1
|
Stieger RB, Lilaj B, Hönigl GP, Pock S, Cvikl B. Flow Cytometry Illuminates Dental Stem Cells: a Systematic Review of Immunomodulatory and Regenerative Breakthroughs. Stem Cell Rev Rep 2025:10.1007/s12015-025-10883-y. [PMID: 40279028 DOI: 10.1007/s12015-025-10883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Dental stem cells hold significant potential in regenerative medicine due to their multipotency, accessibility, and immunomodulatory effects. Flow cytometry is a critical tool for analyzing these cells, particularly in identifying and characterizing immunomodulatory markers that enhance their clinical applications. This systematic review aims to answer the question: "How does flow cytometry facilitate the identification and characterization of immunomodulatory markers in dental stem cells to enhance their application in regenerative medicine?". METHODS An exhaustive literature search was conducted in PubMed, retrieving 430 studies, of which 284 met inclusion criteria. Studies were selected based on the use of flow cytometry to analyze immunomodulatory markers in dental stem cells, focusing on methodologies, key findings, and challenges. RESULTS Of the 284 articles, 229 employed flow cytometry, with 115 reporting relevant results. Flow cytometry revealed important insights into the immunological interactions of various dental stem cells, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and stem cells from the apical papilla, by identifying and characterizing immunomodulatory markers such as PD-L1, IDO, and TGF-β1. CONCLUSIONS Flow cytometry is essential for advancing the understanding of dental stem cells' immunomodulatory properties. Standardization of methodologies is required to overcome technical challenges and enhance the clinical applications of dental stem cells in regenerative medicine and immunotherapy.
Collapse
Affiliation(s)
- Robert B Stieger
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria.
| | - Bledar Lilaj
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Gernot P Hönigl
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Sophie Pock
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria.
| |
Collapse
|
2
|
Xie C, Zhang Q, Bianco A, Ge S, Ma B. H 2S-Scavenging Hydrogel Alleviating Mitochondria Damage to Control Periodontitis. J Dent Res 2025; 104:172-182. [PMID: 39629939 DOI: 10.1177/00220345241291540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
H2S, as a typical metabolite of periodontal pathogens, exhibits a clear positive correlation with the occurrence and development of periodontitis. H2S at physiological concentrations can regulate many biological processes. However, excess H2S in the periodontal pocket can trigger secretion of proinflammatory cytokines, cause oxidative stress, and result in mitochondrial damage and cell death in human gingival fibroblasts, exacerbating periodontitis development and periodontal tissue destruction. Worse, H2S facilitates bacteria survival and proliferation by maintaining bacterial redox balance and enhancing antibiotic resistance. Unfortunately, scavenging H2S during periodontitis treatment is usually ignored. Herein, a kind of hyaluronic acid methacryloyl/ZnO (HMZ) composite hydrogel with an H2S-scavenging ability was prepared to enhance periodontitis treatment. The HMZ hydrogel possessed good injectability and cytocompatibility and was able to remove H2S by a reaction with ZnO. As a result, the HMZ hydrogel was able to increase cell viability from 13% to 120% for human gingival fibroblasts and 22% to 94% for human periodontal ligament fibroblasts at 48 h, restore mitochondrial homeostasis, and alleviate cGAS-STING signaling pathway-mediated inflammation. Meanwhile, the HMZ hydrogel showed satisfactory antibacterial properties and efficiency of plaque biofilm removal. The in vivo results further confirmed that HMZ hydrogel decreased the concentration of H2S within the periodontal pocket from 0.7 to 0.8 mM to the normal level (0.3 to 0.4 mM), killed the bacteria in the periodontal tissues, inhibited osteoclast activity, relieved excess inflammation, and decreased the vertical distance between the cementoenamel junction and the alveolar bone crest from 1,175 µm to 798 µm on the 7th day and from 1,075 µm to 693 µm on the 14th day, achieving efficient periodontal bone regeneration. In brief, an H2S scavenging-based promising strategy was developed to enhance the therapeutic efficiency of periodontitis.
Collapse
Affiliation(s)
- C Xie
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Q Zhang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - A Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - S Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - B Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
3
|
Li S, Hua Y, Liao C. Weakening of M1 macrophage and bone resorption in periodontitis cystathionine γ-lyase-deficient mice. Oral Dis 2024; 30:769-779. [PMID: 36097830 DOI: 10.1111/odi.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cystathionine-γ-lyase (CTH) has been proved to involve in inflammation and bone remolding, implying its potential role in the progression of periodontitis. This study was aimed to investigate the function of CTH and its relation to the macrophage polarization in periodontitis. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cth knockout (Cth-/- ) mice were stimulated with lipopolysaccharide (LPS) in vitro and pro-inflammatory cytokines were analyzed by qRT-PCR. Ligature-induced periodontitis was established on WT and Cth-/- mice. Histological analysis, tartrate-resistant acid phosphatase staining, immunostaining, and Western blot were performed to analyze the periodontium destruction and M1 macrophage polarization. RESULTS Cth expression in BMDMs was upregulated upon increasing LPS stimulation. Deletion of Cth suppressed BMDMs inflammatory response with decreased Il1b, Il6, and Tnf mRNA. Cth-/- mice with periodontitis showed attenuated bone loss and impaired osteoclast differentiation compared with WT. Moreover, Cth knockout hindered M1 macrophage polarization, reduced the expression of IL-1β, IL-6, and TNF-α in periodontally diseased tissue. CONCLUSION This study demonstrated that CTH played an important role in regulating the inflammatory responses and periodontitis tissue destruction. Importantly, Cth knockout suppressed M1 macrophages polarization in periodontitis.
