85354, Germany
- Environment, Soils and Land Use, Teagasc, Johnstown Castle, Co, Wexford, Y35HK54, Ireland
| | - Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon, 33140, France
| | - Stefanie Döll
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
| | - Van Cong Doan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
- Plant Physiology Unit, Life Sciences and Systems Biology Department, University of Turin, Torino, 10123, Italy
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Anja Kahl
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Lea Von Sivers
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Luise Winkler
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Experimental Interaction Ecology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, School of Life Sciences, Technical University Munich, Freising, D-85354, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, 14979, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Grosjean J, Pashalidou FG, Fauvet A, Baillet A, Kergunteuil A. Phytochemical drivers of insect herbivory: a functional toolbox to support agroecological diversification. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240890. [PMID: 39021775 PMCID: PMC11251780 DOI: 10.1098/rsos.240890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Plant metabolism is a key feature of biodiversity that remains underexploited in functional frameworks used in agroecology. Here, we study how phytochemical diversity considered at three organizational levels can promote pest control. In a factorial field experiment, we manipulated plant diversity in three monocultures and three mixed crops of oilseed rape to explore how intra- and interspecific phytochemical diversity affects pest infestation. We combined recent progress in metabolomics with classic metrics used in ecology to test a box of hypotheses grounded in plant defence theory. According to the hypothesis of 'phytochemically mediated coevolution', our study stresses the relationships between herbivore infestation and particular classes of specialized metabolites like glucosinolates. Among 178 significant relationships between metabolites and herbivory rates, only 20% were negative. At the plant level, phytochemical abundance and richness had poor predictive power on pest regulation. This challenges the hypothesis of 'synergistic effects'. At the crop cover level, in line with the hypothesis of 'associational resistance', the phytochemical dissimilarity between neighbouring plants limited pest infestation. We discuss the intricate links between associational resistance and bottom-up pest control. Bridging different levels of organization in agroecosystems helps to dissect the multi-scale relationships between phytochemistry and insect herbivory.
Collapse
Affiliation(s)
- Jeremy Grosjean
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
- Platform of Structural and Metabolomics Analyses, SF4242, EFABA, Lorraine University, Vandoeuvre-les-Nancy, France
| | | | - Aude Fauvet
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
| | | | - Alan Kergunteuil
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
- INRAE, PSH, 84000 Avignon, France
| |
Collapse
|
3
|
Zhang Y, Liu W, Luo Z, Yuan J, Wuyun Q, Zhang P, Wang Q, Yang M, Liu C, Yan S, Wang G. Odorant Receptor BdorOR49b Mediates Oviposition and Attraction Behavior of Bactrocera dorsalis to Benzothiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7784-7793. [PMID: 38561632 DOI: 10.1021/acs.jafc.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
van Griethuysen PA, Redeker KR, MacFarlane SA, Neilson R, Hartley SE. Virus-induced changes in root volatiles attract soil nematode vectors to infected plants. THE NEW PHYTOLOGIST 2024; 241:2275-2286. [PMID: 38327027 DOI: 10.1111/nph.19518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2023] [Indexed: 02/09/2024]
Abstract
Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.
Collapse
Affiliation(s)
| | - Kelly R Redeker
- Department of Biology, University of York, Heslington, York, YO1 5DD, UK
| | - Stuart A MacFarlane
- Cell and Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Roy Neilson
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sue E Hartley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
5
|
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J. Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecol Lett 2023; 26:1898-1910. [PMID: 37776563 DOI: 10.1111/ele.14308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.
Collapse
Affiliation(s)
- Xuezhao Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, China
| | - Yunyun He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Texas, Austin, USA
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Lu Jin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuejun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Suphanee Glomglieng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianhong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Indiana, Notre Dame, USA
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Frost CJ. Overlaps and trade-offs in the diversity and inducibility of volatile chemical profiles among diverse sympatric neotropical canopy trees. PLANT, CELL & ENVIRONMENT 2023; 46:3059-3071. [PMID: 37082810 DOI: 10.1111/pce.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non-flexible defence-related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA-induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β-ocimene, linalool, and α-farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny-based and MeJA-independent variation the richness and diversity of constitutive wound-emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non-volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper-diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.
Collapse
Affiliation(s)
- Christopher J Frost
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Gonzalez M, Carazzone C. Eco-Metabolomics Applied to the Chemical Ecology of Poison Frogs (Dendrobatoidea). J Chem Ecol 2023; 49:570-598. [PMID: 37594619 PMCID: PMC10725362 DOI: 10.1007/s10886-023-01443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Amphibians are one of the most remarkable sources of unique natural products. Biogenic amines, peptides, bufodienolides, alkaloids, and volatile organic compounds have been characterized in different species. The superfamily Dendrobatoidea represents one of the most enigmatic cases of study in chemical ecology because their skin secretome is composed by a complex mixture (i.e. cocktail) of highly lethal and noxious unique alkaloid structures. While chemical defences from dendrobatoids (families Dendrobatidae and Aromobatidae) have been investigated employing ecological, behavioral, phylogenetic and evolutionary perspectives, studies about the analytical techniques needed to perform the chemical characterization have been neglected for many years. Therefore, our aim is to summarize the current methods applied for the characterization of chemical profiles in dendrobatoids and to illustrate innovative Eco-metabolomics strategies that could be translated to this study model. This approach could be extended to natural products other than alkaloids and implemented for the chemical analysis of different species of dendrobatoids employing both low- and high-resolution mass spectrometers. Here, we overview important biological features to be considered, procedures that could be applied to perform the chemical characterization, steps and tools to perform an Eco-metabolomic analysis, and a final discussion about future perspectives.
Collapse
Affiliation(s)
- Mabel Gonzalez
- Department of Chemistry, Universidad de los Andes, 4976, Bogotá, AA, Colombia.
