1
|
Hu C, Zhang M, Wu J, Cao X, Chen L, Yan J, Liang G, Tan J. Bisphosphonate-Modified Functional Supramolecular Hydrogel Promotes Periodontal Bone Regeneration by Osteoclast Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9066-9079. [PMID: 36750382 DOI: 10.1021/acsami.2c21297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regeneration of periodontal tissue remains a challenge. Under periodontitis, osteoclasts are overactivated and bone loss occurs. We incorporated sodium alendronate (Alen), a medication commonly used to treat osteoporosis, into a supramolecular hydrogel system in order to create a novel biomaterial that would promote periodontal bone regeneration by inhibiting osteoclast overactivation. The Nap-Gly-Phe-Phe (NapGFF) peptide chain was modified to synthesize the functional Nap-Alen gelator. Afterward, the Nap-Alen/HAP supramolecular hydrogel composite with a suitable hydroxyapatite (HAP) ratio was constructed, which has outstanding mechanical properties and 3D structure. In addition to its good biocompatibility, it can inhibit the proliferation of bone marrow-derived macrophages (BMDMs) and differentiation of osteoclasts. Due to the simultaneous introduction of porous HAP, the hydrogel with a nanofiber structure was formed into a 3D mesh-like sparse porous composite hydrogel. While enhancing the mechanical properties of the gel, the porous structure facilitated the attachment and migration of bone regeneration-related cells. Therefore, it can effectively promote the regeneration of periodontal bone. In the future, by modifying the biophysical properties and loading stem cells or cytokines, this supramolecular hydrogel composite constructed in this study may provide a new strategy for tissue regeneration engineering and provide a preliminary experimental basis for relevant clinical translational studies.
Collapse
Affiliation(s)
- Cheng Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Mei Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xing Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Luxian Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jiali Tan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Epifano F, Genovese S, Palumbo L, Collevecchio C, Fiorito S. Protection of Mitochondrial Potential and Activity by Oxyprenylated Phenylpropanoids. Antioxidants (Basel) 2023; 12:antiox12020259. [PMID: 36829818 PMCID: PMC9952183 DOI: 10.3390/antiox12020259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A series of five naturally occurring oxyprenylated phenylpropanoids, namely, the coumarins auraptene (7-geranyloxycoumarin) 1 and 7-isopentenyloxycoumarin 2, and the coumaric acid and ferulic acid derivatives, 4'-isopentenyloxycoumaric acid 3, boropinic acid 4, and 4'-geranyloxyferulic acid 5 were tested for their effects on mitochondrial functionality using the organophosphate pesticides glyphosate and chlorpyrifos, and resveratrol, as the reference. While not showing an appreciable in vitro antioxidant activity, and virtually no or a little effect on the viability of non-cancer cell lines BEAS-2B and SHSY-5Y, all phytochemicals exhibited a marked protective effect on mitochondrial potential and activity, with values that were comparable to resveratrol. Auraptene 1 and 7-isopentenyloxycoumarin 2 were seen to be the most effective secondary metabolite to this concern, in particular in being able to completely abolish the decrease of mitochondrial potential induced by increasing concentration of both glyphosate and chlorpyrifos. All the compounds tested also exhibited a protective effect on mitochondrial activity. The potency displayed will shed more light on the molecular basis of the beneficial effects of auraptene, 7-isopentenyloxycoumarin, and structurally related oxyprenylated phenylpropanoids reported to date in the literature.
Collapse
|
3
|
Tavares SJS, Lima V. Bone anti-resorptive effects of coumarins on RANKL downstream cellular signaling: a systematic review of the literature. Fitoterapia 2021; 150:104842. [PMID: 33556550 DOI: 10.1016/j.fitote.2021.104842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Members of the botanical families Apiaceae/Umbelliferae, Asteraceae, Fabaceae/Leguminosae, and Thymelaeaceae are rich in coumarins and have traditionally been used as ethnomedicines in many regions including Europe, Asia, and South America. Coumarins are a class of secondary metabolites that are widely present in plants, fungi, and bacteria and exhibit several pharmacological, biochemical, and therapeutic effects. Recently, many plants rich in coumarins and their derivatives were found to affect bone metabolism. OBJECTIVE To review scientific literature describing the mechanisms of action of coumarins in osteoclastogenesis and bone resorption. MATERIALS AND METHODS For this systematic review, the PubMed, Scopus, and Periodical Capes databases and portals were searched. We included in vitro research articles published between 2010 and 2020 that evaluated coumarins using osteoclastogenic markers. RESULTS Coumarins have been reported to downregulate RANKL-RANK signaling and various downstream signaling pathways required for osteoclast development, such as NF-κB, MAPK, Akt, and Ca2+ signaling, as well as pathways downstream of the nuclear factor of activated T-cells (NFATc1), including tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and matrix metalloproteinase 9 (MMP-9). CONCLUSIONS Coumarins primarily inhibit osteoclast differentiation and activation by modulating different intracellular signaling pathways; therefore, they could serve as potential candidates for controlled randomized clinical trials aimed at improving human bone health.
