1
|
Huang L, Huang L, Wang L, Wang Y, Xie W, Zhou Y, Mei Y, Yang J, Yan F, Xie S. Nonsurgical periodontal treatment improved the abnormal trimethylamine n-oxide metabolism in Apoe -/- mice with periodontitis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167752. [PMID: 40021025 DOI: 10.1016/j.bbadis.2025.167752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AND AIMS Periodontitis aggravated atherosclerosis and the plasma level of the atherosclerosis virulence factor trimethylamine n-oxide (TMAO) increased in Apoe-/- mice was reported. Nonsurgical periodontal treatment (NSPT) is an important treatment method for periodontitis. Therefore, we investigate how NSPT ameliorates the metabolism of TMAO in Apoe-/- mice with periodontitis. METHODS Six-week-old Apoe-/- mice were randomly divided into three groups: the control group (no treatment), the LIGPG (ligation with silk threads soaked in Porphyromonas gingivalis) group, and the NSPT group (removing the ligature thread and scaling). Quantifications of TMAO in plasma were performed. Mouse maxillae were scanned using micro-CT to measure alveolar bone absorption. Livers and intestines were analyzed for gene and protein expression. Mouse feces at 0 and 8 weeks were collected and further analyzed using 16S rRNA gene sequencing for gut microbiota. RESULTS The TMAO concentration in the NSPT group was significantly lower than that in the LIGPG group. The systemic inflammatory environment caused by periodontitis was improved through NSPT, especially in the small intestine. The composition and abundance of the intestinal microflora changed after treatment. Spearman correlation analysis between TMAO and different bacteria revealed that plasma TMAO levels were significantly positively correlated with Bacteroides, Helicobacter, Lachnoclostridium and Lactobacillus and significantly negatively correlated with Parasutterella and Ileibacterium. CONCLUSIONS NSPT alleviated the periodontitis-induced increase in TMAO levels, which might be associated with changes in the intestinal microbiota, especially Bacteroides, Helicobacter, Lachnoclostridium, Lactobacillus, Parasutterella and Ileibacterium. Our study provides new insights for the study of NSPT and cardiovascular diseases.
Collapse
Affiliation(s)
- Lingyan Huang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Liang Huang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Huaian Stomatological Hospital, Huaian, China
| | - Weige Xie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zhou
- Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Youmin Mei
- Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Jie Yang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Sijing Xie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Ma L, Wang H, Huang X, Huang H, Peng Y, Liu H, Wang X, Cao Z. CXXC5 mitigates P. gingivalis-inhibited cementogenesis by influencing mitochondrial biogenesis. Cell Commun Signal 2024; 22:4. [PMID: 38167023 PMCID: PMC10763120 DOI: 10.1186/s12964-023-01283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cementoblasts on the tooth-root surface are responsible for cementum formation (cementogenesis) and sensitive to Porphyromonas gingivalis stimulation. We have previously proved transcription factor CXXC-type zinc finger protein 5 (CXXC5) participates in cementogenesis. Here, we aimed to elucidate the mechanism in which CXXC5 regulates P. gingivalis-inhibited cementogenesis from the perspective of mitochondrial biogenesis. METHODS In vivo, periapical lesions were induced in mouse mandibular first molars by pulp exposure, and P. gingivalis was applied into the root canals. In vitro, a cementoblast cell line (OCCM-30) was induced cementogenesis and submitted for RNA sequencing. These cells were co-cultured with P. gingivalis and examined for osteogenic ability and mitochondrial biogenesis. Cells with stable CXXC5 overexpression were constructed by lentivirus transduction, and PGC-1α (central inducer of mitochondrial biogenesis) was down-regulated by siRNA transfection. RESULTS Periapical lesions were enlarged, and PGC-1α expression was reduced by P. gingivalis treatment. Upon apical inflammation, Cxxc5 expression decreased with Il-6 upregulation. RNA sequencing showed enhanced expression of osteogenic markers, Cxxc5, and mitochondrial biogenesis markers during cementogenesis. P. gingivalis suppressed osteogenic capacities, mitochondrial biogenesis markers, mitochondrial (mt)DNA copy number, and cellular ATP content of cementoblasts, whereas CXXC5 overexpression rescued these effects. PGC-1α knockdown dramatically impaired cementoblast differentiation, confirming the role of mitochondrial biogenesis on cementogenesis. CONCLUSIONS CXXC5 is a P. gingivalis-sensitive transcription factor that positively regulates cementogenesis by influencing PGC-1α-dependent mitochondrial biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Yan M, Liang W, Du L, Guo R, Cao Y, Ni S, Zhong Y, Zhang K, Qu K, Qin X, Chen L, Wu W. Metronidazole-loaded polydopamine nanomedicine with antioxidant and antibacterial bioactivity for periodontitis. Nanomedicine (Lond) 2023; 18:2143-2157. [PMID: 38127626 DOI: 10.2217/nnm-2023-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: This study focused on treating periodontitis with bacterial infection and local over accumulation of reactive oxygen species. Materials & methods: Polydopamine nanoparticles (PDA NPs) were exploited as efficient carriers for encapsulated metronidazole (MNZ). The therapeutic efficacy and biocompatibility of PDA@MNZ NPs were investigated through both in vitro and in vivo studies. Results: The nanodrug PDA@MNZ NPs were successfully fabricated, with well-defined physicochemical characteristics. In vitro, the PDA@MNZ NPs effectively eliminated intracellular reactive oxygen species and inhibited the growth of Porphyromonas gingivalis. Moreover, the PDA@MNZ NPs exhibited synergistic therapy for periodontitisin in vivo. Conclusion: PDA@MNZ NPs were confirmed with exceptional antimicrobial and antioxidant functions, offering a promising avenue for synergistic therapy in periodontitis.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wen Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Lan Du
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Rongjuan Guo
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Yu Cao
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China
| | - Kai Qu
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China
| | - Xian Qin
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Wei Wu
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Carra MC, Rangé H, Caligiuri G, Bouchard P. Periodontitis and atherosclerotic cardiovascular disease: A critical appraisal. Periodontol 2000 2023. [PMID: 37997210 DOI: 10.1111/prd.12528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/12/2023] [Indexed: 11/25/2023]
Abstract
In spite of intensive research efforts driving spectacular advances in terms of prevention and treatments, cardiovascular diseases (CVDs) remain a leading health burden, accounting for 32% of all deaths (World Health Organization. "Cardiovascular Diseases (CVDs)." WHO, February 1, 2017, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)). Cardiovascular diseases are a group of disorders affecting the heart and blood vessels. They encompass a collection of different conditions, among which atherosclerotic cardiovascular disease (ASCVD) is the most prevalent. CVDs caused by atherosclerosis, that is, ASCVD, are particularly fatal: with heart attack and stroke being together the most prevalent cause of death in the world. To reduce the health burden represented by ASCVD, it is urgent to identify the nature of the "residual risk," beyond the established risk factors (e.g., hypertension) and behavioral factors already maximally targeted by drugs and public health campaigns. Remarkably, periodontitis is increasingly recognized as an independent cardiovascular risk factor.
Collapse
Affiliation(s)
- Maria Clotilde Carra
- UFR d'Odontologie, Université Paris Cité, Paris, France
- Service of Odontology, Periodontal and Oral Surgery Unit, Rothschild Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- INSERM- Sorbonne Paris Cité Epidemiology and Statistics Research Centre (CRESS), Paris, France
| | - Hélène Rangé
- UFR d'Odontologie, Université de Rennes, Rennes, France
- Service of Odontology, Centre Hospitalier Universitaire de Rennes, Rennes, France
- NUMECAN Institute (Nutrition Metabolisms and Cancer), INSERM, INRAE, University of Rennes, Rennes, France
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS), Paris, France
- Department of Cardiology and of Physiology, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Bouchard
- UFR d'Odontologie, Université Paris Cité, Paris, France
- URP 2496, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Han W, Jiao Y, Mi S, Han S, Xu J, Li S, Liu Y, Guo L. Stevioside reduces inflammation in periodontitis by changing the oral bacterial composition and inhibiting P. gingivalis in mice. BMC Oral Health 2023; 23:550. [PMID: 37563632 PMCID: PMC10416424 DOI: 10.1186/s12903-023-03229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Excessive sugar intake has become a major challenge in modern societies. Stevioside is a promising non-calorie sweetener with anti-inflammatory effects; however, its effects on the oral environment and periodontitis remain unclear. Therefore, this study explores the effect of stevioside on periodontitis in mice. METHODS Mice were divided into four groups, namely, control, treated with water, and periodontitis models, established using 5 - 0 silk sutures ligation around the second molar then infected the oral cavity with Porphyromonas gingivalis (P. gingivalis) viscous suspension, divided into three groups treated with 0.1% stevioside (P + S), 10% glucose (P + G), or water (P). Micro-CT scanning was used to assess alveolar bone resorption, while RT-PCR was used to evaluate the inflammatory factors expression and P. gingivalis invasion in the gingiva. The composition of the oral bacteria was analysed using 16 S rRNA sequence in the saliva. In addition, P. gingivalis was co-cultured with stevioside at different concentrations in vitro, and bacterial activity was detected via optical density values and live/dead staining. The virulence was detected using RT-PCR, while biofilm formation was detected using scanning electron microscopy. RESULTS Compared with 10% glucose, treatment with 0.1% stevioside reduced alveolar bone absorption and osteoclasts while decreasing IL-6, TNF-α, IL-1β, and P. gingivalis in the gingiva of periodontitis mice. The CEJ-ABC distance in the P + S group was significantly lower than that in the P and P + G groups (P < 0.05). Moreover, the composition of the oral bacteria in the P + S group was similar to that of the control. In vitro stevioside treatment also reduced the bacterial activity and toxicity of P. gingivalis in a dose-dependent manner and affected its biofilm composition. CONCLUSION Our results indicate that, compared with 10% glucose, 0.1% stevioside intake can reduce alveolar bone resorption and inflammation in periodontal tissues in mice; the bacterial composition following 0.1% stevioside intake was similar to that of a healthy environment. In vitro, high concentrations of stevioside reduced P. gingivalis activity, biofilm formation, and virulence expression. Therefore, stevioside is a potential alternative to glucose for patients with periodontitis.