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA.
| | - Chiara Carazzone
- Department of Chemistry, Universidad de los Andes, 4976, Bogotá, AA, Colombia.
| |
Collapse
|
8
|
Meyer M, Slot J. The evolution and ecology of psilocybin in nature. Fungal Genet Biol 2023; 167:103812. [PMID: 37210028 DOI: 10.1016/j.fgb.2023.103812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.
Collapse
Affiliation(s)
- Matthew Meyer
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. THE NEW PHYTOLOGIST 2023; 237:2478-2492. [PMID: 36527232 DOI: 10.1111/nph.18685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Plants produce large numbers of phytochemical compounds affecting plant physiology and interactions with their biotic and abiotic environment. Recently, chemodiversity has attracted considerable attention as an ecologically and evolutionary meaningful way to characterize the phenotype of a mixture of phytochemical compounds. Currently used measures of phytochemical diversity, and related measures of phytochemical dissimilarity, generally do not take structural or biosynthetic properties of compounds into account. Such properties can be indicative of the compounds' function and inform about their biosynthetic (in)dependence, and should therefore be included in calculations of these measures. We introduce the R package chemodiv, which retrieves biochemical and structural properties of compounds from databases and provides functions for calculating and visualizing chemical diversity and dissimilarity for phytochemicals and other types of compounds. Our package enables calculations of diversity that takes the richness, relative abundance and - most importantly - structural and/or biosynthetic dissimilarity of compounds into account. We illustrate the use of the package with examples on simulated and real datasets. By providing the R package chemodiv for quantifying multiple aspects of chemodiversity, we hope to facilitate investigations of how chemodiversity varies across levels of biological organization, and its importance for the ecology and evolution of plants and other organisms.
Collapse
Affiliation(s)
- Hampus Petrén
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
10
|
Martínez-Ramírez F, Riecan M, Cajka T, Kuda O. Analysis of fatty acid esters of hydroxy fatty acids in edible mushrooms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Thill VL, Moniz HA, Teglas MB, Wasley MJ, Feldman CR. Preying dangerously: black widow spider venom resistance in sympatric lizards. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221012. [PMID: 36277837 PMCID: PMC9579766 DOI: 10.1098/rsos.221012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Lizards and spiders are natural adversaries, yet little is known of adaptations that lizards might possess for dealing with the venomous defences of spider prey. In the Western USA, two lizard species (Elgaria multicarinata and Sceloporus occidentalis) are sympatric with and predate western black widow spiders (Latrodectus hesperus). The consequences of black widow spider venom (BWSV) can be severe, and are well understood for mammals but unknown for reptiles. We evaluated potential resistance to BWSV in the lizards that consume black widows, and a potentially susceptible species (Uta stansburiana) known as prey of widows. We investigated BWSV effects on whole-animal performance (sprint) and muscle tissue at two venom doses compared with control injections. Sprint speed was not significantly decreased in E. multicarinata or S. occidentalis in any treatment, while U. stansburiana suffered significant performance reductions in response to BWSV. Furthermore, E. multicarinata showed minimal tissue damage and immune response, while S. occidentalis and U. stansburiana exhibited increased muscle damage and immune system infiltration in response to BWSV. Our data suggest predator-prey relationships between lizards and spiders are complex, possibly leading to physiological and molecular adaptations that allow some lizards to tolerate or overcome the dangerous defences of their arachnid prey.
Collapse
Affiliation(s)
- Vicki L. Thill
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | - Haley A. Moniz
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | - Mike B. Teglas
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - McKenzie J. Wasley
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- United States Fish and Wildlife Service, Klamath Falls Fish and Wildlife Office, Klamath Falls, OR 97602, USA
| | - Chris R. Feldman
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
12
|
Pocius VM, Cibotti S, Ray S, Ankoma-Darko O, McCartney NB, Schilder RJ, Ali JG. Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies. Commun Biol 2022; 5:469. [PMID: 35577926 PMCID: PMC9110344 DOI: 10.1038/s42003-022-03396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight. The growth of muscle and flight performance in monarch butterflies is influenced by the plant species the larvae grow on.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Staci Cibotti
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Swayamjit Ray
- Department of Plant Pathology, Cornell University, Ithaca, NY, USA
| | - Obenewa Ankoma-Darko
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Nathaniel B McCartney
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Rudolf J Schilder
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Strachecka A, Chobotow J, Kuszewska K, Olszewski K, Skowronek P, Bryś M, Paleolog J, Woyciechowski M. Morphology of Nasonov and Tergal Glands in Apis mellifera Rebels. INSECTS 2022; 13:401. [PMID: 35621739 PMCID: PMC9146257 DOI: 10.3390/insects13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Social insect societies are characterized by a high level of organization. This is made possible through a remarkably complex array of pheromonal signals produced by all members of the colony. The queen's pheromones signal the presence of a fertile female and induce daughter workers to remain sterile. However, the lack of the queen mandibular pheromone leads to the emergence of rebels, i.e., workers with increased reproductive potential. We suggested that the rebels would have developed tergal glands and reduced Nasonov glands, much like the queen but contrary to normal workers. Our guess turned out to be correct and may suggest that the rebels are more queen-like than previously thought. The tergal gland cells found in the rebels were numerous but they did not adhere as closely to one another as they did in queens. In the rebels, the number of Nasonov gland cells was very limited (from 38 to 53) and there were fat body trophocytes between the glandular cells. The diameters of the Nasonov gland cell nuclei were smaller in the rebels than in the normal workers. These results are important for understanding the formation of the different castes of Apis mellifera females, as well as the division of labor in social insect societies.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Jacek Chobotow
- Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-400 Lublin, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Krzysztof Olszewski
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Maciej Bryś
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|
14
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Punch in the gut: Parasite tolerance of phytochemicals reflects host diet. Environ Microbiol 2022; 24:1805-1817. [PMID: 35315572 DOI: 10.1111/1462-2920.15981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
Gut parasites of plant-eating insects are exposed to antimicrobial phytochemicals that can reduce infection. Trypanosomatid gut parasites infect insects of diverse nutritional ecologies as well as mammals and plants, raising the question of how host diet-associated phytochemicals shape parasite evolution and host specificity. To test the hypothesis that phytochemical tolerance of trypanosomatids reflects the chemical ecology of their hosts, we compared related parasites from honey bees and mosquitoes-hosts that differ in phytochemical consumption-and contrasted our results with previous studies on phylogenetically related, human-parasitic Leishmania. We identified one bacterial and ten plant-derived substances with known antileishmanial activity that also inhibited honey bee parasites associated with colony collapse. Bee parasites exhibited greater tolerance of chrysin-a flavonoid found in nectar, pollen, and plant resin-derived propolis. In contrast, mosquito parasites were more tolerant of cinnamic acid-a product of lignin decomposition present in woody debris-rich larval habitats. Parasites from both hosts tolerated many compounds that inhibit Leishmania, hinting at possible trade-offs between phytochemical tolerance and mammalian infection. Our results implicate the phytochemistry of host diets as a potential driver of insect-trypanosomatid associations, and identify compounds that could be incorporated into colony diets or floral landscapes to ameliorate infection in bees. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Ryan S Schwarz