Collapse
Affiliation(s)
- Sijin Li
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yongmei Hua
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chongshan Liao
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
4
|
Inhibition of the 3-mercaptopyruvate sulfurtransferase-hydrogen sulfide system promotes cellular lipid accumulation. GeroScience 2022; 44:2271-2289. [PMID: 35680713 PMCID: PMC9616987 DOI: 10.1007/s11357-022-00600-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
H2S is generated in the adipose tissue by cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S plays multiple roles in the regulation of various metabolic processes, including insulin resistance. H2S biosynthesis also occurs in adipocytes. Aging is known to be associated with a decline in H2S. Therefore, the question arises whether endogenous H2S deficiency may affect the process of adipocyte maturation and lipid accumulation. Among the three H2S-generating enzymes, the role of 3-MST is the least understood in adipocytes. Here we tested the effect of the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) and the H2S donor (GYY4137) on the differentiation and adipogenesis of the adipocyte-like cells 3T3-L1 in vitro. 3T3-L1 cells were differentiated into mature adipocytes in the presence of GYY4137 or HMPSNE. HMPSNE significantly enhanced lipid accumulation into the maturing adipocytes. On the other hand, suppressed lipid accumulation was observed in cells treated with the H2S donor. 3-MST inhibition increased, while H2S donation suppressed the expression of various H2S-producing enzymes during adipocyte differentiation. 3-MST knockdown also facilitated adipocytic differentiation and lipid uptake. The underlying mechanisms may involve impairment of oxidative phosphorylation and fatty acid oxidation as well as the activation of various differentiation-associated transcription factors. Thus, the 3-MST/H2S system plays a tonic role in suppressing lipid accumulation and limiting the differentiation of adipocytes. Stimulation of 3-MST activity or supplementation of H2S—which has been recently linked to various experimental therapeutic approaches during aging—may be a potential experimental approach to counteract adipogenesis.
Collapse
|
5
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
6
|
A novel fluorescent probe for detecting hydrogen sulfide in osteoblasts during lipopolysaccharide-mediated inflammation under periodontitis. Sci Rep 2021; 11:20156. [PMID: 34635770 PMCID: PMC8505607 DOI: 10.1038/s41598-021-99761-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Periodontitis, one of the most common chronic inflammatory diseases, affects the quality of life. Osteogenesis plays an important role in the disease. There is a connection between hydrogen sulfide (H2S) and periodontitis, but according to the study has been published, the precise role of H2S in inflammation remains in doubt. The main reason for the lack of research is that H2S is an endogenous gasotransmitter, difficult to discern through testing. So, we synthesized a novel fluorescence probe which can detect H2S in vitro. By using the novel H2S fluorescence probe, we found that H2S changes in osteoblasts mainly by cystathionine-γ-lyase, and H2S increases under LPS stimulation. H2S could be a potential marker for diagnosis of inflammatory diseases of bone, and might help deepen studies of the changes of H2S level and promote the progression on the researches about pathogenesis of periodontitis.
Collapse
|
7
|
The Gasotransmitter Hydrogen Sulfide (H 2S) Prevents Pathologic Calcification (PC) in Cartilage. Antioxidants (Basel) 2021; 10:antiox10091433. [PMID: 34573065 PMCID: PMC8471338 DOI: 10.3390/antiox10091433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Pathologic calcification (PC) is a painful and disabling condition whereby calcium-containing crystals deposit in tissues that do not physiologically calcify: cartilage, tendons, muscle, vessels and skin. In cartilage, compression and inflammation triggered by PC leads to cartilage degradation typical of osteoarthritis (OA). The PC process is poorly understood and treatments able to target the underlying mechanisms of the disease are lacking. Here we show a crucial role of the gasotransmitter hydrogen sulfide (H2S) and, in particular, of the H2S-producing enzyme cystathionine γ-lyase (CSE), in regulating PC in cartilage. Cse deficiency (Cse KO mice) exacerbated calcification in both surgically-induced (menisectomy) and spontaneous (aging) murine models of cartilage PC, and augmented PC was closely associated with cartilage degradation (OA). On the contrary, Cse overexpression (Cse tg mice) protected from these features. In vitro, Cse KO chondrocytes showed increased calcification, potentially via enhanced alkaline phosphatase (Alpl) expression and activity and increased IL-6 production. The opposite results were obtained in Cse tg chondrocytes. In cartilage samples from patients with OA, CSE expression inversely correlated with the degree of tissue calcification and disease severity. Increased cartilage degradation in murine and human tissues lacking or expressing low CSE levels may be accounted for by dysregulated catabolism. We found higher levels of matrix-degrading metalloproteases Mmp-3 and -13 in Cse KO chondrocytes, whereas the opposite results were obtained in Cse tg cells. Finally, by high-throughput screening, we identified a novel small molecule CSE positive allosteric modulator (PAM), and demonstrated that it was able to increase cellular H2S production, and decrease murine and human chondrocyte calcification and IL-6 secretion. Together, these data implicate impaired CSE-dependent H2S production by chondrocytes in the etiology of cartilage PC and worsening of secondary outcomes (OA). In this context, enhancing CSE expression and/or activity in chondrocytes could represent a potential strategy to inhibit PC.