Collapse
Affiliation(s)
- Wenrui Han
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yao Jiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Sicong Mi
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Shu Han
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
6
|
Ancuta DL, Alexandru DM, Crivineanu M, Coman C. Induction of Periodontitis Using Bacterial Strains Isolated from the Human Oral Microbiome in an Experimental Rat Model. Biomedicines 2023; 11:2098. [PMID: 37626595 PMCID: PMC10452127 DOI: 10.3390/biomedicines11082098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal disease is that condition resulting in the destruction of periodontal tissues, bone resorption, and tooth loss, the etiology of which is linked to immunological and microbiological factors. The aim of this study was to evaluate the potential trigger of periodontal disease in a rat model using bacterial species incriminated in the pathology of human periodontitis and to establish their optimal concentrations capable of reproducing the disease, with the idea of subsequently developing innovative treatments for the condition. In this study, we included 15 male Wistar rats, aged 20 weeks, which we divided into three groups. In each group, we applied ligatures with gingival retraction wire on the maxillary incisors. The ligature and the gingival sac were contaminated by oral gavage with a mixture of fresh cultures of Aggregatibacter actinomycetemcomitans (A.a), Fusobacterium nucleatum (F.n) and Streptococcus oralis (S.o) in concentrations of 108, 109, and 1010 CFU/mL each for 5 days a week for 4 weeks. During the clinical monitoring period of 28 days, overlapped with the period of oral contamination, we followed the expression of clinical signs specific to periodontitis. We also monitored the evolution of body weight and took weekly samples from the oral cavity for the microbiological identification of the tested bacteria and blood samples for hematological examination. At the end of the study, the animals were euthanized, and the ligated incisors were taken for histopathological analysis. The characteristic symptomatology of periodontal disease was expressed from the first week of the study and was maintained until the end, and we were able to identify the bacteria during each examination. Hematologically, the number of neutrophils decreased dramatically (p < 0.0001) in the case of the 109 group, unlike the other groups, as did the number of lymphocytes. Histopathologically, we identified neutrophilic infiltrate in all groups, as well as the presence of coccobacilli, periodontal tissue hyperplasia, and periodontal lysis. In the 109 group, we also observed pulpal tissue with necrotic bone fragments and pyogranulomatous inflammatory reaction. By corroborating the data, we can conclude that for the development of periodontal disease using A.a, F.n, and S.o, a concentration of 109 or 1010 CFU/mL is required, which must necessarily contaminate a ligature thread applied to the level of the rat's dental pack.
Collapse
Affiliation(s)
- Diana Larisa Ancuta
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Maria Crivineanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Cristin Coman
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Lee MJ, Ryu HH, Hwang JW, Kim JR, Cho ES, Choi JK, Moon YJ. Sirt6 Activation Ameliorates Inflammatory Bone Loss in Ligature-Induced Periodontitis in Mice. Int J Mol Sci 2023; 24:10714. [PMID: 37445896 PMCID: PMC10341680 DOI: 10.3390/ijms241310714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by microorganisms that induce the destruction of periodontal tissue. Inflamed and damaged tissue produces various inflammatory cytokines, which activate osteoclasts and induce alveolar bone loss and, eventually, tooth loss. Sirt6 expression suppresses inflammation and bone resorption; however, its role in periodontitis remains unclear. We hypothesized that Sirt6 has a protective role in periodontitis. To understand the role of Sirt6 in periodontitis, we compared periodontitis with ligature placement around the maxillary left second molar in 8-week-old control (C57BL/6J) male mice to Sirt6-overexpressing Tg (Sirt6Tg) mice, and we observed the resulting phenotypes using micro-CT. MDL801, a Sirt6 activator, was used as a therapy for periodontitis through oral gavage. Pro-inflammatory cytokines and increased osteoclast numbers were observed in alveolar bone tissue under periodontitis surgery. In the same condition, interestingly, protein levels from Sirt6 were the most downregulated among sirtuins in alveolar bone tissue. Based on micro-CT and CEJ-ABC distance, Sirt6Tg was observed to resist bone loss against ligature-induced periodontitis. Furthermore, the number of osteoclasts was significantly reduced in Sirt6Tg-ligated mice compared with control-ligated mice, although systemic inflammatory cytokines did not change. Consistent with this observation, we confirmed that bone loss was significantly reduced when MDL801, a Sirt6 activator, was included in the ligation mouse model. Our findings demonstrate that Sirt6 activation prevents bone loss against ligature-induced periodontitis. Thus, a Sirt6 activator may provide a new therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Myung Jin Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Hyang Hwa Ryu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
| | - Jae Won Hwang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea;
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju 54896, Republic of Korea;
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
- Department of Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea;
| |
Collapse
|
8
|
Local and systemic effects produced in different models of experimental periodontitis in mice: a systematic review. Arch Oral Biol 2022; 143:105528. [DOI: 10.1016/j.archoralbio.2022.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022]
|
9
|
Williams DW, Ho K, Lenon A, Kim S, Kim T, Gwack Y, Kim RH. Long-Term Ligature-Induced Periodontitis Exacerbates Development of Bisphosphonate-Related Osteonecrosis of the Jaw in Mice. J Bone Miner Res 2022; 37:1400-1410. [PMID: 35598324 PMCID: PMC9386631 DOI: 10.1002/jbmr.4614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/07/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a detrimental intraoral lesion that occurs in patients with long-term or high-dose use of anti-resorptive agents such as bisphosphonates. Tooth extraction is a known risk factor for BRONJ, and such intervention is often performed to eliminate existing pathological inflammatory conditions. Previously, we determined that ligature-induced periodontitis (LIP) is a risk factor for the development of osteonecrosis in mice, but it remains unclear whether the chronicity of LIP followed by extraction influences osteonecrosis development. In this study, we assess the effect of short-term and long-term LIP (ligature placed for 3 weeks [S-LIP] or 10 weeks [L-LIP], respectively) on osteonecrosis development in mice receiving 250 μg/kg/week zoledronic acid (ZOL). When compared to S-LIP, L-LIP caused 70% (p ≤ 0.0014) more bone loss without altering microbe composition. In the presence of ZOL, bone loss mediated by LIP was prevented and bone necrosis was induced. When the ligated tooth was extracted, histologic hallmarks of osteonecrosis including empty lacunae and necrotic bone were increased by 88% (p = 0.0374) and 114% (p = 0.0457), respectively, in L-LIP compared to S-LIP. We also observed significant increases in serum platelet factor 4 (PF4) and macrophage inflammatory factor 1 γ (MIP1γ) in mice that received ZOL treatment and had tooth extractions compared to controls, which may be systemic markers of inflammation-associated osteonecrosis development. Additionally, CD3+ T cells were identified as the major immune population in both health and disease, and we observed a 116% (p = 0.0402) increase in CD3+IL23R+ T cells in L-LIP compared to S-LIP lesions following extraction. Taken together, our study reveals that extracting a periodontally compromised tooth increases the formation of necrotic bone compared to extracting a periodontally healthy tooth and that osteonecrosis may be associated with the duration of the preexisting pathological inflammatory conditions. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Drake Winslow Williams
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Katie Ho
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - Allison Lenon
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - Sol Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Terresa Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
11
|
Cheat B, Torrens C, Foda A, Baroukh B, Sadoine J, Slimani L, Witko-Sarsat V, Huck O, Gosset M, Bouchet J. NLRP3 Is Involved in Neutrophil Mobilization in Experimental Periodontitis. Front Immunol 2022; 13:839929. [PMID: 35281020 PMCID: PMC8905524 DOI: 10.3389/fimmu.2022.839929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
The NLRP3 inflammasome is overexpressed in gingiva of periodontitis patients but its role remains unclear. In our study, we use a periodontitis mouse model of ligature, impregnated or not with Porphyromonas gingivalis, in WT or NLRP3 KO mice. After 28 days of induction, ligature alone provoked exacerbated periodontal destruction in KO mice, compared to WT mice, with an increase in activated osteoclasts. No difference was observed at 14 days, suggesting that NLRP3 is involved in regulatory pathways that limit periodontitis. In contrast, in the presence of P. gingivalis, this protective effect of NLRP3 was not observed. Overexpression of NLRP3 in connective tissue of WT mice increased the local production of mature IL-1β, together with a dramatic mobilization of neutrophils, bipartitely distributed between the site of periodontitis induction and the alveolar bone crest. P. gingivalis enhanced the targeting of NLRP3-positive neutrophils to the alveolar bone crest, suggesting a role for this subpopulation in bone loss. Conversely, in NLRP3 KO mice, mature IL-1β expression was lower and almost no neutrophils were mobilized. Our study sheds new light on the role of NLRP3 in periodontitis by highlighting the ambiguous role of neutrophils, and P. gingivalis which affects NLRP3 functions.