Collapse
Affiliation(s)
- Samia Jessica Silva Tavares
- School of Pharmacy, Nursing, and Dentistry, Federal University of Ceará, Fortaleza, Ceará 60430-355, Brazil.
| | - Vilma Lima
- School of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará 60.430-275, Brazil.
| |
Collapse
|
4
|
Zhang Q, Xu H, Bai N, Tan F, Xu H, Liu J. Matrix Metalloproteinase 9 is Regulated by LOX-1 and erk1/2 Pathway in Dental Peri-Implantitis. Curr Pharm Biotechnol 2020; 21:862-871. [PMID: 32081107 DOI: 10.2174/1389201021666200221121139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/12/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Dental peri-implantitis, which can be caused by several different microbial factors, is characterized by inflammatory lesions of the surrounding hard and soft tissues of an oral implant. Matrix Metalloproteinase 9 (MMP9) is thought to be involved in the pathogenesis of peri-implantitis. However, the regulatory mechanism of MMP9 in peri-implantitis has not been fully elucidated. In this study, we tried to evaluate the regulatory mechanism of MMP9 in peri-implantitis. METHODS We collected Peri-Implant Crevicular Fluid (PICF) from ten healthy implants and ten periimplantitis patients and compared their expression level of MMP9. We also cultured macrophages from the peripheral blood of healthy volunteers infected by Porphyromonas gingivalis to reveal the regulatory mechanism of MMP9 in peri-implantitis. Western blot, immunofluorescence staining and quantitative Polymerase Chain Reaction (RT-PCR) were used to better characterize the mechanism of MMP9. RESULTS The expression of MMP9 was up-regulated in peri-implantitis patient PICF and P. gingivalis infected human macrophages. LOX-1, not dectin-1, was found to mediate MMP9 expression in human macrophages with P. gingivalis infection. Expression of Erk1/2 was responsible for infection-induced MMP9 expression. Finally, use of a broad-spectrum metalloproteinase inhibitor impaired LOX-1 expression in infected macrophages. CONCLUSION Our results demonstrate that MMP9 is involved in dental peri-implantitis and is regulated by LOX-1 and Erk1/2. This LOX-1/MMP9 signaling pathway may represent a potential drug target for peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Haitao Xu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Na Bai
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Fei Tan
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, Shandong 255000, China
| | - Jie Liu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
5
|
Pardo-Castaño C, Vásquez D, Bolaños G, Contreras A. Strong antimicrobial activity of collinin and isocollinin against periodontal and superinfectant pathogens in vitro. Anaerobe 2020; 62:102163. [PMID: 32007684 DOI: 10.1016/j.anaerobe.2020.102163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/09/2023]
Abstract
Periodontitis pathogenesis involves activation of host immune responses triggered by microbial dysbiosis. Therefore, controlling periodontal pathogens in-vivo is a main goal of periodontal therapy. New antimicrobials might help to control periodontal infection and improve treatment outcomes at "the dark times" of increasing antibiotic resistance. Here, we determined the biological activity of collinin and isocollinin against 8 bacterial strains. Antimicrobial activity of collinin and isocollinin, chlorhexidine digluconate (CHX) and sodium hypochlorite (NaClO) was evaluated against clinically relevant periodontal bacteria, like Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Dialister pneumosintes strains and superinfectants like Escherichia coli, Staphylococcusaureus, and Pseudomonasaeruginosa strains. A broth microdilution test was carried out to determine the minimum inhibitory concentration of collinin and isocollinin against those strains, and bacterial viability was determined by resazurin assay at diverse concentration and exposure times. P. gingivalis was the most susceptible strain to collinin and isocollinin (MIC 2.1 μg/mL and 4.2 μg/mL respectively). Other periodontal pathogens showed MICs <17 μg/mL for collinin and MICs between 20 and 42 μg/mL for isocollinin, whereas CHX and NaClO showed MICs of 62 and 326 μg/mL, respectively. Collinin and isocollinin also exhibited antimicrobial activity against superinfectant bacteria (MIC < 21 and < 42 μg/mL, respectively). Overall, collinin and isocollinin showed a remarkable antibacterial activity against relevant periodontal and superinfective bacteria, especially against P. gingivalis (MIC 2.1 μg/mL and 4.2 μg/mL respectively) and the highly virulent P. aeruginosa (MIC 5.2 and 20.8 μg/mL, respectively).