Collapse
|
8
|
Zhang L, Xu S, Cheng X, Zheng J, Wang Y, Wu J, Wang X, Wu L, Yu H, Bao J. Diallyl trisulphide, a H 2 S donor, compromises the stem cell phenotype and restores thyroid-specific gene expression in anaplastic thyroid carcinoma cells by targeting AKT-SOX2 axis. Phytother Res 2021; 35:3428-3443. [PMID: 33751676 DOI: 10.1002/ptr.7065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022]
Abstract
It is widely accepted that anaplastic thyroid carcinoma (ATC), a rare, extremely aggressive malignant, is enriched by cancer stem cells (CSCs), which are closely related to the pathogenesis of ATC. In the present study, we demonstrated that diallyl trisulphide (DATS), a well-known hydrogen sulphide (H2 S) donor, suppressed sphere formation and restored the expression of iodide-metabolizing genes in human ATC cells, which were associated with H2 S generation. Two other H2 S donors, NaHS and GYY4137, could also suppress the self-renewal properties of ATC cells in vitro. Compared with normal thyroid tissues and papillary thyroid carcinomas (PTCs), the elevated expressions of SOX2 and MYC, two cancer stem cell markers, in ATCs were validated in the combined Gene Expression Omnibus (GEO) cohort. DATS decreased the expression of SOX2, which was mediated by H2 S generation. Furthermore, knockdown of AKT or inhibition of AKT by DATS led to a decrease of SOX2 expression in ATC cells. AKT knockdown phenocopied restoration of thyroid-specific gene expression in ATC cells. Our data suggest that H2 S donors treatment can compromise the stem cell phenotype and restore thyroid-specific gene expression of ATC cells by targeting AKT-SOX2 pathway, which may serve as a therapeutic strategy to intervene the CSC progression of ATC.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China.,School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
9
|
Láng O, Nagy KS, Láng J, Perczel-Kovách K, Herczegh A, Lohinai Z, Varga G, Kőhidai L. Comparative study of hyperpure chlorine dioxide with two other irrigants regarding the viability of periodontal ligament stem cells. Clin Oral Investig 2020; 25:2981-2992. [PMID: 33044682 PMCID: PMC8060220 DOI: 10.1007/s00784-020-03618-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Objectives Periodontal ligament stem cells (PDLSCs) have an underlined significance as their high proliferative capacity and multipotent differentiation provide an important therapeutic potential. The integrity of these cells is frequently disturbed by the routinely used irrigative compounds applied as periodontal or endodontic disinfectants (e.g., hydrogen peroxide (H2O2) and chlorhexidine (CHX)). Our objectives were (i) to monitor the cytotoxic effect of a novel dental irrigative compound, chlorine dioxide (ClO2), compared to two traditional agents (H2O2, CHX) on PDLSCs and (ii) to test whether the aging factor of PDLSC cultures determines cellular responsiveness to the chemicals tested. Methods Impedimetry (concentration-response study), WST-1 assays (WST = water soluble tetrazolium salt), and morphology analysis were performed to measure changes in cell viability induced by the 3 disinfectants; immunocytochemistry of stem cell markers (STRO-1, CD90, and CD105) measured the induced mesenchymal characteristics. Results Cell viability experiments demonstrated that the application of ClO2 does not lead to a significant decrease in viability of PLDSCs in concentrations used to kill microbes. On the contrary, traditional irrigants, H2O2, and CHX are highly toxic on PDLSCs. Aging of PLDSC cultures (passages 3 vs. 7) has characteristic effects on their responsiveness to these agents as the increased expression of mesenchymal stem cell markers turns to decreased. Conclusions and clinical relevance While the active ingredients of mouthwash (H2O2, CHX) applied in endodontic or periodontitis management have a serious toxic effect on PDLSCs, the novel hyperpure ClO2 is less toxic providing an environment favoring dental structure regenerations during disinfectant interventions. Electronic supplementary material The online version of this article (10.1007/s00784-020-03618-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina S Nagy
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.,Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Julia Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Katalin Perczel-Kovách
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.,Department in Community Dentistry, Semmelweis University, Budapest, Hungary
| | - Anna Herczegh
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
Wang Y, Yu R, Wu L, Yang G. Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide 2020; 103:9-19. [PMID: 32682981 DOI: 10.1016/j.niox.2020.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in the biomedical importance of H2S have help us understand various cellular functions and pathophysiological processes from a new aspect. Specially, H2S has been demonstrated to play multiple roles in regulating cell behaviors, including cell survival, cell differentiation, cell senescence, cell hypertrophy, cell atrophy, cell metaplasia, and cell death, etc. H2S contributes to cell behavior changes via various mechanisms, such as histone modification, DNA methylation, non-coding RNA changes, DNA damage repair, transcription factor activity, and post-translational modification of proteins by S-sulfhydration, etc. In this review, we summarized the recent research progress on H2S signaling in control of cell behaviors and discussed the ways of H2S regulation of gene expressions. Given the key roles of H2S in both health and diseases, a better understanding of the regulation of H2S on cell behavior change and the underlying molecular mechanisms will help us to develop novel and more effective strategies for clinical therapy.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ruihuan Yu
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; School of Human Kinetics, Laurentian University, Sudbury, Canada; Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
12
|