Collapse
Affiliation(s)
- Banndith Cheat
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Coralie Torrens
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Asmaa Foda
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Brigitte Baroukh
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Jeremy Sadoine
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Université de Paris, Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Montrouge, France
| | - Lotfi Slimani
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Université de Paris, Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Montrouge, France
| | - Véronique Witko-Sarsat
- Laboratoire d'Excellence INFLAMEX, Paris, France.,Université de Paris, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Olivier Huck
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Periodontology, Strasbourg, France.,INSERM, UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Marjolaine Gosset
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France.,Service de Médecine Bucco-Dentaire, AP-HP, Hôpital Charles Foix, Ivry-sur-Seine, France
| | - Jérôme Bouchet
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
12
|
Alshibani N. Resolvins as a Treatment Modality in Experimental Periodontitis: A Systematic Review of Preclinical Studies. Cureus 2022; 14:e21095. [PMID: 35036235 PMCID: PMC8754062 DOI: 10.7759/cureus.21095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
This systematic review aimed to assess scientific data of existing literature to identify the efficacy of resolvins (Rv) in the treatment of periodontitis. The electronic databases, Web of Science (WOS), Medline/PubMed, The Cochrane Library, Scopus, and Saudi digital library (SDL), were searched for eligible studies in the field of periodontics. A thorough analysis of the retrieved literature provided five articles that were assessed and included in this systematic review. The quality of these studies was assessed by updated Essential Animal Research: Reporting of In-Vivo Experiments (ARRIVE) guidelines. The five included studies were published between 2005 and 2018 and investigated resolvins as a treatment approach in experimental periodontitis of animals. Among the study animals employed, New Zealand white rabbits were used in three studies, Wistar rats and Albino mice in two studies, respectively. Four studies have evaluated eicosapentaenoic acid-derived RvE1, and one study evaluated docosahexaenoic acid-derived RvD2. Oral-topical application of Rv was followed in four studies, and intra-peritoneal Rv injection was administered in one study. The study duration in these studies have ranged between 4-12 weeks, and the Rv dose was between 0.1 μg to 0.5 μg. One study evaluated the influence of RvE1 topical application on both the prevention and treatment of experimental periodontitis. Resolvins (RvE1 and RvD2) have been studied in periodontitis-induced animal models to assess their potential role in periodontal inflammation resolution. There are promising preclinical data of using resolvins as a treatment modality in experimental periodontitis. Resolvins have been demonstrated to inhibit the destructive inflammatory process and alveolar bone loss in laboratory-induced periodontitis under controlled experimental conditions.
Collapse
Affiliation(s)
- Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, SAU
| |
Collapse
|
13
|
Hariyani N, Halimah AN, Al-Junaid M, Fadhila O, Budhy TI. Mouse periodontitis models using whole Porphyromonas gingivalis bacteria induction. Saudi Dent J 2021; 33:819-825. [PMID: 34938021 PMCID: PMC8665201 DOI: 10.1016/j.sdentj.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/09/2021] [Accepted: 08/01/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ninuk Hariyani
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author at: Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Indonesia.
| | - Anisa Nur Halimah
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mohammed Al-Junaid
- Department of Dentistry, Faculty of Medicine, University of Alsaeed, Taiz, Yemen
- Doctoral program of Dental Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Oki Fadhila
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Theresia Indah Budhy
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Oral Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
14
|
Mitruţ I, Cojocaru MO, Scorei IR, Biţă A, Mogoşanu GD, Popescu M, Olimid DA, Manolea HO. Preclinical and histological study of boron-containing compounds hydrogels on experimental model of periodontal disease. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:219-226. [PMID: 34609424 PMCID: PMC8597384 DOI: 10.47162/rjme.62.1.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Periodontitis is a disease that affects a wide group of people, and there has been an increased interest in the research of finding useful materials that help reduce inflammation and the further loss of tissue. In this study, we have tested a boron-containing compound (BCC) Calcium Fructoborate (CaFB) and Boric Acid (BA) hydrogels on the gingival level on Wistar rats. First, we have induced the periodontal disease at the lower incisors, we have applied the hydrogels and after a week, we have euthanized the rats. Next, the oral soft tissue reaction was clinically and then histologically investigated. Our study has shown good clinical response of the oral tissue, and we have noticed lower levels of inflammation on the experimental groups treated with the BCCs hydrogels. Despite the generally good response of the biological structures to the presence of BA and CaFB on periodontal level, more scientifically proved information is needed to obtain the desired biological responses in all clinical situations.
Collapse
Affiliation(s)
- Ioana Mitruţ
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|
16
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Nakane S, Imamura K, Hisanaga R, Ishihara K, Saito A. Systemic administration of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)-Ig abrogates alveolar bone resorption in induced periodontitis through inhibition of osteoclast differentiation and activation: An experimental investigation. J Periodontal Res 2021; 56:972-981. [PMID: 34129238 DOI: 10.1111/jre.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical immunoregulatory molecule expressed on T cells. CTLA-4 also binds to the surfaces of monocytes and macrophages, precursors of osteoclasts. Research on rheumatoid arthritis demonstrated that CTLA-4 suppresses inflammation and bone resorption. However, its effects on alveolar bone have yet to be understood. The purpose of this study was to investigate the role and potential mechanism of CTLA-4 in bone resorption in periodontitis. MATERIALS AND METHODS In vivo, the effects of systemic administration of CTLA-4 immunoglobulin fusion protein (CTLA-4-Ig) on alveolar bone resorption were investigated using a periodontitis mouse model. A total of 20 C57BL/6J mice were randomly assigned to two groups according to the administration modes. Periodontitis was induced by placing a ligature around the left maxillary second molar. The contralateral tooth was left un-ligated. In the CTLA-4-Ig (+) group, CTLA-4-Ig was administered by intraperitoneal injection at 1 and 3 days after ligature placement. Animals in the CTLA-4-Ig (-) group were given only phosphate-buffered saline each time. At 5 days after ligature placement, bone resorption was assessed by micro-computed tomography and histological examination, and the prevalence of osteoclast-like cells was assessed by tartrate-resistant acid phosphatase (TRAP) staining. In vitro, the effects of CTLA-4-Ig on osteoclasts were evaluated. Viability of RAW 264.7 cells treated with receptor activator of nuclear factor-κB ligand (RANKL) and CTLA-4-Ig was tested by WST-1 assay. Osteoclast-like cells were enumerated by TRAP staining, and osteoclast activity was evaluated by resorption pit assay. Gene expression levels of osteoclast differentiation markers (macrophage-colony stimulating factor receptor, carbonic anhydrase II, cathepsin K, and Trap) and protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, were assessed by quantitative real-time polymerase chain reaction. The effect of CTLA-4-Ig on the nuclear factor-κB (NF-κB) activation was assessed by enzyme-linked immunosorbent assay. RESULTS In vivo, ligature-induced bone resorption and the numbers of osteoclast-like cells were significantly decreased by the administration of CTLA-4-Ig. In vitro, treatment with RANKL and CTLA-4-Ig had no significant effect on cell viability. CTLA-4-Ig significantly reduced the prevalence and activation of osteoclast-like cells and decreased the expressions of osteoclast differentiation markers, compared with the RANKL-treated control. CTLA-4-Ig significantly suppressed RANKL-induced phosphorylation of NF-κB p65 but increased PP2A expression. CONCLUSION These results suggest that CTLA-4-Ig abrogates bone resorption in induced periodontitis, possibly via inhibition of osteoclast differentiation and activation. The regulation of the NF-κB pathway and PP2A expression may be one mechanism by which CTLA-4-Ig suppresses osteoclast behavior.
Collapse
Affiliation(s)
- Saki Nakane
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Rio Hisanaga
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Microbiology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
18
|
An T, Chen Y, Li M, Liu Y, Zhang Z, Yang Q. Inhibition of experimental periodontitis by a monoclonal antibody against Porphyromonas gingivalis HA2. Microb Pathog 2021; 154:104633. [PMID: 33667618 DOI: 10.1016/j.micpath.2020.104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
It is known that complexes of the multi-protein, gingipain, possess heme binding domains (hemagglutinin 2, HA2) that bind hemoglobin to provide heme and iron to the bacterium, Porphyromonas gingivalis. The DHYAVMISK peptide sequence was proposed to act as an inhibitor of hemin binding, and thus, it might be used to control or prevent periodontal disease. In this study, we created a monoclonal antibody (mAb) that targeted the DHYAVMISK peptide, aimed to determine whether it could inhibit the growth of P. gingivalis in vitro, and block its induction of experimental periodontitis and subsequent bone loss. Peptide DGFPG-DHYAVMISK conjugated to KLH (DK-KLH) was synthetic, and injected subcutaneously into BALB/c mice to generate specific mAbs with the hybridoma technique. We isolated mAb 1H11, which showed specific binding to DK. When we incubated these mAbs with P. gingivalis in vitro for 18 h, bacterial growth was significantly lower in cultures treated with mAb 1H11 compared to those treated with control (PBS; P < 0.05). Next, we induced experimental periodontitis in mouse models with a silk ligature and a P. gingivalis infection. When we injected the mAbs into the gingival sulcus, the group treated with mAb 1H11 displayed a reduction in bone loss compared to the other treatment groups. Thus, mAb 1H11 might provide protection against a P. gingivalis infection. Accordingly, this antibody could serve as a candidate therapy for periodontitis or other infections caused by P. gingivalis.