- Department of Biology, Fort Lewis College, Durango, CO, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| |
Collapse
|
15
|
Hansen TE, Enders LS. Host Plant Species Influences the Composition of Milkweed and Monarch Microbiomes. Front Microbiol 2022; 13:840078. [PMID: 35283842 PMCID: PMC8908431 DOI: 10.3389/fmicb.2022.840078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Plants produce defensive chemicals for protection against insect herbivores that may also alter plant and insect associated microbial communities. However, it is unclear how expression of plant defenses impacts the assembly of insect and plant microbiomes, for example by enhancing communities for microbes that can metabolize defensive chemicals. Monarch butterflies (Danaus plexippus) feed on milkweed species (Asclepias spp.) that vary in production of toxic cardiac glycosides, which could alter associated microbiomes. We therefore sought to understand how different milkweed species, with varying defensive chemical profiles, influence the diversity and composition of monarch and milkweed (root and leaf) bacterial communities. Using a metabarcoding approach, we compared rhizosphere, phyllosphere and monarch microbiomes across two milkweed species (Asclepias curassavica, Asclepias syriaca) and investigated top-down effects of monarch feeding on milkweed microbiomes. Overall, monarch feeding had little effect on host plant microbial communities, but each milkweed species harbored distinct rhizosphere and phyllosphere microbiomes, as did the monarchs feeding on them. There was no difference in diversity between plants species for any of the microbial communities. Taxonomic composition significantly varied between plant species for rhizospheres, phyllospheres, and monarch microbiomes and no dispersion were detected between samples. Interestingly, phyllosphere and monarch microbiomes shared a high proportion of bacterial taxa with the rhizosphere (88.78 and 95.63%, respectively), while phyllosphere and monarch microbiomes had fewer taxa in common. Overall, our results suggest milkweed species select for unique sets of microbial taxa, but to what extent differences in expression of defensive chemicals directly influences microbiome assembly remains to be tested. Host plant species also appears to drive differences in monarch caterpillar microbiomes. Further work is needed to understand how monarchs acquire microbes, for example through horizontal transfer during feeding on leaves or encountering soil when moving on or between host plants.
Collapse
Affiliation(s)
- Thorsten E. Hansen
- Entomology Department, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
16
|
Junkins EN, McWhirter JB, McCall LI, Stevenson BS. Environmental structure impacts microbial composition and secondary metabolism. ISME COMMUNICATIONS 2022; 2:15. [PMID: 37938679 PMCID: PMC9723690 DOI: 10.1038/s43705-022-00097-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 05/11/2023]
Abstract
Determining the drivers of microbial community assembly is a central theme of microbial ecology, and chemical ecologists seek to characterize how secondary metabolites mediate these assembly patterns. Environmental structure affects how communities assemble and what metabolic pathways aid in that assembly. Here, we bridged these two perspectives by addressing the chemical drivers of community assembly within a spatially structured landscape with varying oxygen availability. We hypothesized that structured environments would favor higher microbial diversity and metabolite diversity. We anticipated that the production of a compound would be more advantageous in a structured environment (less mixing) compared to an unstructured environment (more mixing), where the molecule would have a diminished local effect. We observed this to be partially true in our experiments: structured environments had similar microbial diversity compared to unstructured environments but differed significantly in the metabolites produced. We also found that structured environments selected for communities with higher evenness, rather than communities with higher richness. This supports the idea that when characterizing the drivers of community assembly, it matters less about who is there and more about what they are doing. Overall, these data contribute to a growing effort to approach microbial community assembly with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Emily N Junkins
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Joseph B McWhirter
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Department of Earth and Planetary Science, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Pitts RJ, Huff RM, Shih SJ, Bohbot JD. Identification and functional characterization of olfactory indolergic receptors in Musca domestica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103653. [PMID: 34600101 DOI: 10.1016/j.ibmb.2021.103653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In mosquitoes, indolic compounds are detected by a group of olfactory indolergic Odorant Receptors (indolORs). The ancient origin of indole and 3-methylindole as chemical signals suggest that they may be detected by insects outside the Culicidae clade. To test this hypothesis, we have identified potential indolOR genes in brachyceran flies based on sequence homology. Because of the crucial roles of indolic compounds in oviposition and foraging, we have focused our attention on the housefly Musca domestica. Using a heterologous expression system, we have identified indolOR transcript expression in the female antennae, and have characterized MdomOR30a and MdomOR49b as 3-methylindole and indole receptors, respectively. We have identified a set of 92 putative indolOR genes encoded in the genomes of Culicoidea, Psychodidae and brachycera, described their phylogenetic relationships, and exon/intron structures. Further characterization of indolORs will impact our understanding of insect chemical ecology and will provide targets for the development of novel odor-based tools that can be integrated into existing vector surveillance and control programs.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biology, Baylor University, Waco, TX, USA
| | - Robert M Huff
- Department of Biology, Baylor University, Waco, TX, USA
| | - Shan Ju Shih
- Department of Biology, Baylor University, Waco, TX, USA
| | - Jonathan D Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| |
Collapse
|
18
|
Affiliation(s)
- Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz Univ. Poznań Poland
| | | |
Collapse
|
19
|
Thöming G. Behavior Matters-Future Need for Insect Studies on Odor-Mediated Host Plant Recognition with the Aim of Making Use of Allelochemicals for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10469-10479. [PMID: 34482687 DOI: 10.1021/acs.jafc.1c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Allelochemicals, chemical cues that, among other things, mediate insect-plant interactions, such as host plant recognition, have attracted notable interest as tools for ecological control of pest insects. Advances have recently been made in methods for sampling and analyzing volatile compounds and technology for tracking insects in their natural habitat. However, progress in odor-mediated behavioral bioassays of insects has been relatively slow. This perspective highlights this odor-mediated insect behavior, particularly in a natural setting and considering the whole behavioral sequence involved in the host location, which is the key to understanding the mechanisms underlying host plant recognition. There is thus a need to focus on elaborate behavioral bioassays in future studies, particularly if the goal is to use allelochemicals in pest control. Future directions for research are discussed.