Chen L, Lu C, Hua Y. Cystathionine gamma-lyase aggravates periodontal damage in traumatic occlusion mouse models. J Periodontal Res 2020; 55:667-675. [PMID: 32323318 DOI: 10.1111/jre.12753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/22/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Though impacts of traumatic occlusion (TO) on periodontal tissues and roles of cystathionine γ-lyase (Cth) gene in the regulation of bone homeostasis have been studied by many, no consensus has been reached so far on whether TO deteriorates the periodontium and precise roles of Cth in occlusal trauma. Therefore, this study aims to investigate the impacts of TO on periodontal tissues and the involvement of Cth gene. METHODS Eighty C57BL/6 wild-type (WT) mice and Cth knockout (Cth-/- ) mice, 8 weeks old, were used in this study. The TO model was established using composite resin bonding on the left maxillary molar for one, two, and three weeks, respectively. Morphological and histological changes in the periodontium were assessed by micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast-related genes were analyzed by real-time polymerase chain reaction (qPCR). RESULTS It was found that decreased alveolar bone height, expanded bone resorption area, and increased width of periodontal ligament (PDL) occurred in TO models, accompanied by an increased number of osteoclasts in a time-dependent manner by micro-CT and histological staining. Osteoclast-related genes including Ctsk, Mmp9, Rank, Trap, and Rankl/Opg were also up-regulated after one week of modeling. The up-regulated expressions of Cth gene and its protein CTH were observed in TO mouse models. After 1, 2, or 3 weeks of modeling, WT mice showed more severe alveolar bone resorption, wider PDL, higher osteoclast count, and higher levels of osteoclast-related genes Ctsk, Rank, and Rankl/Opg than Cth-/- mice. CONCLUSION TO causes a reduction in alveolar bone height and PDL morphological disorder with their severity increases in a time-dependent manner. Cth aggravates periodontal damage caused by TO.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Orthodontics, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Caizhu Lu
- Department of Orthodontics, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Yongmei Hua
- Department of Orthodontics, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Nasi S, Ehirchiou D, Chatzianastasiou A, Nagahara N, Papapetropoulos A, Bertrand J, Cirino G, So A, Busso N. The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H 2S) pathway against experimental osteoarthritis. Arthritis Res Ther 2020; 22:49. [PMID: 32183900 PMCID: PMC7077027 DOI: 10.1186/s13075-020-02147-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H2S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. Methods 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST−/− meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST−/− cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. Results 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST−/− mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. Conclusion 3-MST-generated H2S protects against joint calcification and experimental OA. Enhancing H2S production in chondrocytes may represent a potential disease modifier to treat OA.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Athanasia Chatzianastasiou
- First Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Pharmacology, Faculty of Pharmacy, University of Athens, Athens, Greece
| | | | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Athens, Athens, Greece.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
He D, Liu F, Cui S, Jiang N, Yu H, Zhou Y, Liu Y, Kou X. Mechanical load-induced H 2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1. Stem Cell Res Ther 2020; 11:112. [PMID: 32169104 PMCID: PMC7071778 DOI: 10.1186/s13287-020-01607-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Tooth movement is a unique bone remodeling process induced by mechanical stimulation. Macrophages are important in mediating inflammatory processes during mechanical load-induced tooth movement. However, how macrophages are regulated under mechanical stimulation remains unclear. Mesenchymal stem cells (MSCs) can modulate macrophage polarization during bone remodeling. Hydrogen sulfide (H2S) can be produced by MSCs and have been linked to bone homeostasis. Therefore, this study aimed to investigate whether H2S contributed to periodontal ligament stem cell (PDLSC)-regulated macrophage polarization and bone remodeling under mechanical stimulation. Methods An experimental mechanical load-induced tooth movement animal model was established. Changes in cystathionine-β-synthase (CBS), markers of M1/M2 macrophages, tooth movement distance, and the number of osteoclasts were examined. The conditioned medium of PDLSCs with or without mechanical loading was utilized to treat THP-1 derived macrophages for 24 h to further investigate the effect of PDLSCs on macrophage polarization. Different treatments with H2S donor, CBS inhibitor, or the inhibitor of STAT1 were used to investigate the related mechanism. Markers of M1/M2 polarization and STAT1 pathway expression were evaluated in macrophages. Results Mechanical load promoted tooth movement and increased the number of M1-like macrophages, M1-associated pro-inflammatory cytokines, and the expression of CBS on the compression side of the periodontal ligament. The injection of CBS inhibitor or H2S donor could further repress or increase the number of M1-like macrophages, tartrate-resistant acid phosphatase-positive osteoclasts and the distance of tooth movement. Mechanistically, load-induced PDLSCs enhanced H2S production, which increased the expression of M1-associated cytokines in macrophages. These effects could be blocked by the administration of CBS inhibitor. Moreover, load-induced H2S steered M1 macrophage polarization via the STAT1 signaling pathway. Conclusions These data suggest a novel mechanism indicating that mechanical load-stimulated PDLSCs produce H2S to polarize macrophages toward the M1 phenotype via the STAT1 signaling pathway, which contributes to bone remodeling and tooth movement process. These results provide new insights into the role of PDLSCs in regulating macrophage polarization and mediating bone remodeling under mechanical stimulation, and indicate that appropriate H2S supplementation may accelerate tooth movement. Electronic supplementary material Supplementary information accompanies this paper at 10.1186/s13287-020-01607-9.