Collapse
Affiliation(s)
- Ting An
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Yuanyuan Chen
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Mingxia Li
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Ying Liu
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Zilu Zhang
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Qiubo Yang
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China.
| |
Collapse
|
19
|
Catunda RQ, Ho KKY, Patel S, Febbraio M. A 2-plane micro-computed tomographic alveolar bone measurement approach in mice. Imaging Sci Dent 2021; 51:389-398. [PMID: 34987999 PMCID: PMC8695470 DOI: 10.5624/isd.20210058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose This study introduces a standardized 2-plane approach using 8 landmarks to assess alveolar bone levels in mice using micro-computed tomography. Materials and Methods Bone level differences were described as distance from the cemento-enamel junction (CEJ) to alveolar bone crest (ABC) and as percentages of vertical bone height and vertical bone loss, comparing mice infected with Porphyromonas gingivalis (Pg) to controls. Eight measurements were obtained per tooth: 2 in the sagittal plane (mesial and distal) and 6 in the coronal plane (mesiobuccal, middle-buccal, distobuccal, mesiolingual, middle-lingual, and distolingual). Results Significant differences in the CEJ-to-ABC distance between Pg-infected mice and controls were found in the coronal plane (middle-lingual, mesiobuccal, and distolingual for the first molar; and mesiobuccal, middle-buccal, and distolingual for the second molar). In the sagittal plane, the distal measurement of the second molar was different. The middle-buccal, mesiobuccal, and distolingual sites of the first and second molars showed vertical bone loss relative to controls; the second molar middle-lingual site was also different. In the sagittal plane, the mesial sites of the first and second molars and the distal site of the second molar showed loss. Significantly different vertical bone height percentages were found for the mesial and distal sites of the second molar (sagittal plane) and the middle-lingual and distolingual sites of the first molar(coronal plane). Conclusion A reliable, standardized technique for linear periodontal assessments in mice is described. Alveolar bone loss occurred mostly on the lingual surface of the coronal plane, which is often omitted in studies.
Collapse
Affiliation(s)
- Raisa Queiroz Catunda
- Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen Ka-Yan Ho
- Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Srushti Patel
- Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Wang X, Tong Y, Zhang J, Khan N, Zhang K, Bai H, Zhang Q, Chen Y. Neuroinflammation changes with periodontal inflammation status during periodontitis in wild-type mice. Oral Dis 2020; 27:1001-1011. [PMID: 32815656 DOI: 10.1111/odi.13618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate neuroinflammation under different periodontal status. MATERIALS AND METHODS Experimental periodontitis was induced by molar ligation (Lig group) or periodontal injection of lipopolysaccharide (LPS, Lps group). Periodontal status was assessed by alveolar bone resorption and periodontal inflammation. Micro-computed tomography and haematoxylin-eosin staining were performed to assess alveolar bone resorption and periodontal inflammation, respectively. Neuroinflammation was assessed by glial cell proliferation and proinflammatory factor expression. Microgliosis was determined by immunofluorescence. Astrogliosis was determined by immunohistochemistry. Expressions of tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-1β were assessed by enzyme-linked immunosorbent assay. RESULTS Microgliosis and astrogliosis in the Lig group were notable with molar ligation for 2 weeks and 4 weeks (p < .05), but were only slightly different similar from the control group by week 12. Microgliosis and astrogliosis in the Lps group were significant with LPS injection for 4 and 8 weeks (p < .05). The groups displayed a positive correlation between the degree of periodontal inflammation and the number of glial cells (p < .05). Expressions of IL-1β and TNF-α in the Lps group were significantly increased with LPS injection for 8 weeks (p < .05). In the Lig group, only TNF-α was highly expressed with molar ligation for 12 weeks (p < .05). CONCLUSION Both models demonstrated that the inflammatory response in the hippocampus of mice can change during periodontitis depending on the periodontal inflammation status.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Tong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Jiayu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Nazia Khan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Kaili Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Huihui Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | | | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Rodrigues EM, Viola KS, Gomes‐Cornélio AL, Soares‐Costa A, Henrique‐Silva F, Rossa‐Junior C, Guerreiro‐Tanomaru JM, Tanomaru‐Filho M. Sugarcane cystatin CaneCPI‐1 promotes osteogenic differentiation in human dental pulp cells: a new insight into cysteine proteases inhibitors. Int Endod J 2020; 53:1485-1493. [DOI: 10.1111/iej.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023]
Affiliation(s)
- E. M. Rodrigues
- Department of Restorative Dentistry Dental School of São Paulo State University Araraquara São PauloBrazil
| | - K. S. Viola
- Department of Restorative Dentistry Dental School of São Paulo State University Araraquara São PauloBrazil
| | - A. L. Gomes‐Cornélio
- Department of Restorative Dentistry Dental School of São Paulo State University Araraquara São PauloBrazil
| | - A. Soares‐Costa
- Department of Genetic and Evolution Federal University of Sao Carlos São CarlosBrazil
| | - F. Henrique‐Silva
- Department of Genetic and Evolution Federal University of Sao Carlos São CarlosBrazil
| | - C. Rossa‐Junior
- Department of Diagnosis and Surgery Dental School of São Paulo State University Araraquara São Paulo Brazil
| | - J. M. Guerreiro‐Tanomaru
- Department of Restorative Dentistry Dental School of São Paulo State University Araraquara São PauloBrazil
| | - M. Tanomaru‐Filho
- Department of Restorative Dentistry Dental School of São Paulo State University Araraquara São PauloBrazil
| |
Collapse
|
22
|
Porphyromonas gingivalis, a Long-Range Pathogen: Systemic Impact and Therapeutic Implications. Microorganisms 2020; 8:microorganisms8060869. [PMID: 32526864 PMCID: PMC7357039 DOI: 10.3390/microorganisms8060869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is an inflammatory disease associated with a dysbiosis of the oral flora characterized by a chronic sustained inflammation leading to destruction of tooth-supporting tissues. Over the last decade, an association between periodontitis and systemic disorders such as cardiovascular diseases, rheumatoid arthritis and obesity has been demonstrated. The role of periodontal pathogens, notably Porphyromonas gingivalis (P. gingivalis), in the onset or exacerbation of systemic diseases has been proposed. P. gingivalis expresses several virulence factors that promote its survival, spreading, and sustaining systemic inflammation. Recently, the impact of periodontitis on gut dysbiosis has also been suggested as a potential mechanism underlying the systemic influence of periodontitis. New therapeutic strategies for periodontitis and other dysbiotic conditions, including the use of beneficial microbes to restore healthy microbial flora, may pave the way to improved therapeutic outcomes and more thorough patient management.
Collapse
|
23
|
Petit C, Batool F, Stutz C, Anton N, Klymchenko A, Vandamme T, Benkirane-Jessel N, Huck O. Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. Int J Pharm 2020; 586:119534. [PMID: 32531451 DOI: 10.1016/j.ijpharm.2020.119534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
Statins have been proposed as potential adjuvant to periodontal treatment due to their pleiotropic properties. A new thermosensitive chitosan hydrogel loaded with statins (atorvastatin and lovastatin) nanoemulsions was synthesized to allow a spatially controlled local administration of active compounds at lesion site. Spontaneous nano-emulsification method was used to synthesize statins loaded nanoemulsions. In vitro, atorvastatin and lovastatin loaded nanoemulsions were cytocompatible and were able to be uptake by oral epithelial cells. Treatment of Porphyromonas gingivalis infected oral epithelial cells and gingival fibroblasts with atorvastatin and lovastatin loaded nanoemulsions decreased significantly pro-inflammatory markers expression (TNF-α and IL-1β) and pro-osteoclastic RANKL. Nevertheless, such treatment induced the expression of Bone sialoprotein 2 (BSP2) in osteoblast emphasizing the pro-healing properties of atorvastatin and lovastatin nanoemulsions. In vivo, in a calvarial bone defect model (2 mm), treatment with the hydrogel loaded with atorvastatin and lovastatin nanoemulsions induced a significant increase of the neobone formation in comparison with systemic administration of statins. This study demonstrates the potential of this statins loaded hydrogel to improve bone regeneration and to decrease soft tissue inflammation. Its use in the specific context of periodontitis management could be considered in the future with a reduced risk of side effects.