Collapse
Affiliation(s)
- Gunda Thöming
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| |
Collapse
|
20
|
Grunseich JM, Thompson MN, Hay AA, Gorman Z, Kolomiets MV, Eubanks MD, Helms AM. Risky roots and careful herbivores: Sustained herbivory by a root‐feeding herbivore attenuates indirect plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John M. Grunseich
- Department of Entomology Texas A&M University College Station TX USA
| | | | - Allison A. Hay
- Department of Entomology Texas A&M University College Station TX USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology Texas A&M University College Station TX USA
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology Texas A&M University College Station TX USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Anjel M. Helms
- Department of Entomology Texas A&M University College Station TX USA
| |
Collapse
|
21
|
Sedio BE, Devaney JL, Pullen J, Parker GG, Wright SJ, Parker JD. Chemical novelty facilitates herbivore resistance and biological invasions in some introduced plant species. Ecol Evol 2020; 10:8770-8792. [PMID: 32884656 PMCID: PMC7452787 DOI: 10.1002/ece3.6575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Ecological release from herbivory due to chemical novelty is commonly predicted to facilitate biological invasions by plants, but has not been tested on a community scale. We used metabolomics based on mass spectrometry molecular networks to assess the novelty of foliar secondary chemistry of 15 invasive plant species compared to 46 native species at a site in eastern North America. Locally, invasive species were more chemically distinctive than natives. Among the 15 invasive species, the more chemically distinct were less preferred by insect herbivores and less browsed by deer. Finally, an assessment of invasion frequency in 2,505 forest plots in the Atlantic coastal plain revealed that, regionally, invasive species that were less preferred by insect herbivores, less browsed by white-tailed deer, and chemically distinct relative to the native plant community occurred more frequently in survey plots. Our results suggest that chemically mediated release from herbivores contributes to many successful invasions.
Collapse
Affiliation(s)
- Brian E. Sedio
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
- Smithsonian Tropical Research InstituteAncónRepublic of Panama
- Center for Biodiversity and Drug DiscoveryInstituto de Investigaciones Científicas y Servicios de Alta Tecnología‐AIPAncónRepublic of Panama
| | | | - Jamie Pullen
- Smithsonian Environmental Research CenterEdgewaterMDUSA
| | | | | | | |
Collapse
|
22
|
Kooyers NJ, Donofrio A, Blackman BK, Holeski LM. The Genetic Architecture of Plant Defense Trade-offs in a Common Monkeyflower. J Hered 2020; 111:333-345. [DOI: 10.1093/jhered/esaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract
Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci.
Collapse
Affiliation(s)
- Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, LA
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Abigail Donofrio
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA
| | - Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
23
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
Champagne E, Royo AA, Tremblay JP, Raymond P. Phytochemicals Involved in Plant Resistance to Leporids and Cervids: a Systematic Review. J Chem Ecol 2019; 46:84-98. [PMID: 31858366 DOI: 10.1007/s10886-019-01130-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Non-nutritive phytochemicals (secondary metabolites and fibre) can influence plant resistance to herbivores and have ecological impacts on animal and plant population dynamics. A major hindrance to the ecological study of these phytochemicals is the uncertainty in the compounds one should measure, especially when limited by cost and expertise. With the underlying goal of identifying proxies of plant resistance to herbivores, we performed a systematic review of the effects of non-nutritive phytochemicals on consumption by leporids (rabbits and hares) and cervids (deer family). We identified 133 out of 1790 articles that fit our selection criteria (leporids = 33, cervids = 97, both herbivore types = 3). These articles cover 18 species of herbivores, on four continents. The most prevalent group of phytochemicals in the selected articles was phenolics, followed by terpenes for leporids and by fibre for cervids. In general, the results were variable but phenolic concentration seems linked with high resistance to both types of herbivores. Terpene concentration is also linked to high plant resistance; this relationship seems driven by total terpene content for cervids and specific terpenes for leporids. Tannins and fibre did not have a consistent positive effect on plant resistance. Because of the high variability in results reported and the synergistic effects of phytochemicals, we propose that the choice of chemical analyses must be tightly tailored to research objectives. While researchers pursuing ecological or evolutionary objectives should consider multiple specific analyses, researchers in applied studies could focus on a fewer number of specific analyses. An improved consideration of plant defence, based on meaningful chemical analyses, could improve studies of plant resistance and allow us to predict novel or changing plant-herbivore interactions.