Collapse
Affiliation(s)
- Danqing He
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Fuliang Liu
- Department of Orthodontics, ShenZhen Clinic, Sunny Dental Group, #2388 Houhai avenue, Nanshan District, Shenzhen, 518100, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Nan Jiang
- Central laboratory, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Huajie Yu
- Fourth Division, Peking University School and Hospital of Stomatology, No. 41 Dongsuhuan Road, Chaoyang District, Beijing, 100025, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan 2Rd, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Huang XZ, Huang J, Li WZ, Wang JJ, Song DY, Ni JD. LncRNA-MALAT1 promotes osteogenic differentiation through regulating ATF4 by sponging miR-214: Implication of steroid-induced avascular necrosis of the femoral head. Steroids 2020; 154:108533. [PMID: 31678133 DOI: 10.1016/j.steroids.2019.108533] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To study roles oflncRNA-MALAT1 and miR-214 in steroid-induced avascular necrosis of the femoral head (SANFH). METHODS MALAT1, miR-214 andosteogenic-relatedgenes(Runx2, ALP, andOCN)expressions were determined in SANFH tissue samples and human bone marrow stromal cells (BMSC) by RT-qPCR. BMSCs were verifiedbyflowcytometry. The ATF4 level was determined by western blotting and RT-qPCR. Osteogenesis inducedbyosteogenic medium (OM) in BMSCs and dexamethasone (DEX) was used to inhibit osteogenesis. The alkaline phosphatase (ALP) activity was measured and ALP staining and alizarin red staining were conducted for evaluation of osteogenic differentiation. MTT assay was used for cell proliferation. The dual luciferase reporter assay was used to confirm binding between MALAT1 and miR-214, as well as miR-214 and ATF4. RESULTS MALAT1 was down-regulated and miR-214 was up-regulated in SANFH tissues. DEX inhibited osteogenic differentiation of BMSC in a dose-dependent manner, leading to decreased MALAT1, increased miR-214, as well as reduced ALP activity and decreased expression of RUNX2, ALP and OCN. Either overexpression of MALAT1 or inhibition of miR-214 improved DEX-induced inhibition of BMSC osteogenic differentiation. The overexpression of miR-214 reversed the effects by MALAT1. MALAT1 directly sponged miR-214 and miR-214 directly targeted ATF4. CONCLUSION MALAT1 was down-regulated, while miR-214 was elevated in SANFH tissues. MALAT1 promoted osteogenesis differentiation by sponging miR-214 to upregulate ATF4.
Collapse
Affiliation(s)
- Xian-Zhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Wen-Zhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - De-Ye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
16
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Behera J, Tyagi SC, Tyagi N. Role of hydrogen sulfide in the musculoskeletal system. Bone 2019; 124:33-39. [PMID: 30928641 PMCID: PMC6570498 DOI: 10.1016/j.bone.2019.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S) has been known as a gasotransmitter, and it contributes to various physiological and pathological processes. Multiple enzymes such as cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-Mercaptopyruvate sulfurtransferase (MST) produce endogenous H2S, and these are differentially expressed in the various tissue systems including the skeletal system. However, abnormal H2S production is associated with deregulation of the signaling cascade and imbalanced tissue homeostasis. Several studies have previously provided evidence showing the essential regulatory action of H2S in skeletal homeostasis. In this review, we have emphasized the novel function of H2S in both bone and skeletal muscle anabolism, in particular. Additionally, we also reviewed the molecular and epigenetic basis of H2S signaling in bone development and skeletal muscle function.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
18
|
Yang R, Liu Y, Yu T, Liu D, Shi S, Zhou Y, Zhou Y. Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discov 2018; 4:1. [PMID: 30062050 PMCID: PMC6060166 DOI: 10.1038/s41420-018-0071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, mediated a variety of biological processes through multiple signaling pathways, and aberrant H2S metabolism has been associated with mesenchymal stem cell (MSC) dysfunction. Here we employed the small interfering RNA treatment for cystathionine β-synthase (CBS), cystathionine γ-lyase, the main enzymes to synthesize H2S, and CBS-knockout mice to analyze the effect of H2S on dental pulp homeostasis. We showed that H2S deficiency attenuated dental pulp stem cell (DPSC) osteogenic/dentinogenic differentiation in vitro and in vivo with enhanced cell proliferation. Mechanically, H2S facilitated the transient receptor potential action channel subfamily V member 1-mediated calcium (Ca2+) influx, which subsequently activated the β-catenin pathway. While H2S deficiency decreased Ca2+, resulting in glycogen synthase kinase-3β-mediated β-catenin degradation, which controls proliferation and differentiation of DPSCs. Consistently, H2S-deficient mice displayed disturbed pattern of dental pulp and less dentin formation. In this study, we identified a previously unknown mechanism by which H2S regulates DPSC lineage determination and dental pulp homeostasis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050 Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yongsheng Zhou