Collapse
Affiliation(s)
- Catherine Petit
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fareeha Batool
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Céline Stutz
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, LBP UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
24
|
Leira Y, Iglesias-Rey R, Gómez-Lado N, Aguiar P, Sobrino T, D'Aiuto F, Castillo J, Blanco J, Campos F. Periodontitis and vascular inflammatory biomarkers: an experimental in vivo study in rats. Odontology 2020; 108:202-212. [PMID: 31583485 PMCID: PMC7066291 DOI: 10.1007/s10266-019-00461-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/13/2019] [Indexed: 11/12/2022]
Abstract
The objective of this preclinical in vivo study was to determine changes in vascular inflammatory biomarkers in systemic circulation after injection of lipopolysaccharide (LPS) from Porphyromonas gingivalis (Pg) in rats. Experimental periodontitis was induced by injections of Pg-LPS. Gingival soft and hard tissues changes were analysed by means of magnetic resonance imaging and micro computed tomography. Serum levels of interleukin (IL)-6, IL-10, pentraxin (PTX) 3, and soluble fragment of tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) were determined at baseline and 24 h, 7, 14, and 21 days after periodontal induction. Significant periodontal inflammation and alveolar bone loss were evident at the end of periodontal induction. Experimental periodontitis posed an acute systemic inflammatory response with increased serum levels of IL-6 and PTX3 at 24 h post-induction, followed by a significant overexpression of sTWEAK at 7 days. This inflammatory state was maintained until the end of the experiment (21 days). As expected, IL-10 serum levels were significantly lower during the follow-up compared to baseline concentrations. In the present animal model, experimental periodontitis is associated with increased systemic inflammation. Further studies are needed to confirm whether PTX3 and sTWEAK could be useful biomarkers to investigate potential mechanisms underlying the relationship between periodontitis and atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Yago Leira
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Medical-Surgical Dentistry (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Periodontology Unit, UCL Eastman Dental Institute and Hospital, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK.
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging Group, Clinical University Hospital, Faculty of Medicine, University of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Clinical University Hospital, Faculty of Medicine, University of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Francesco D'Aiuto
- Periodontology Unit, UCL Eastman Dental Institute and Hospital, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Juan Blanco
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Medical-Surgical Dentistry (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Huck O, Mulhall H, Rubin G, Kizelnik Z, Iyer R, Perpich JD, Haque N, Cani PD, de Vos WM, Amar S. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol 2020; 47:202-212. [PMID: 31674689 DOI: 10.1111/jcpe.13214] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022]
Abstract
AIM Akkermansia muciniphila is a beneficial gut commensal, whose anti-inflammatory properties have recently been demonstrated. This study aimed to evaluate the effect of A. muciniphila on Porphyromonas gingivalis elicited inflammation. MATERIAL AND METHODS In lean and obese mice, A. muciniphila was administered in P. gingivalis-induced calvarial abscess and in experimental periodontitis model (EIP). Bone destruction and inflammation were evaluated by histomorphometric analysis. In vitro, A. muciniphila was co-cultured with P. gingivalis, growth and virulence factor expression was evaluated. Bone marrow macrophages (BMMϕ) and gingival epithelial cells (TIGK) were exposed to both bacterial strains, and the expression of inflammatory mediators, as well as tight junction markers, was analysed. RESULTS In a model of calvarial infection, A. muciniphila decreased inflammatory cell infiltration and bone destruction. In EIP, treatment with A. muciniphila resulted in a decreased alveolar bone loss. In vitro, the addition of A. muciniphila to P. gingivalis-infected BMMϕ increased anti-inflammatory IL-10 and decreased IL-12. Additionally, A. muciniphila exposure increases the expression of junctional integrity markers such as integrin-β1, E-cadherin and ZO-1 in TIGK cells. A. muciniphila co-culture with P. gingivalis reduced gingipains mRNA expression. DISCUSSION This study demonstrated the protective effects of A. muciniphila administration and may open consideration to its use as an adjunctive therapeutic agent to periodontal treatment.
Collapse
Affiliation(s)
- Olivier Huck
- UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hannah Mulhall
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - George Rubin
- Touro College of Dental Medicine, Valhalla, NY, USA
| | - Zev Kizelnik
- Touro College of Dental Medicine, Valhalla, NY, USA
| | - Radha Iyer
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Nasreen Haque
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Patrice D Cani
- WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Brussels, Belgium
| | - Willem M de Vos
- Department of Bacteriology and Immunology, RPU Human Microbiome, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Salomon Amar
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
- Touro College of Dental Medicine, Valhalla, NY, USA
| |
Collapse
|
26
|
Korah L, Amri N, Bugueno IM, Hotton D, Tenenbaum H, Huck O, Berdal A, Davideau JL. Experimental periodontitis in Msx2 mutant mice induces alveolar bone necrosis. J Periodontol 2019; 91:693-704. [PMID: 31566253 DOI: 10.1002/jper.16-0435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Msx2 homeoprotein is a key transcription factor of dental and periodontal tissue formation and is involved in many molecular pathways controlling mineralized tissue homeostasis such as Wnt/sclerostin pathway. This study evaluated the effect of Msx2-null mutation during experimental periodontitis in mice. METHODS Experimental periodontitis was induced for 30 days in wild-type and Msx2 knock-in Swiss mice using Porphyromonas gingivalis infected ligatures. In knock-in mice, Msx2 gene was replaced by n-LacZ gene encoding β-galactosidase. Periodontal tissue response was assessed by histomorphometry, tartrate-resistant acid phosphatase histoenzymology, β-galactosidase, sclerostin immunochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling assay. Expression of Msx2 gene expression was also evaluated in human gingival biopsies using RT-qPCR. RESULTS During experimental periodontitis, osteonecrosis area and osteoclast number were significantly elevated in knock-in mice compared with wild-type mice. Epithelial downgrowth and bone loss was similar. Sclerostin expression in osteocytes appeared to be reduced during periodontitis in knock-in mice. Msx2 expression was detected in healthy and inflamed human gingival tissues. CONCLUSION These data indicated that Msx2 pathway influenced periodontal tissue response to experimental periodontitis and appeared to be a protective factor against alveolar bone osteonecrosis. As shown in other inflammatory processes such as atherothrombosis, genes initially characterized in early development could also play an important role in human periodontal pathogenesis.
Collapse
Affiliation(s)
- Linda Korah
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France
| | - Nawel Amri
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France
| | - Dominique Hotton
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France.,Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France.,Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Ariane Berdal
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Jean-Luc Davideau
- Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
O'Boyle C, Haley MJ, Lemarchand E, Smith CJ, Allan SM, Konkel JE, Lawrence CB. Ligature-induced periodontitis induces systemic inflammation but does not alter acute outcome after stroke in mice. Int J Stroke 2019; 15:175-187. [PMID: 30794103 PMCID: PMC7045281 DOI: 10.1177/1747493019834191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Stroke is a major cause of disability and mortality. Poorer outcome after stroke is associated with concomitant inflammatory and infectious disease. Periodontitis is a chronic inflammatory disease of the dental supporting structures and is a prominent risk factor for many systemic disorders, including cardiovascular disease and stroke. While epidemiological studies suggest that periodontitis increases the likelihood of stroke, its impact on stroke severity is poorly understood. Here, we sought to determine the contribution of periodontitis to acute stroke pathology. Methods We characterized a murine ligature model of periodontitis for inflammatory responses that could potentially impact stroke outcome. We applied this model and then subjected mice to either transient or permanent middle cerebral artery occlusion. We also enhanced the periodontitis model with repeated intravenous administration of a periodontal-specific lipopolysaccharide to better mimic the clinical condition. Results Ligature-induced periodontitis caused bone loss, bacterial growth, and increased local inflammatory cell trafficking. Systemically, periodontitis increased circulating levels of pro-inflammatory cytokines, and primed bone marrow monocytes to produce elevated tumour necrosis factor-alpha (TNFα). Despite these changes, periodontitis alone or in tandem with repeated lipopolysaccharide challenge did not alter infarct volume, blood–brain barrier breakdown, or systemic inflammation after experimental stroke. Conclusions Our data show that despite elevated systemic inflammation in periodontitis, oral inflammatory disease does not impact acute stroke pathology in terms of severity, determined primarily by infarct volume. This indicates that, at least in this experimental paradigm, periodontitis alone does not alter acute outcome after cerebral ischemia.