Collapse
Affiliation(s)
- Emilie Champagne
- Département de biologie & Centre d'étude de la forêt, Université Laval, QC, Québec, Canada. .,Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, QC, Québec, Canada.
| | - Alejandro A Royo
- USDA Forest Service Northern Research Station, 335 National Forge Road, Irvine, PA, 16365, USA
| | - Jean-Pierre Tremblay
- Département de biologie & Centre d'étude de la forêt, Université Laval, QC, Québec, Canada.,Centre d'études nordiques, Université Laval, QC, Québec, Canada
| | - Patricia Raymond
- Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, QC, Québec, Canada
| |
Collapse
|
25
|
Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila suzukii. INSECTS 2019; 10:insects10120454. [PMID: 31847450 PMCID: PMC6956413 DOI: 10.3390/insects10120454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
Sustainable pest control requires a systems approach, based on a thorough ecological understanding of an agro-ecosystem. Such fundamental understanding provides a basis for developing strategies to manipulate the pest’s behaviour, distribution, and population dynamics, to be employed for crop protection. This review focuses on the fundamental knowledge required for the development of an effective push-pull approach. Push-pull is a strategy to repel a pest from a crop, while attracting it toward an external location. It often relies on infochemicals (e.g., pheromones or allelochemicals) that are relevant in the ecology of the pest insect and can be exploited as lure or repellent. Importantly, responsiveness of insects to infochemicals is dependent on both the insect’s internal physiological state and external environmental conditions. This context-dependency reflects the integration of cues from different sensory modalities, the effect of mating and/or feeding status, as well as diurnal or seasonal rhythms. Furthermore, when the costs of responding to an infochemical outweigh the benefits, resistance can rapidly evolve. Here, we argue that profound knowledge on context-dependence is important for the development and implementation of push-pull approaches. We illustrate this by discussing the relevant fundamental knowledge on the invasive pest species Drosophila suzukii as an example.
Collapse
|
26
|
Slot JC, Gluck-Thaler E. Metabolic gene clusters, fungal diversity, and the generation of accessory functions. Curr Opin Genet Dev 2019; 58-59:17-24. [DOI: 10.1016/j.gde.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
|
27
|
Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 2019; 191:141-152. [PMID: 31367913 DOI: 10.1007/s00442-019-04480-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Herbivorous insects can defend themselves against pathogens via an immune response, which is influenced by the nutritional quality and phytochemistry of the host plant. However, it is unclear how these aspects of diet interact to influence the insect immune response and what role is played by ingested foliar microbes. We examined dietary protein, phytochemistry, and the caterpillar microbiome to understand variation in immune response of the Melissa blue butterfly, Lycaeides melissa. We also asked if these factors have host plant-specific effects by measuring L. melissa immune response when reared on a recently colonized exotic host plant (Medicago sativa) as compared to the immune response on an ancestral, native host (Astragalus canadensis). L. melissa did not experience immunological benefits directly related to consumption of the novel plant M. sativa. However, we did find negative, direct effects of phytochemical diversity and negative, direct effects of diet-derived microbial diversity on constitutive immune response for caterpillars fed M. sativa, as measured by phenoloxidase activity. Foliar protein did not directly influence the immune response, but did do so indirectly by increasing weight gain. Our results highlight the important effects of host diet on caterpillar physiology and raise the possibility that foliar microbiota, despite being rapidly passed through the gut, can affect the caterpillar immune response.
Collapse
|
28
|
Mair MM, Ruther J. Chemical Ecology of the Parasitoid Wasp Genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Sedio BE. Recent advances in understanding the role of secondary metabolites in species-rich multitrophic networks. CURRENT OPINION IN INSECT SCIENCE 2019; 32:124-130. [PMID: 31113624 DOI: 10.1016/j.cois.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Understanding coexistence in species-rich communities remains a primary challenge of ecology. Interactions mediated through multitrophic networks are thought to play an important role in sustaining species coexistence in the face of competition for resources. The identity of trophic partners and the intensity with which they interact are often mediated by diverse secondary metabolites. Recent innovations in organic-molecule bioinformatics and multivariate statistical analysis are rapidly advancing our understanding of metabolites and the multitrophic interactions they mediate. Here, I examine recent advances in the study of chemical ecology in species-rich multitrophic communities, with an emphasis on plant-herbivore networks, and explore the potential for chemically mediated interactions to shape community composition and sustain species diversity in ecological communities.
Collapse
Affiliation(s)
- Brian E Sedio
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama; Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Panama. https://twitter.com/@stri_panama
| |
Collapse
|
30
|
Helms AM, Ray S, Matulis NL, Kuzemchak MC, Grisales W, Tooker JF, Ali JG. Chemical cues linked to risk: Cues from below‐ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anjel M. Helms
- Department of Entomology Texas A&M University College Station Texas
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| | - Swayamjit Ray
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| | - Nina L. Matulis
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| | - Margaret C. Kuzemchak
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| | - William Grisales
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| | - John F. Tooker
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| | - Jared G. Ali
- Department of Entomology, Center for Chemical Ecology The Pennsylvania State University University Park Pennsylvania
| |
Collapse
|
31
|
Latham MC, Anderson DP, Norbury G, Price CJ, Banks PB, Latham ADM. Modeling habituation of introduced predators to unrewarding bird odors for conservation of ground-nesting shorebirds. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01814. [PMID: 30312506 DOI: 10.1002/eap.1814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Foraging mammalian predators face a myriad of odors from potential prey. To be efficient, they must focus on rewarding odors while ignoring consistently unrewarding ones. This may be exploited as a nonlethal conservation tool if predators can be deceived into ignoring odors of vulnerable secondary prey. To explore critical design components and assess the potential gains to prey survival of this technique, we created an individual-based model that simulated the hunting behavior of three introduced mammalian predators on one of their secondary prey (a migratory shorebird) in the South Island of New Zealand. Within this model, we heuristically assessed the outcome of habituating the predators to human-deployed unrewarding bird odors before the bird's arrival at their breeding grounds, i.e., the predators were "primed." Using known home range sizes and probabilities of predators interacting with food lures, our model suggests that wide-ranging predators should encounter a relatively large number of odor points (between 10 and 115) during 27 d of priming when odor is deployed within high-resolution grids (100-150 m). Using this information, we then modeled the effect of different habituation curves (exponential and sigmoidal) on the probability of predators depredating shorebird nests. Our results show that important gains in nest survival can be achieved regardless of the shape of the habituation curve, but particularly if predators are fast olfactory learners (exponential curve), and even if some level of dishabituation occurs after prey become available. Predictions from our model can inform the amount and pattern in which olfactory stimuli need to be deployed in the field to optimize encounters by predators, and the relative gains that can be expected from reduced predation pressure on secondary prey under different scenarios of predator learning. Habituating predators to odors of threatened secondary prey may have particular efficacy as a conservation tool in areas where lethal predator control is not possible or ethical, or where even low predator densities can be detrimental to prey survival. Our approach is also relevant for determining interaction probabilities for devices other than odor points, such as bait stations and camera traps.