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| |
Collapse
|
19
|
Yang S, Guo L, Su Y, Wen J, Du J, Li X, Liu Y, Feng J, Xie Y, Bai Y, Wang H, Liu Y. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells. Stem Cell Res Ther 2018; 9:118. [PMID: 29716662 PMCID: PMC5930947 DOI: 10.1186/s13287-018-0869-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Methods Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Results Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor l-NG-monomethyl arginine (l-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. Conclusions NO is essential for maintaining the balance between osteoblasts and adipocytes in PDLSCs via the JNK/MAPK signaling pathway. Graphical Abstract NO balances osteoblast and adipocyte lineage differentiation via JNK/MAPK signaling pathway![]() Electronic supplementary material The online version of this article (10.1186/s13287-018-0869-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan Yang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Wen
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Jie Feng
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yongmei Xie
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yuxing Bai
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
20
|
Zhuang R, Guo L, Du J, Wang S, Li J, Liu Y. Exogenous hydrogen sulfide inhibits oral mucosal wound-induced macrophage activation via the NF-κB pathway. Oral Dis 2018; 24:793-801. [DOI: 10.1111/odi.12838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Affiliation(s)
- R Zhuang
- Department of Implant Dentistry; Capital Medical University School of Stomatology; Beijing China
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
| | - L Guo
- Department of Orthodontics; Beijing Stomatological Hospital; Capital Medical University; Beijing China
| | - J Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
| | - S Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
- Department of Biochemistry and Molecular Biology; Capital Medical University School of Basic Medical Sciences; Beijing China
| | - J Li
- Department of Implant Dentistry; Capital Medical University School of Stomatology; Beijing China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
| |
Collapse
|
21
|
Su Y, Chen C, Guo L, Du J, Li X, Liu Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018; 36:551-561. [PMID: 29266799 DOI: 10.1002/stem.2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. This study used a common clinical antibiotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release lipopolysaccharide (LPS) that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/telomerase reverse transcriptase pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice. Stem Cells 2018;36:551-561.
Collapse
Affiliation(s)
- Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
23
|
Pu H, Hua Y. Hydrogen sulfide regulates bone remodeling and promotes orthodontic tooth movement. Mol Med Rep 2017; 16:9415-9422. [PMID: 29039565 PMCID: PMC5779999 DOI: 10.3892/mmr.2017.7813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gas signaling molecule that has multiple influences on physiological and pathological processes in the mammalian body, including vasodilation, neurotransmission, inflammation, hypoxia sensing and bone remodeling. Our previous studies suggested that H2S might be involved in the periodontal tissue remodeling during the orthodontic tooth movement (OTM) via increasing periodontal ligament cell differentiation, tissue mineralization, bone formation and collagen synthesis. The aim of the present study was to investigate the effects of H2S on alveolar bone remodeling that is associated with tooth movement. Experiments were performed in an OTM mouse model. Sodium hydrosulfide (NaHS), which is a donor of H2S and DL-propargylglycine (PAG) and a cystathionine-γ-lyase (CSE) inhibitor, which could also decrease H2S expression, were administered intraperitoneally and respectively. A total of 60 male C57BL6/J mice were divided into 4 groups; Control, NaHS, PAG and combination (PAG+NaHS). The rate of OTM and the bone mineral density (BMD) of alveolar bone were scanned and measured by micro-computed tomography (micro-CT). The number of osteoclasts and expression of the tumor necrosis factor ligand superfamily member-11 (RANKL), alkaline phosphatase (ALP), osteocalcin (OCN) and osteoprotegerin (OPG) in alveolar bone were accessed to evaluate the osteoclastic activity and osteogenesis with histochemistry of tartrate-resistant acid phosphatase staining, immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In the alveolar bone, NaHS increased the OTM and decreased the BMD, respectively. PAG significantly decrease OTM and increased the BMD. NaHS combined with PAG rescued the PAG-induced changes in the OTM and the BMD. Additionally, the number of osteoclasts, the expression of RANKL, ALP, OCN and the ratio of RANKL/OPG were significantly up-regulated in the NaHS group. In contrast, PAG down-regulated the number of osteoclasts, the expression of RANKL, ALP, OCN and the ratio of RANKL/OPG. These findings suggested that H2S might facilitate the OTM by enhancing alveolar bone remodeling as a result of an increased osteoclastic activity and osteogenesis.