Collapse
Affiliation(s)
- Conor O'Boyle
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Michael J Haley
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Eloise Lemarchand
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Craig J Smith
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Greater Manchester Comprehensive Stroke Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joanne E Konkel
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Core Technology Facility, The University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
de Molon RS, Park CH, Jin Q, Sugai J, Cirelli JA. Characterization of ligature-induced experimental periodontitis. Microsc Res Tech 2018; 81:1412-1421. [PMID: 30351474 DOI: 10.1002/jemt.23101] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/27/2018] [Accepted: 06/30/2018] [Indexed: 01/17/2023]
Abstract
We sought to better characterize the progression of periodontal tissue breakdown in rats induced by a ligature model of experimental periodontal disease (PD). A total of 60 male Sprague-Dawley rats were evenly divided into an untreated control group and a PD group induced by ligature bilaterally around first and second maxillary molars. Animals were sacrificed at 1, 3, 5, 7, 14, and 21 days after the induction of PD. Alveolar bone loss was evaluated by histomorphometry and microcomputed tomography (μCT). The immune-inflammatory process in the periodontal tissue was assessed using descriptive histologic analysis and quantitative polymerase chain reaction (qPCR). This ligature model resulted in significant alveolar bone loss and increased inflammatory process of the periodontal tissues during the initial periods of evaluation (0-14 days). A significant increase in the gene expression of pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and proteins involved in osteoclastogenesis, receptor activator of nuclear factor-k B ligand (RANKL) and osteoprotegerin (OPG) was observed in the first week of analysis. In the later periods of evaluation (14-21 days), no significant alterations were noted with regard to inflammatory processes, bone resorption, and expression of cytokine genes. The ligature-induced PD model resulted in progressive alveolar bone resorption with two different phases: Acute (0-14 days), characterized by inflammation and rapid bone resorption, and chronic (14-21 days) with no significant progression of bone loss. Furthermore, the gene expressions of IL-6, IL-1β, TNF-α, RANKL, and OPG were highly increased during the progress of PD in the early periods. RESEARCH HIGHLIGHTS: Ligature-induced bone resorption in rats occurred in the initial periods after disease induction The bone resorption was characterized by two distinct phases: Acute (0-14 days), with pronounced inflammation and alveolar bone loss Chronic phase (14-21 days): No further disease progression Several pro-inflammatory cytokines were increased during the progress of periodontitis.
Collapse
Affiliation(s)
- Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, Brazil
| | - Chan Ho Park
- Department of Dental Biomaterials, College of Dentistry, Institute for Biomaterials Research and Development, Kyungpook National University, Daegu, Republic of Korea
| | - Qiming Jin
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Jim Sugai
- Department of Periodontics and Oral Medicine and Center for Craniofacial Regeneration, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
29
|
Bugueno IM, Batool F, Keller L, Kuchler-Bopp S, Benkirane-Jessel N, Huck O. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep 2018; 8:14914. [PMID: 30297793 PMCID: PMC6175856 DOI: 10.1038/s41598-018-33267-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis-induced inflammatory effects are mostly investigated in monolayer cultured cells. The aim of this study was to develop a 3D spheroid model of gingiva to take into account epithelio-fibroblastic interactions. Human gingival epithelial cells (ECs) and human oral fibroblasts (FBs) were cultured by hanging drop method to generate 3D microtissue (MT) whose structure was analyzed on histological sections and the cell-to-cell interactions were observed by scanning and transmission electron microscopy (SEM and TEM). MTs were infected by P. gingivalis and the impact on cell death (Apaf-1, caspase-3), inflammatory markers (TNF-α, IL-6, IL-8) and extracellular matrix components (Col-IV, E-cadherin, integrin β1) was evaluated by immunohistochemistry and RT-qPCR. Results were compared to those observed in situ in experimental periodontitis and in human gingival biopsies. MTs exhibited a well-defined spatial organization where ECs were organized in an external cellular multilayer, while, FBs constituted the core. The infection of MT demonstrated the ability of P. gingivalis to bypass the epithelial barrier in order to reach the fibroblastic core and induce disorganization of the spheroid structure. An increased cell death was observed in fibroblastic core. The development of such 3D model may be useful to define the role of EC–FB interactions on periodontal host-immune response and to assess the efficacy of new therapeutics.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France. .,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France. .,Hôpitaux Universitaires de Strasbourg (HUS), Department of Periodontology, 1 place de l'Hôpital, Strasbourg, 67000, France.
| |
Collapse
|
30
|
Batool F, Strub M, Petit C, Bugueno IM, Bornert F, Clauss F, Huck O, Kuchler-Bopp S, Benkirane-Jessel N. Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E337. [PMID: 29772691 PMCID: PMC5977351 DOI: 10.3390/nano8050337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
This review encompasses different pre-clinical bioengineering approaches for periodontal tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning method for the synthesis of polycaprolactone (PCL) membranes, that are capable of mimicking the extracellular matrix (ECM), has been described. Furthermore, their functionalization with cyclosporine A (CsA), bone morphogenetic protein-2 (BMP-2), or anti-inflammatory drugs' nanoreservoirs has been demonstrated to induce a localized and targeted action of these molecules after implantation in the maxillary jaw bone. Firstly, periodontal wound healing has been studied in an induced periodontal lesion in mice using an ibuprofen-functionalized PCL membrane. Thereafter, the kinetics of maxillary bone regeneration in a pre-clinical mouse model of surgical bone lesion treated with BMP-2 or BMP-2/Ibuprofen functionalized PCL membranes have been analyzed by histology, immunology, and micro-computed tomography (micro-CT). Furthermore, the achievement of innervation in bioengineered teeth has also been demonstrated after the co-implantation of cultured dental cell reassociations with a trigeminal ganglia (TG) and the cyclosporine A (CsA)-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold in the jaw bone. The prospective clinical applications of these different tissue engineering approaches could be instrumental in the treatment of various periodontal diseases, congenital dental or cranio-facial bone anomalies, and post-surgical complications.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Departement of Pediatric Dentistry, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Catherine Petit
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Department of Periodontology, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Department of Oral Surgery, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - François Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Departement of Pediatric Dentistry, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Department of Periodontology, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| |
Collapse
|
31
|
Batool F, Morand DN, Thomas L, Bugueno IM, Aragon J, Irusta S, Keller L, Benkirane-Jessel N, Tenenbaum H, Huck O. Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study. MATERIALS 2018; 11:ma11040580. [PMID: 29642582 PMCID: PMC5951464 DOI: 10.3390/ma11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Ibuprofen (IBU) has been shown to improve periodontal treatment outcomes. The aim of this study was to develop a new anti-inflammatory scaffold by functionalizing an electrospun nanofibrous poly-ε-caprolactone membrane with IBU (IBU-PCL) and to evaluate its impact on periodontal inflammation, wound healing and regeneration in vitro and in vivo. IBU-PCL was synthesized through electrospinning. The effects of IBU-PCL on the proliferation and migration of epithelial cells (EC) and fibroblasts (FB) exposed to Porphyromonas gingivlais lipopolysaccharide (Pg-LPS) were evaluated through the AlamarBlue test and scratch assay, respectively. Anti-inflammatory and remodeling properties were investigated through Real time qPCR. Finally, the in vivo efficacy of the IBU-PCL membrane was assessed in an experimental periodontitis mouse model through histomorphometric analysis. The results showed that the anti-inflammatory effects of IBU on gingival cells were effectively amplified using the functionalized membrane. IBU-PCL reduced the proliferation and migration of cells challenged by Pg-LPS, as well as the expression of fibronectin-1, collagen-IV, integrin α3β1 and laminin-5. In vivo, the membranes significantly improved the clinical attachment and IBU-PCL also reduced inflammation-induced bone destruction. These data showed that the IBU-PCL membrane could efficiently and differentially control inflammatory and migratory gingival cell responses and potentially promote periodontal regeneration.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - David-Nicolas Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Lionel Thomas
- Institute Pluridisciplinaire Hubert CURIEN (IPHC), Strasbourg 67000, France.
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Javier Aragon
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
- Hopitaux Universitaires de Strasbourg, Pôle de médecine et chirurgie bucco-dentaire, Department of Periodontology, 67000 Strasbourg, France.
| |
Collapse
|
32
|
Bugueno IM, Batool F, Korah L, Benkirane-Jessel N, Huck O. Porphyromonas gingivalis Differentially Modulates Apoptosome Apoptotic Peptidase Activating Factor 1 in Epithelial Cells and Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:404-416. [PMID: 29154960 DOI: 10.1016/j.ajpath.2017.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Porphyromonas gingivalis is able to invade and modulate host-immune response to promote its survival. This bacterium modulates the cell cycle and programed cell death, contributing to periodontal lesion worsening. Several molecular pathways have been identified as key triggers of apoptosis, including apoptosome apoptotic peptidase activating factor 1 (APAF-1). Apaf-1 and X-linked inhibitor of apoptosis protein (Xiap) mRNA were differentially expressed between gingival samples harvested from human healthy and chronic periodontitis tissues (Apaf-1, 19.2-fold; caspase-9, 14.5-fold; caspase-3, 6.8-fold; Xiap: 2.5-fold in chronic periodontitis) (P < 0.05), highlighting their potential role in periodontitis. An increased proteic expression of APAF-1 was also observed in a murine experimental periodontitis model induced by P. gingivalis-soaked ligatures. In vitro, it was observed that P. gingivalis targets APAF-1, XIAP, caspase-3, and caspase-9, to inhibit epithelial cell death at both mRNA and protein levels. Opposite effect was observed in fibroblasts in which P. gingivalis increased cell death and apoptosis. To assess if the observed effects were associated to APAF-1, epithelial cells and fibroblasts were transfected with siRNA targeting Apaf-1. Herein, we confirmed that APAF-1 is targeted by P. gingivalis in both cell types. This study identified APAF-1 apoptosome and XIAP as intracellular targets of P. gingivalis, contributing to the deterioration of periodontal lesion through an increased persistence of the bacteria within tissues and the subversion of host-immune response.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fareeha Batool
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Linda Korah
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculty of Dental Surgery, Periodontology, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
33
|
Sochalska M, Potempa J. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis. Front Cell Infect Microbiol 2017; 7:197. [PMID: 28589098 PMCID: PMC5440471 DOI: 10.3389/fcimb.2017.00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of the chronic periodontal disease is associated with a skewed host inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis, that accounts for the majority of periodontal tissue damage. Neutrophils are the most abundant leukocytes in periodontal pockets and depending on the stage of the disease, also plentiful PMNs are present in the inflamed gingival tissue and the gingival crevice. They are the most efficient phagocytes and eliminate pathogens by a variety of means, which are either oxygen-dependent or -independent. However, these secretory lethal weapons do not strictly discriminate between pathogens and host tissue. Current studies describe conflicting findings about neutrophil involvement in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils are the main immune cell type responsible for this observed tissue damage and disease progression. Deregulation of neutrophil survival and functions, such as chemotaxis, migration, secretion of antimicrobial peptides or enzymes, and production of reactive oxygen species, contribute to observed tissue injury and the clinical signs of periodontal disease. On the other hand neutrophils deficiencies in patients and mice also result in periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that manipulates the immune responses of PMNs, employing several virulence factors, such as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up studies devoted to understanding different strategies utilized by P. gingivalis to manipulate PMNs survival and functions in order to inhibit killing by a granular content, prolong inflammation, and gain access to nutrient resources.