Collapse
Affiliation(s)
- M Cecilia Latham
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| | - Dean P Anderson
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| | - Grant Norbury
- Manaaki Whenua Landcare Research, PO Box 282, Alexandra, 9340 , New Zealand
| | - Catherine J Price
- School of Biological Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Peter B Banks
- School of Biological Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - A David M Latham
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| |
Collapse
|
32
|
Gluck‐Thaler E, Vijayakumar V, Slot JC. Fungal adaptation to plant defences through convergent assembly of metabolic modules. Mol Ecol 2018; 27:5120-5136. [DOI: 10.1111/mec.14943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Emile Gluck‐Thaler
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| | - Vinod Vijayakumar
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| | - Jason C. Slot
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| |
Collapse
|
33
|
Kessler A, Kalske A. Plant Secondary Metabolite Diversity and Species Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062406] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ever since the first plant secondary metabolites (PSMs) were isolated and identified, questions about their ecological functions and diversity have been raised. Recent advances in analytical chemistry and complex data computation, as well as progress in chemical ecology from mechanistic to functional and evolutionary questions, open a new box of hypotheses. Addressing these hypotheses includes the measurement of complex traits, such as chemodiversity, in a context-dependent manner and allows for a deeper understanding of the multifunctionality and functional redundancy of PSMs. Here we review a hypothesis framework that addresses PSM diversity on multiple ecological levels (α, β, and γ chemodiversity), its variation in space and time, and the potential agents of natural selection. We use the concept of chemical information transfer as mediator of antagonistic and mutualistic interaction to interpret functional and microevolutionary studies and create a hypothesis framework for understanding chemodiversity as a factor driving ecological processes.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| |
Collapse
|
34
|
Kessler A. Introduction to a special feature issue - New insights into plant volatiles. THE NEW PHYTOLOGIST 2018; 220:655-658. [PMID: 30324737 DOI: 10.1111/nph.15494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
35
|
Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? THE NEW PHYTOLOGIST 2018; 220:692-702. [PMID: 27604856 DOI: 10.1111/nph.14178] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/02/2016] [Indexed: 05/19/2023]
Abstract
All plants synthesize a suite of several hundred terpenoid compounds with roles that include phytohormones, protein modification reagents, anti-oxidants, and more. Different plant lineages also synthesize hundreds of distinct terpenoids, with the total number of such specialized plant terpenoids estimated in the scores of thousands. Phylogenetically restricted terpenoids are implicated in defense or in the attraction of beneficial organisms. A popular hypothesis is that the ability of plants to synthesize new compounds arose incrementally by selection when, as a result of gradual changes in their biotic partners and enemies, the 'old' plant compounds were no longer effective, a process dubbed the 'coevolutionary arms race'. Another hypothesis posits that often the sheer diversity of such compounds provides benefits that a single compound cannot. In this article, we review the unique features of the biosynthetic apparatus of terpenes in plants that facilitate the production of large numbers of distinct terpenoids in each species and how facile genetic and biochemical changes can lead to the further diversification of terpenoids. We then discuss evidence relating to the hypotheses that given ecological functions may be enhanced by the presence of mixtures of terpenes and that the acquisition of new functions by terpenoids may favor their retention once the original functions are lost.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Michigan, MI, 48109, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
36
|
Aartsma Y, Leroy B, van der Werf W, Dicke M, Poelman EH, Bianchi FJJA. Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions. OIKOS 2018. [DOI: 10.1111/oik.05151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yavanna Aartsma
- Farming Systems Ecology, Wageningen Univ; Wageningen the Netherlands
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
- Centre for Crop Systems Analysis, Wageningen Univ; Wageningen the Netherlands
| | - Benjamin Leroy
- Farming Systems Ecology, Wageningen Univ; Wageningen the Netherlands
- Dept of Agroecology and Environment, ISARA Lyon; Lyon France
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen Univ; Wageningen the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
| | | |
Collapse
|
37
|
Yohe LR, Brand P. Evolutionary ecology of chemosensation and its role in sensory drive. Curr Zool 2018; 64:525-533. [PMID: 30108633 PMCID: PMC6084603 DOI: 10.1093/cz/zoy048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/20/2018] [Indexed: 11/14/2022] Open
Abstract
All behaviors of an organism are rooted in sensory processing of signals from its environment, and natural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness. Sensory drive, or divergent selection for efficient signal transmission among heterogeneous environments, has been a useful hypothesis for describing sensory adaptations, but its current scope has primarily focused on visual and acoustic sensory modalities. Chemosensation, the most widespread sensory modality in animals that includes the senses of smell and taste, is characterized by rapid evolution and has been linked to sensory adaptations to new environments in numerous lineages. Yet, olfaction and gustation have been largely underappreciated in light of the sensory drive hypothesis. Here, we examine why chemosensory systems have been overlooked and discuss the potential of chemosensation to shed new insight on the sensory drive hypothesis and vice versa. We provide suggestions for developing a framework to better incorporate studies of chemosensory adaptation that have the potential to shape a more complete, coherent, and holistic interpretation of the sensory drive.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Geology & Geophysics, Yale University, New Haven, CT, USA
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
38
|
A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. SUSTAINABILITY 2018. [DOI: 10.3390/su10062023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Pais AL, Li X, (Jenny) Xiang Q. Discovering variation of secondary metabolite diversity and its relationship with disease resistance in Cornus florida L. Ecol Evol 2018; 8:5619-5636. [PMID: 29938079 PMCID: PMC6010843 DOI: 10.1002/ece3.4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding intraspecific relationships between genetic and functional diversity is a major goal in the field of evolutionary biology and is important for conserving biodiversity. Linking intraspecific molecular patterns of plants to ecological pressures and trait variation remains difficult due to environment-driven plasticity. Next-generation sequencing, untargeted liquid chromatography-mass spectrometry (LC-MS) profiling, and interdisciplinary approaches integrating population genomics, metabolomics, and community ecology permit novel strategies to tackle this problem. We analyzed six natural populations of the disease-threatened Cornus florida L. from distinct ecological regions using genotype-by-sequencing markers and LC-MS-based untargeted metabolite profiling. We tested the hypothesis that higher genetic diversity in C. florida yielded higher chemical diversity and less disease susceptibility (screening hypothesis), and we also determined whether genetically similar subpopulations were similar in chemical composition. Most importantly, we identified metabolites that were associated with candidate loci or were predictive biomarkers of healthy or diseased plants after controlling for environment. Subpopulation clustering patterns based on genetic or chemical distances were largely congruent. While differences in genetic diversity were small among subpopulations, we did observe notable similarities in patterns between subpopulation averages of rarefied-allelic and chemical richness. More specifically, we found that the most abundant compound of a correlated group of putative terpenoid glycosides and derivatives was correlated with tree health when considering chemodiversity. Random forest biomarker and genomewide association tests suggested that this putative iridoid glucoside and other closely associated chemical features were correlated to SNPs under selection.