Collapse
Affiliation(s)
- Haiya Pu
- Department of Orthodontics, School of Dentistry, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200233, P.R. China
| | - Yongmei Hua
- Department of Orthodontics, School of Dentistry, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200233, P.R. China
| |
Collapse
|
24
|
Zhang D, Du J, Tang C, Huang Y, Jin H. H 2S-Induced Sulfhydration: Biological Function and Detection Methodology. Front Pharmacol 2017; 8:608. [PMID: 28932194 PMCID: PMC5592224 DOI: 10.3389/fphar.2017.00608] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
At appropriate concentrations, hydrogen sulfide, a well-known gasotransmitter, plays important roles in both physiology and pathophysiology. Increasing evidence suggests that modifying thiol groups of specific cysteines in target proteins via sulfhydration or persulfidation is one of the important mechanisms responsible for the biological functions of hydrogen sulfide. A variety of key proteins of different cellular pathways in mammals have been reported to be sulfhydrated by hydrogen sulfide to participate and regulate the processes of cell survival/death, cell differentiation, cell proliferation/hypertrophy, cellular metabolism, mitochondrial bioenergetics/biogenesis, endoplasmic reticulum stress, vasorelaxtion, inflammation, oxidative stress, etc. Moreover, S-sulfhydration also exerts many biological functions through the cross-talk with other post-translational modifications including phosphorylation, S-nitrosylation and tyrosine nitration. This review summarizes recent studies of hydrogen sulfide-induced sulfhydration as a posttranslational modification, an important biological function of hydrogen sulfide, and sulfhydrated proteins are introduced. Additionally, we discuss the main methods of detecting sulfhydration of proteins.
Collapse
Affiliation(s)
- Da Zhang
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First HospitalBeijing, China.,Key Laboratory of Molecular Cardiology, Ministry of EducationBeijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of EducationBeijing, China.,Department of Physiology and Pathophysiology, Peking University Health Science CenterBeijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First HospitalBeijing, China
| |
Collapse
|
25
|
Liu F, Wen F, He D, Liu D, Yang R, Wang X, Yan Y, Liu Y, Kou X, Zhou Y. Force-Induced H 2S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement. J Dent Res 2017; 96:694-702. [PMID: 28165889 DOI: 10.1177/0022034517690388] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide (H2S), a gasotransmitter, has been recently linked to mesenchymal stem cell (MSC) function and bone homeostasis. Periodontal ligament stem cells (PDLSCs) are the main MSCs in PDL, which respond to mechanical force to induce physiological activities during orthodontic tooth movement (OTM). However, it is unknown whether mechanical force might induce endogenous H2S production by PDLSCs to regulate alveolar bone homeostasis. Here, we used a mouse OTM model to demonstrate that orthodontic force-induced endogenous H2S production in PDL tissue was associated with macrophage accumulation and osteoclastic activity in alveolar bone. Then, we showed that mechanical force application induced cystathionine β-synthase (CBS) expression and endogenous H2S production by PDLSCs. Moreover, blocking endogenous H2S or systemically increasing H2S levels could decrease or enhance force-induced osteoclastic activities to control tooth movement. We further revealed how force-induced H2S production by PDLSCs contributed to the secretion of monocyte chemoattractant protein-1 (MCP-1) and the expression of receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) system by PDLSCs. The secretion and expression of these factors controlled macrophage migration and osteoclast differentiation. This study demonstrated that PDLSCs produced H2S to respond to and transduce force signals. Force-induced gasotransmitter H2S production in PDLSCs therefore regulated osteoclastic activities in alveolar bone and controlled the OTM process through the MCP-1 secretion and RANKL/OPG system.
Collapse
Affiliation(s)
- F Liu
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - F Wen
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - D He
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - D Liu
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - R Yang
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - X Wang
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - Y Yan
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - Y Liu
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - X Kou
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| | - Y Zhou
- 1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
- 2 Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P.R. China
| |
Collapse
|
26
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|
27
|
Yang R, Liu Y, Shi S. Hydrogen Sulfide Regulates Homeostasis of Mesenchymal Stem Cells and Regulatory T Cells. J Dent Res 2016; 95:1445-1451. [PMID: 27432317 PMCID: PMC5119679 DOI: 10.1177/0022034516659041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been known as a toxic gas. However, recently accumulated evidence suggests that H2S contributes to a variety of physiologic and pathologic processes. Endogenous H2S production is regulated by multiple enzymes that are differentially expressed in the cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems. Alteration of H2S metabolism may affect multiple signaling pathways and tissue homeostasis. The growing number of diverse targets for which H2S serves as a gasotransmitter has been extensively reviewed elsewhere. In this review, the authors discuss current emerging evidence that H2S regulates mesenchymal stem cell and T-cell functions.
Collapse
Affiliation(s)
- R Yang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - S Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Chun-Mei J, Wu C, Guo-Liang M, Yue G, Ning C, Ji Y. Production of endogenous hydrogen sulfide in human gingival tissue. Arch Oral Biol 2016; 74:108-113. [PMID: 27930932 DOI: 10.1016/j.archoralbio.2016.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/28/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endogenous hydrogen sulfide (H2S) has recently been shown to play an important role in inflammation, but the role of endogenous H2S in the human gingival tissue is unknown. The aim of this study was to investigate whether gingiva had enzymes for H2S synthesis, and whether the effect of these enzymes for H2S production changed with periodontal inflammation. DESIGN Gingival tissues were collected from patients undergoing periodontal operation including gingivitis, moderate chronic periodontitis, severe chronic periodontitis and normal controls. RT-PCR and western blotting were performed to measure mRNA and protein levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) for H2S production. Immunohistochemistry was carried out to detect the location of the enzymes. H2S levels and synthesis in gingival tissue were evaluated with modified methylene blue method. RESULTS The mRNA and protein of CBS and CSE were both expressed in human gingiva and raised significantly in moderate and severe periodontitis compared of that in healthy control. CBS, but not CSE, increased in gingivitis (p<0.05). However, there was no significant difference of H2S level and synthesis among these groups (p>0.05). CONCLUSIONS Both CBS and CSE were expressed in human gingival tissue. The mRNA and protein levels of CBS and CSE were up-regulated in periodontitis.