Collapse
Affiliation(s)
- Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of LouisvilleLouisville, KY, United States
| |
Collapse
|
34
|
Lapérine O, Cloitre A, Caillon J, Huck O, Bugueno IM, Pilet P, Sourice S, Le Tilly E, Palmer G, Davideau JL, Geoffroy V, Guicheux J, Beck-Cormier S, Lesclous P. Interleukin-33 and RANK-L Interplay in the Alveolar Bone Loss Associated to Periodontitis. PLoS One 2016; 11:e0168080. [PMID: 27992569 PMCID: PMC5167367 DOI: 10.1371/journal.pone.0168080] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/27/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Chronic Periodontitis (CP) is an inflammatory disease of bacterial origin that results in alveolar bone destruction. Porphyromonas gingivalis (Pg), one of the main periopathogens, initiates an inflammatory cascade by host immune cells thereby increasing recruitment and activity of osteoclasts, the bone resorbing cells, through enhanced production of the crucial osteoclastogenic factor, RANK-L. Antibodies directed against some cytokines (IL-1β, IL-6 and TNF-α) failed to exhibit convincing therapeutic effect in CP. It has been suggested that IL-33, could be of interest in CP. Objective the present study aims to analyze whether and how IL-33 and RANK-L and/or their interplay are involved in the bone destruction associated to CP. Material and Methods mRNAs and protein expressions of IL-33 and RANK-L were analyzed in healthy and CP human gingival samples by immunohistochemistry (IHC) and RT-qPCR. Murine experimental periodontitis (EP) was induced using Pg infected ligature and Pg free ligature around the first maxillary molar. Alveolar bone loss was recorded by μCT. Mouse gingival explants were stimulated for 24 hours with IL-33 and RANK-L mRNA expression investigated by RT-qPCR. Human oral epithelial cells were infected by Pg for 6, 12; 24 hours and IL-33 and RANK-L mRNA expressions were analyzed by RT-qPCR. Results IL-33 is overexpressed in gingival epithelial cells in human affected by CP as in the murine EP. In human as in murine gingival cells, RANK-L was independently induced by Pg and IL-33. We also showed that the Pg-dependent RANK-L expression in gingival epithelial cells occured earlier than that of IL-33. Conclusion Our results evidence that IL-33 overexpression in gingival epithelial cells is associated with CP and may trigger RANK-L expression in addition to a direct effect of Pg. Finally, IL-33 may act as an extracellular alarmin (danger signal) showing proinflammatory properties in CP perpetuating bone resorption induced by Pg infection.
Collapse
Affiliation(s)
- Olivier Lapérine
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Alexandra Cloitre
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
| | - Jocelyne Caillon
- EA 3826 Thérapeutiques cliniques et expérimentales des infections, Nantes, France
| | - Olivier Huck
- INSERM, U1109 Osteoarticular & Dental Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Département de Parodontologie, Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- INSERM, U1109 Osteoarticular & Dental Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Paul Pilet
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
| | - Sophie Sourice
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Elodie Le Tilly
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology-Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Jean-Luc Davideau
- INSERM, U1109 Osteoarticular & Dental Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Département de Parodontologie, Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Valérie Geoffroy
- INSERM U1132 BIOSCAR, Hôpital Lariboisière, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Guicheux
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
- * E-mail: (JG); (PL)
| | - Sarah Beck-Cormier
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
| | - Philippe Lesclous
- INSERM, U791, LIOAD, Nantes, France
- Université de Nantes, UMR-S 791, LIOAD, Nantes, France
- UFR Odontologie, Nantes, France
- ONIRIS, UMR-S 791, LIOAD, Nantes, France
- * E-mail: (JG); (PL)
| |
Collapse
|
35
|
Yu T, Zhao L, Huang X, Ma C, Wang Y, Zhang J, Xuan D. Enhanced Activity of the Macrophage M1/M2 Phenotypes and Phenotypic Switch to M1 in Periodontal Infection. J Periodontol 2016; 87:1092-102. [PMID: 27177291 DOI: 10.1902/jop.2016.160081] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Macrophages are central players in the pathogenesis of periodontitis. However, the phenotypic switch of macrophage M1/M2 remains uncertain. METHODS Adult male mice were divided into periodontitis (P) or control (C) groups. Bone marrow-derived macrophages (BMMs) were stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). In both the periodontium and serum, macrophage M1 and M2 phenotypes were detected in vivo and in vitro via the following: 1) immunofluorescence; 2) immunohistochemistry; 3) electrochemiluminescence immunoassays; 4) quantitative polymerase chain reaction assays; and 5) enzyme-linked immunosorbent assays. The M1-type markers used included the following: 1) nitric oxide synthase (NOS)-2; 2) tumor necrosis factor-alpha; 3) interleukin (IL)-1β; 4) IL-6; and 5) C-reactive protein. The M2-type markers were as follows: 1) arginase-1; 2) cluster of differentiation (CD) 206; and 3) IL-10. RESULTS Compared with the C group, the P group had a 14-fold increase in F4/80(+) NOS2(+) cells and four-fold more F4/80(+) CD206(+) cells with an enhanced NOS2/CD206 ratio in the periodontium (P <0.01). NOS2(-) CD206(+) and dual NOS2(+) CD206(+) macrophages dominated in the C and P groups, respectively. The P group had significantly increased M1- and M2-type cytokines in both the periodontium and serum and also had an enhanced IL-6/IL-10 ratio in the serum (P <0.05). M1-type markers were significantly upregulated at the mRNA level, whereas M2-type markers were downregulated at both the mRNA and protein levels in BMMs after LPS stimulation (P <0.01). CONCLUSION Periodontal inflammation is associated with an enhancement of both the M1 and M2 phenotypes of macrophages, in which a phenotypic switch of M2 to M1 might be a critical mechanism in mediating periodontal tissue damage, including alveolar bone loss.
Collapse
Affiliation(s)
- Ting Yu
- Department of Periodontology, Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Zhao
- Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xin Huang
- Department of Periodontology, Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, China
| | - Chanjuan Ma
- Department of Periodontology, Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, China
| | - Yixiong Wang
- Department of Periodontology, Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, China
| | - Jincai Zhang
- Department of Periodontology, Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, China.,Department of Periodontology, Savaid Medical School, University of Chinese Academy of Sciences, Hangzhou, China
| | - Dongying Xuan
- Department of Periodontology, Hangzhou Dental Hospital, Savaid Medical School
| |
Collapse
|
36
|
Anbinder AL, Moraes RM, Lima GMG, Oliveira FE, Campos DRC, Rossoni RD, Oliveira LD, Junqueira JC, Ma Y, Elefteriou F. Periodontal disease exacerbates systemic ovariectomy-induced bone loss in mice. Bone 2016; 83:241-247. [PMID: 26620086 DOI: 10.1016/j.bone.2015.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/18/2022]
Abstract
Periodontal pathogens and/or inflammatory products from periodontitis participate in the development or progression of systemic diseases. In this context, periodontitis acts as a modifying factor to systemic health, including diabetes and cardiovascular diseases. Osteoporosis is an increasingly prevalent condition in our aging population and considered a risk factor for periodontal disease, but the effect of periodontitis on systemic bone homeostasis is unknown. We thus evaluated the effects of experimental periodontitis (EP) on systemic bone loss and the influence of estrogen deficiency in this context, using a mouse model of combined periodontitis and osteoporosis. Experimental periodontitis (EP) was induced by a ligature insertion around the mandibular first molars and Porphyromonas gingivalis infection. Three-dimensional microcomputed tomographic analyses performed 48days following infection revealed that EP and ovariectomy (OVX) induced a significantly higher femoral and mandibular bone loss compared to EP or OVX alone. EP alone did not induce systemic bone loss. In addition, the EP+OVX and EP groups showed significantly higher levels of tumor necrosis factor (TNF)-α than OVX and control groups at end point. These results suggest that periodontitis could be a risk factor for systemic bone loss, especially in post-menopausal women, and warrant further clinical investigations to confirm this association and propose adapted prophylactic and curative therapies.