Collapse
Affiliation(s)
- Camilo Pardo-Castaño
- Applied Thermodynamic Research Group, School of Chemical Engineering, Universidad del Valle, 760032, Cali, Colombia
| | - Daniel Vásquez
- Periodontal Medicine Research Group, School of Dentistry, Universidad del Valle, 760043, Cali, Colombia
| | - Gustavo Bolaños
- Applied Thermodynamic Research Group, School of Chemical Engineering, Universidad del Valle, 760032, Cali, Colombia
| | - Adolfo Contreras
- Periodontal Medicine Research Group, School of Dentistry, Universidad del Valle, 760043, Cali, Colombia.
| |
Collapse
|
6
|
Biomolecular Targets of Oxyprenylated Phenylpropanoids and Polyketides. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:143-205. [PMID: 30924014 DOI: 10.1007/978-3-030-01099-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxyprenylated secondary metabolites (e.g. phenylpropanoids and polyketides) represent a rare class of natural compounds. Over the past two decades, this group of phytochemicals has become a topic of intense research activity by several teams worldwide due to their in vitro and in vivo pharmacological activities, and to their great therapeutic and nutraceutical potential for the chemoprevention of acute and chronic diseases affecting humans. Such investigations have provided evidence that oxyprenylated secondary metabolites are able to interact with several biological targets at different levels accounting for their observed anticarcinogenic, anti-inflammatory, neuroprotective, immunomodulatory, antihypertensive, and metabolic effects. The aim of the present contribution is to provide a detailed survey of the so far reported data on the capacities of selected oxyprenylated phenylpropanoids and polyketides to trigger receptors, enzymes, and other types of cellular factors for which they exhibit a high degree of affinity and therefore evoke specific responses. With respect to the rather small amounts of these compounds available from natural sources, their chemical synthesis is also highlighted.
Collapse
|
7
|
Fiorito S, Epifano F, Taddeo VA, Genovese S. Recent acquisitions on oxyprenylated secondary metabolites as anti-inflammatory agents. Eur J Med Chem 2017; 153:116-122. [PMID: 28844340 DOI: 10.1016/j.ejmech.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/13/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Oxyprenylated secondary metabolites from plants, fungi, and bacteria, and their semisynthetic derivatives have been subject of growing interest during the last decade. Such natural products in fact have been discovered as potentially novel lead compounds for a series of pharmacological activities, mainly in terms of anti-cancer and anti-inflammatory ones. Especially during the last 5 years, a wider panel of prenyloxy secondary metabolites have been investigated from chemical and biological points of view and these include benzoic acids, alcohols, aldehydes, chalcones, anthraquinones, 1,4-naphthoquinones, other than the well known oxyprenylated ferulic acid and coumarin derivatives. The aim of this comprehensive review is to focus on the anti-inflammatory properties and related mechanisms of action of selected classes of oxyprenylated naturally occurring compounds and their semisynthetic analogues covering the literature period from 2011 to 2017. In vitro and in vivo data on their pharmacological activity triggering different pathways of the overall inflammatory machinery as well as structure activity relationship acquisitions will be summarized in order to make a detailed survey of the most recent reports on the potential of the title compounds as a novel class of anti-inflammatory agents.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Vito Alessandro Taddeo
- Dipartimento di Farmacia, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
8
|
Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016; 100:220-35. [DOI: 10.1016/j.yexmp.2016.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
9
|
Bin H, Huangqin C, Longquan S. The ethanol extract of Osmanthus fragrans attenuates Porphyromonas gingivalis lipopolysaccharide-stimulated inflammatory effect through the nuclear factor erythroid 2-related factor-mediated antioxidant signalling pathway. Arch Oral Biol 2015; 60:1030-8. [DOI: 10.1016/j.archoralbio.2015.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
|