Collapse
Affiliation(s)
- Jiang Chun-Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Meng Guo-Liang
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Gu Yue
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chen Ning
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Cheng Z, Garikipati VNS, Nickoloff E, Wang C, Polhemus DJ, Zhou J, Benedict C, Khan M, Verma SK, Rabinowitz JE, Lefer D, Kishore R. Restoration of Hydrogen Sulfide Production in Diabetic Mice Improves Reparative Function of Bone Marrow Cells. Circulation 2016; 134:1467-1483. [PMID: 27660293 DOI: 10.1161/circulationaha.116.022967] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bone marrow cell (BMC)-based treatment for critical limb ischemia in diabetic patients yielded a modest therapeutic effect resulting from cell dysfunction. Therefore, approaches that improve diabetic stem/progenitor cell functions may provide therapeutic benefits. Here, we tested the hypothesis that restoration of hydrogen sulfide (H2S) production in diabetic BMCs improves their reparative capacities. METHODS Mouse BMCs were isolated by density-gradient centrifugation. Unilateral hind limb ischemia was conducted in 12- to 14-week-old db/+ and db/db mice by ligation of the left femoral artery. The H2S level was measured by either gas chromatography or staining with florescent dye sulfidefluor 7 AM. RESULTS Both H2S production and cystathionine γ-lyase (CSE), an H2S enzyme, levels were significantly decreased in BMCs from diabetic db/db mice. Administration of H2S donor diallyl trisulfide (DATS) or overexpression of CSE restored H2S production and enhanced cell survival and migratory capacity in high glucose (HG)-treated BMCs. Immediately after hind limb ischemia surgery, the db/+ and db/db mice were administered DATS orally and/or given a local intramuscular injection of green fluorescent protein-labeled BMCs or red fluorescent protein-CSE-overexpressing BMCs (CSE-BMCs). Mice with hind limb ischemia were divided into 6 groups: db/+, db/db, db/db+BMCs, db/db+DATS, db/db+DATS+BMCs, and db/db+CSE-BMCs. DATS and CSE overexpression greatly enhanced diabetic BMC retention in ischemic hind limbs followed by improved blood perfusion, capillary/arteriole density, skeletal muscle architecture, and cell survival and decreased perivascular CD68+ cell infiltration in the ischemic hind limbs of diabetic mice. It is interesting to note that DATS or CSE overexpression rescued high glucose-impaired migration, tube formation, and survival of BMCs or mature human cardiac microvascular endothelial cells. Moreover, DATS restored nitric oxide production and decreased endothelial nitric oxide synthase phosphorylation at threonine 495 levels in human cardiac microvascular endothelial cells and improved BMC angiogenic activity under high glucose condition. Last, silencing CSE by siRNA significantly increased endothelial nitric oxide synthase phosphorylation at threonine 495 levels in human cardiac microvascular endothelial cells. CONCLUSIONS Decreased CSE-mediated H2S bioavailability is an underlying source of BMC dysfunction in diabetes mellitus. Our data indicate that H2S and overexpression of CSE in diabetic BMCs may rescue their dysfunction and open novel avenues for cell-based therapeutics of critical limb ischemia in diabetic patients.
Collapse
Affiliation(s)
- Zhongjian Cheng
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Venkata Naga Srikanth Garikipati
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Emily Nickoloff
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Chunlin Wang
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - David J Polhemus
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Jibin Zhou
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Cynthia Benedict
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Mohsin Khan
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Suresh K Verma
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Joseph E Rabinowitz
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - David Lefer
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.)
| | - Raj Kishore
- From Center for Translational Medicine (Z.C., V.N.S.G., E.N., C.W., J.Z., C.B., M.K., S.K.V., J.E.R., R.K.) and Department of Pharmacology (J.E.R., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (D.J.P., D.L.).
| |
Collapse
|
30
|
Greabu M, Totan A, Miricescu D, Radulescu R, Virlan J, Calenic B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants (Basel) 2016; 5:antiox5010003. [PMID: 26805896 PMCID: PMC4808752 DOI: 10.3390/antiox5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.
Collapse
Affiliation(s)
- Maria Greabu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Alexandra Totan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Daniela Miricescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Radu Radulescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Justina Virlan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Bogdan Calenic
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| |
Collapse
|
31
|
ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment. Mediators Inflamm 2016; 2016:8467849. [PMID: 26884650 PMCID: PMC4738707 DOI: 10.1155/2016/8467849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment.
Collapse
|