Collapse
Affiliation(s)
- Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil.
| | - Renata M Moraes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Gabriela M G Lima
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Felipe E Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Débora R C Campos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Rodnei D Rossoni
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Luciane D Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Juliana C Junqueira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, São Paulo, Brazil
| | - Yun Ma
- Vanderbilt Center for Bone Biology, Department of Medicine, Department of Pharmacology and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37215, USA
| | - Florent Elefteriou
- Vanderbilt Center for Bone Biology, Department of Medicine, Department of Pharmacology and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37215, USA
| |
Collapse
|
37
|
Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Investig 2015; 20:1203-16. [PMID: 26411857 DOI: 10.1007/s00784-015-1607-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate in long-term periods the destruction of periodontal tissues and bacterial colonization induced by oral gavage with periodontopathogens or ligature experimental periodontal disease models. MATERIAL AND METHODS Forty-eight C57BL/6 J mice were divided into four groups: group C: negative control; group L: ligature; group G-Pg: oral gavage with Porphyromonas gingivalis; and group G-PgFn: oral gavage with Porphyromonas gingivalis associated with Fusobacterium nucleatum. Mice were infected by oral gavage five times in 2-day intervals. After 45 and 60 days, animals were sacrificed and the immune-inflammatory response in the periodontal tissue was assessed by stereometric analysis. The alveolar bone loss was evaluated by live microcomputed tomography and histometric analysis. qPCR was used to confirm the bacterial colonization in all the groups. Data were analyzed using the Kruskal-Wallis, Wilcoxon, and ANOVA tests, at 5 % of significance level. RESULTS Ligature model induced inflammation and bone resorption characterized by increased number of inflammatory cells and decreased number of fibroblasts, followed by advanced alveolar bone loss at 45 and 60 days (p < 0.05). Bacterial colonization in groups G-Pg and G-PgFn was confirmed by qPCR but inflammation and bone resorption were not observed (p < 0.05). CONCLUSIONS The ligature model but not the oral gavage models were effective to induce inflammation and bone loss in long-term periods. Pg colonization was observed in all models of experimental periodontal disease induction, independent of tissue alterations. These mice models of periodontitis validates, compliments, and enhances published PD models that utilize ligature or oral gavage and supports the importance of a successful colonization of a susceptible host, a bacterial invasion into vulnerable tissue, and host-bacterial interactions that lead to tissue destruction. CLINICAL RELEVANCE The ligature model was an effective approach to induce inflammation and bone loss similar to human periodontitis, but the oral gavage models were not efficient in inducing periodontal inflammation and tissue destruction in the conditions studied. Ligature models can provide a basis for future interventional studies that contribute to the understanding of the disease pathogenesis and the complex host response to microbial challenge.
Collapse
|
38
|
Inflammation Biomarkers of Advanced Disease in Nongingival Tissues of Chronic Periodontitis Patients. Mediators Inflamm 2015; 2015:983782. [PMID: 26063981 PMCID: PMC4439505 DOI: 10.1155/2015/983782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 01/13/2023] Open
Abstract
Chronic periodontitis is a multifactorial inflammatory disease that affects supporting structures of the teeth. Although the gingival response is largely described, little is known about the immune changes in the alveolar bone and neighboring tissues that could indicate periodontal disease (PD) activity. Then, in this study we identified the ongoing inflammatory changes and novel biomarkers for periodontitis in the tissues directly affected by the destructive disease in PD patients. Samples were collected by osteotomy in 17 control subjects during extraction of third molars and 18 patients with advanced PD, in which alveoloplasty was necessary after extraction of teeth with previous extensive periodontal damage. Patients presented mononuclear cells infiltration in the connective tissue next to the bone and higher fibrosis area, along with increased accumulation of IL-17+ and TRAP+ cells. The levels of TNF-α and MMP-2 mRNA were also elevated compared to controls and a positive and significant correlation was observed between TNF-α and MMP-2 mRNA expression, considering all samples evaluated. In conclusion, nongingival tissues neighboring large periodontal pockets present inflammatory markers that could predict ongoing bone resorption and disease spreading. Therefore, we suggested that the detailed evaluation of these regions could be of great importance to the assessment of disease progression.
Collapse
|
39
|
Levenson AS, Kumar A, Zhang X. MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities. Cancer Metastasis Rev 2014; 33:929-42. [PMID: 25332143 DOI: 10.1007/s10555-014-9519-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review summarizes our current understanding of the role of MTA family members, particularly MTA1, with a special emphasis on prostate cancer. The interest for the role of MTA1 in prostate cancer was boosted from our initial findings of MTA1 as a component of "vicious cycle" and a member of bone metastatic signature. Analysis of human prostate tissues, xenograft and transgenic mouse models of prostate cancer, and prostate cancer cell lines has provided support for the role of MTA1 in advanced disease and its potential role in initial stages of prostate tumor progression. Recent discoveries have highlighted a critical role for MTA1 in inflammation-triggered prostate tumorigenesis, epithelial-to-mesenchymal transition, prostate cancer survival pathways, and site metastasis. Evidence for MTA1 as an upstream negative regulator of tumor suppressor genes such as p53 and PTEN has also emerged. MTA1 is involved in prostate tumor angiogenesis by regulating several pro-angiogenic factors. Evidence for MTA1 as a prognostic marker for aggressive prostate cancer and disease recurrence has been described. Importantly, pharmacological dietary agents, namely resveratrol and its analogs, are potentially applicable to prostate cancer prevention, treatment, and control of cancer progression due to their potent inhibitory effects on MTA proteins.
Collapse
Affiliation(s)
- Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| | | | | |
Collapse
|
40
|
Longhini R, Aparecida de Oliveira P, Sasso-Cerri E, Cerri PS. Cimetidine Reduces Alveolar Bone Loss in Induced Periodontitis in Rat Molars. J Periodontol 2014; 85:1115-25. [DOI: 10.1902/jop.2013.130453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
de Molon RS, de Avila ED, Boas Nogueira AV, Chaves de Souza JA, Avila-Campos MJ, de Andrade CR, Cirelli JA. Evaluation of the Host Response in Various Models of Induced Periodontal Disease in Mice. J Periodontol 2014; 85:465-77. [DOI: 10.1902/jop.2013.130225] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Rajshankar D, Sima C, Wang Q, Goldberg SR, Kazembe M, Wang Y, Glogauer M, Downey GP, McCulloch CA. Role of PTPα in the destruction of periodontal connective tissues. PLoS One 2013; 8:e70659. [PMID: 23940616 PMCID: PMC3734242 DOI: 10.1371/journal.pone.0070659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/20/2013] [Indexed: 01/24/2023] Open
Abstract
IL-1β contributes to connective tissue destruction in part by up-regulating stromelysin-1 (MMP-3), which in fibroblasts is a focal adhesion-dependent process. Protein tyrosine phosphatase-α (PTPα) is enriched in and regulates the formation of focal adhesions, but the role of PTPα in connective tissue destruction is not defined. We first examined destruction of periodontal connective tissues in adult PTPα+/+ and PTPα−/− mice subjected to ligature-induced periodontitis, which increases the levels of multiple cytokines, including IL-1β. Three weeks after ligation, maxillae were processed for morphometry, micro-computed tomography and histomorphometry. Compared with unligated controls, there was ∼1.5–3 times greater bone loss as well as 3-fold reduction of the thickness of the gingival lamina propria and 20-fold reduction of the amount of collagen fibers in WT than PTPα−/− mice. Immunohistochemical staining of periodontal tissue showed elevated expression of MMP-3 at ligated sites. Second, to examine mechanisms by which PTPα may regulate matrix degradation, human MMP arrays were used to screen conditioned media from human gingival fibroblasts treated with vehicle, IL-1β or TNFα. Although MMP-3 was upregulated by both cytokines, only IL-1β stimulated ERK activation in human gingival fibroblasts plated on fibronectin. TIRF microscopy and immunoblotting analyses of cells depleted of PTPα activity with the use of various mutated constructs or with siRNA or PTPαKO and matched wild type fibroblasts were plated on fibronectin to enable focal adhesion formation and stimulated with IL-1β. These data showed that the catalytic and adaptor functions of PTPα were required for IL-1β-induced focal adhesion formation, ERK activation and MMP-3 release. We conclude that inflammation-induced connective tissue degradation involving fibroblasts requires functionally active PTPα and in part is mediated by IL-1β signaling through focal adhesions.
Collapse
Affiliation(s)
- Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rivera MF, Lee JY, Aneja M, Goswami V, Liu L, Velsko IM, Chukkapalli SS, Bhattacharyya I, Chen H, Lucas AR, Kesavalu LN. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoE(null) mice. PLoS One 2013; 8:e57178. [PMID: 23451182 PMCID: PMC3581444 DOI: 10.1371/journal.pone.0057178] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/18/2013] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.
Collapse
Affiliation(s)
- Mercedes F. Rivera
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Ju-Youn Lee
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do, Korea
| | - Monika Aneja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Vishalkant Goswami
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Liying Liu
- Departments of Medicine and Molecular Genetics & Microbiology, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Irina M. Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Hao Chen
- Departments of Medicine and Molecular Genetics & Microbiology, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alexandra R. Lucas
- Departments of Medicine and Molecular Genetics & Microbiology, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya N. Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|