Collapse
Affiliation(s)
- Andrew L. Pais
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| | - Xu Li
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNorth Carolina
| | - Qiu‐Yun (Jenny) Xiang
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
40
|
Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, Forister ML, Parchman TL, Galland LM, Hurtado PJ, Espeset AE, Glassmire AE, Harrison JG, Mo C, Yoon S, Pardikes NA, Muchoney ND, Jahner JP, Slinn HL, Shelef O, Dodson CD, Kato MJ, Yamaguchi LF, Jeffrey CS. Modern approaches to study plant–insect interactions in chemical ecology. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0009-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Peters K, Worrich A, Weinhold A, Alka O, Balcke G, Birkemeyer C, Bruelheide H, Calf OW, Dietz S, Dührkop K, Gaquerel E, Heinig U, Kücklich M, Macel M, Müller C, Poeschl Y, Pohnert G, Ristok C, Rodríguez VM, Ruttkies C, Schuman M, Schweiger R, Shahaf N, Steinbeck C, Tortosa M, Treutler H, Ueberschaar N, Velasco P, Weiß BM, Widdig A, Neumann S, Dam NMV. Current Challenges in Plant Eco-Metabolomics. Int J Mol Sci 2018; 19:E1385. [PMID: 29734799 PMCID: PMC5983679 DOI: 10.3390/ijms19051385] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant⁻organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.
Collapse
Affiliation(s)
- Kristian Peters
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Anja Worrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
- UFZ-Helmholtz-Centre for Environmental Research, Department Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| | - Oliver Alka
- Applied Bioinformatics Group, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.
| | - Gerd Balcke
- Leibniz Institute of Plant Biochemistry, Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany.
| | - Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Sophie Dietz
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Kai Dührkop
- Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.
| | - Uwe Heinig
- Weizmann Institute of Science, Faculty of Biochemistry, Department of Plant Sciences, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel.
| | - Marlen Kücklich
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
| | - Mirka Macel
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Informatics, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany.
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Victor Manuel Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Christoph Ruttkies
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Meredith Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | - Rabea Schweiger
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Nir Shahaf
- Weizmann Institute of Science, Faculty of Biochemistry, Department of Plant Sciences, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel.
| | - Christoph Steinbeck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Maria Tortosa
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Hendrik Treutler
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Brigitte M Weiß
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
| | - Anja Widdig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
- Research Group of Primate Kin Selection, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| |
Collapse
|
42
|
Noonan MJ, Tinnesand HV, Buesching CD. Normalizing Gas-Chromatography-Mass Spectrometry Data: Method Choice can Alter Biological Inference. Bioessays 2018; 40:e1700210. [PMID: 29709068 DOI: 10.1002/bies.201700210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/05/2018] [Indexed: 12/26/2022]
Abstract
We demonstrate how different normalization techniques in GC-MS analysis impart unique properties to the data, influencing any biological inference. Using simulations, and empirical data, we compare the most commonly used techniques (Total Sum Normalization 'TSN'; Median Normalization 'MN'; Probabilistic Quotient Normalization 'PQN'; Internal Standard Normalization 'ISN'; External Standard Normalization 'ESN'; and a compositional data approach 'CODA'). When differences between biological classes are pronounced, ESN and ISN provides good results, but are less reliable for more subtly differentiated groups. MN, TSN, and CODA approaches produced variable results dependent on the structure of the data, and are prone to false positive biomarker identification. In contrast, PQN exhibits the lowest false positive rate, though with occasionally poor model performance. Because ESN requires extensive pre-planning, and offers only mixed reliability, and ISN, TSN, MN, and CODA approaches are prone to introducing artefactual differences, we recommend the use of PQN in GC-MS research.
Collapse
Affiliation(s)
- Michael J Noonan
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Rd., Front Royal, VA 22630, USA
| | - Helga V Tinnesand
- Faculty of Technology, Natural Sciences, and Maritime Sciences, Department of Natural Sciences and Environmental Health, University College of Southeast Norway, 3800 Bø i Telemark, Norway
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Zoology Department, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, OX13 5QL, UK
| |
Collapse
|
43
|
Abstract
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
44
|
Reynolds HT, Vijayakumar V, Gluck-Thaler E, Korotkin HB, Matheny PB, Slot JC. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol Lett 2018; 2:88-101. [PMID: 30283667 PMCID: PMC6121855 DOI: 10.1002/evl3.42] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Secondary metabolites are a heterogeneous class of chemicals that often mediate interactions between species. The tryptophan‐derived secondary metabolite, psilocin, is a serotonin receptor agonist that induces altered states of consciousness. A phylogenetically disjunct group of mushroom‐forming fungi in the Agaricales produce the psilocin prodrug, psilocybin. Spotty phylogenetic distributions of fungal compounds are sometimes explained by horizontal transfer of metabolic gene clusters among unrelated fungi with overlapping niches. We report the discovery of a psilocybin gene cluster in three hallucinogenic mushroom genomes, and evidence for its horizontal transfer between fungal lineages. Patterns of gene distribution and transmission suggest that synthesis of psilocybin may have provided a fitness advantage in the dung and late wood‐decay fungal niches, which may serve as reservoirs of fungal indole‐based metabolites that alter behavior of mycophagous and wood‐eating invertebrates. These hallucinogenic mushroom genomes will serve as models in neurochemical ecology, advancing the (bio)prospecting and synthetic biology of novel neuropharmaceuticals.
Collapse
Affiliation(s)
- Hannah T Reynolds
- Department of Plant Pathology The Ohio State University 2021 Coffey Road Columbus Ohio 43210.,Department of Biological & Environmental Sciences Western Connecticut State University 181 White St. Danbury Connecticut 06810-6826
| | - Vinod Vijayakumar
- Department of Plant Pathology The Ohio State University 2021 Coffey Road Columbus Ohio 43210
| | - Emile Gluck-Thaler
- Department of Plant Pathology The Ohio State University 2021 Coffey Road Columbus Ohio 43210
| | - Hailee Brynn Korotkin
- Ecology & Evolutionary Biology University of Tennessee 334 Hesler Biology Building Knoxville Tennessee 37996-1610
| | - Patrick Brandon Matheny
- Ecology & Evolutionary Biology University of Tennessee 334 Hesler Biology Building Knoxville Tennessee 37996-1610
| | - Jason C Slot
- Department of Plant Pathology The Ohio State University 2021 Coffey Road Columbus Ohio 43210
| |
Collapse
|
45
|
Gregg PC, Del Socorro AP, Landolt PJ. Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:453-470. [PMID: 29058978 DOI: 10.1146/annurev-ento-031616-035040] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Attract-and-kill has considerable potential as a tactic in integrated management of pests of agricultural crops, but the use of sex pheromones as attractants is limited by male multiple mating and immigration of mated females into treated areas. Attractants for both sexes, and particularly females, would minimize these difficulties. Volatile compounds derived from plants or fermentation of plant products can attract females and have been used in traps for monitoring and control, and in sprayable attract-and-kill formulations or bait stations. Recent advances in fundamental understanding of insect responses to plant volatiles should contribute to the development of products that can help manage a wide range of pests with few impacts on nontarget organisms, but theory must be tempered with pragmatism in the selection of volatiles and toxicants and in defining their roles in formulations. Market requirements and regulatory factors must be considered in parallel with scientific constraints if successful products are to be developed.
Collapse
Affiliation(s)
- Peter C Gregg
- University of New England, Armidale, New South Wales 2351, Australia; ,
| | | | - Peter J Landolt
- Fruit and Vegetable Insect Research Unit, Agricultural Research Service, US Department of Agriculture, Wapato, Washington 98951, USA;
| |
Collapse
|
46
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
47
|
A Link between Linearmycin Biosynthesis and Extracellular Vesicle Genesis Connects Specialized Metabolism and Bacterial Membrane Physiology. Cell Chem Biol 2017; 24:1238-1249.e7. [DOI: 10.1016/j.chembiol.2017.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/23/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
|
48
|
Raffa KF, Mason CJ, Bonello P, Cook S, Erbilgin N, Keefover-Ring K, Klutsch JG, Villari C, Townsend PA. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. PLANT, CELL & ENVIRONMENT 2017; 40:1791-1806. [PMID: 28543133 DOI: 10.1111/pce.12985] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species.
Collapse
Affiliation(s)
- Kenneth F Raffa
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Charles J Mason
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Entomology, Pennsylvania State University, State College, PA, 16802, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen Cook
- Department of Plant, Soil and Entomological Science, University of Idaho, Moscow, ID, 83844, USA
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Warnell School of Forestry and Natural Resources, University of Georgia - Athens, Athens, GA, 30602, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
49
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
50
|
Ledoux JB, Antunes A. Beyond the beaten path: improving natural products bioprospecting using an eco-evolutionary framework - the case of the octocorals. Crit Rev Biotechnol 2017. [PMID: 28651436 DOI: 10.1080/07388551.2017.1331335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Marine natural products (NPs) represent an impressive source of novel bioactive molecules with major biotechnological applications. Nevertheless, the usual chemical and applied perspective leading most of bioprospecting projects come along with various limitations blurring our understanding of the extensive marine chemical diversity. Here, we propose several guidelines: (i) to optimize bioprospecting and (ii) to refine our knowledge on marine chemical ecology focusing on octocorals, one of the most promising sources of marine NPs. We identified a significant phylogenetic bias in the octocoral bioprospecting, which calls for the development of a concerted discovery strategy. Given the gap existing between the number of isolated NPs and the knowledge regarding their functions, we provide an ecologically centered workflow prioritizing biological function ahead of chemical identification. Furthermore, we illustrate how -omic technologies should rapidly increase our knowledge on solving different aspects of the ecology and evolution of marine NPs.
Collapse
Affiliation(s)
- Jean-Baptiste Ledoux
- a CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal.,b Institut de Ciències del Mar (ICM-CSIC) , Barcelona , Spain
| | - Agostinho Antunes
- a CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal.,c Department of Biology, Faculty of Sciences , University of Porto , Porto , Portugal
| |
Collapse
|