1
|
Liu P, Chen H, Jiang X, Diaz-Cidoncha Garcia J. Impact of exercise training in a hypobaric/normobaric hypoxic environment on body composition and glycolipid metabolism in individuals with overweight or obesity: a systematic review and meta-analysis. Front Physiol 2025; 16:1571730. [PMID: 40130193 PMCID: PMC11931047 DOI: 10.3389/fphys.2025.1571730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Objective This study aims to assess the impact of hypoxia training on body composition and glycolipid metabolism in excess body weight or living with obese people through meta-analysis. Methods Randomized controlled trials investigating the effects of hypoxia training on body composition, glucose, and lipid metabolism in excess body weight or living with obese people were systematically searched from databases including CNKI, PubMed, and Web of Science. The meta-analysis was performed by using Stata 18 and RevMan 5.4 analytic tools. The risk of bias was assessed using the Cochrane evaluation tool, and the level of certainty of evidence was determined by the GRADE framework. Between-study heterogeneity was examined using the I 2 test, and the publication bias was evaluated via the Egger test or funnel plot. Results A total of 32 RCTs with 1,011 participants were included. A meta-analysis of 25 RCTs was performed (499 men and 480 women, Age: 40.25 ± 15.69, BMI: 30.96 ± 3.65). In terms of body composition, the outcome indexes of body fat ratio (MD is -1.16, 95% CI -1.76 to -0.56, P = 0.00) in the hypoxia group were better than the normal oxygen group. There was no significant difference in body mass and BMI between the hypoxia group and the normal-oxygen group (P > 0.05). In terms of lipid and glucose metabolism, no significant changes were found between the hypoxia group and the normoxia group (P > 0.05). Subgroup analysis showed that training in hypoxic environment at altitude 2001-2,500 m could effectively improve body mass, TG and LDL-C (P < 0.05). The effective program to reduce body mass is to carry out moderate intensity training of 45-60 min for ≤8 weeks, ≥4 times a week (P < 0.05). Conclusion Hypoxic training is essential for reducing body fat ratio in excess body weight or obese people. It is recommended to carry out 45-60 min of moderate-intensity aerobic exercise for ≤8 weeks, ≥4 times a week, in a hypoxia environment of 2,001-2,500 m to lose body mass. The effects of hypoxia training and normoxia training on lipid and glucose metabolism in excess body weight or obese people are the same. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024628550.
Collapse
Affiliation(s)
- Peng Liu
- College of Physical Education, Dalian University, Dalian, China
| | - Hao Chen
- Department of Physical Education, Dalian University of Finance and Economics, Dalian, China
| | - Xin Jiang
- College of Physical Education, Dalian University, Dalian, China
- Graduate School, Beijing Sport University, Beijing, China
| | | |
Collapse
|
2
|
Muche ZT, Wondimu DH, Midekssa MB, Abebe EC, Agidew MM, Ayele TM, Zewde EA, Mulu AT, Teshome AA, Baye ND, Teklemariam AB, Bekele DA, Muleta GJ. Physiological parameters and training characteristics of endurance runners at Ethiopian Youth Sports Academy (2400 meters above sea level) and Guna Athletics Sport Club (3100 meters above sea level) training camps: a comparative cross-sectional study. J Sports Med Phys Fitness 2025; 65:19-29. [PMID: 39382943 DOI: 10.23736/s0022-4707.24.16047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Endurance performance is impacted by physiological, anthropometrical, diet, genetic, psychological, and training characteristics. Altitude can affect physiological parameters (like maximum oxygen utilization, arterial oxygen saturation (SaO2), heart rate, and blood pressure) and training characteristics (duration, frequency, and training load). Thus, this study compared physiological parameters and training characteristics between endurance runners at Ethiopian Youth Sports Academy (EYSA) and Guna Athletics Sport Club (GASC) located which are located at elevation of 2400 and 3100 meters, respectively. METHODS A comparative cross-sectional study design was used from September to November 2021. Data was obtained from a total of 120 eligible participants (30 runners and 30 controls at GASC, and 30 runners and 30 controls at EYSA). Sociodemographic and training characteristics were assessed using self-administered standardized questionnaires. SaO2 and heart rate were measured using finger pulse-oximetry (Nellcor, Oxim N-65; Covidien, Dublin, Ireland). Blood pressure was measured by Folee Digital Blood Pressure Monitor DX-B1 (Jiangsu Folee Medical Equipment Co., Ltd., Zhenjiang, China). RESULTS The runners of GASC had significantly lower resting SaO2, SaO2 immediately after maximal exertion, training (frequency and load) than runners of EYSA in both sexes. Runners of Guna Athletics Sport Club (RGASC) had significantly higher maximum oxygen utilization (VO2max) than Runners Ethiopian Youth Sports Academy (REYSA) in both sexes. Severe exercise-induced hypoxemia (EIAH) and moderate EIAH were developed by male runners of GASC and EYSA respectively. Besides, female runners GASC and EYSA developed moderate and mild EIAH, respectively. CONCLUSIONS Conclusively, there were significant differences in physiological parameters and training load between RGASC and REYSA. High altitude (3100 meters) may have a greater impact on the above variables than moderate hypoxia (2400 meters above sea level). Hence, endurance runner coaches should give emphasis to these variables.
Collapse
Affiliation(s)
- Zelalem T Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia -
| | - Diresibachew H Wondimu
- School of Medicine, Department of Medical Physiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Milkessa B Midekssa
- Department of Sport Science, Sport Science Academy, Haramaya University, Haramaya, Ethiopia
| | | | - Melaku M Agidew
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tekile M Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit A Zewde
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut T Mulu
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa A Teshome
- Department of Medical Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega D Baye
- Department of Medical Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew B Teklemariam
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Gutema J Muleta
- Department of Immunology, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Pradhan S, Parganiha A, Agashe CD, Pati AK. Circadian rhythm in sportspersons and athletic performance: A mini review. Chronobiol Int 2024; 41:137-181. [PMID: 38247325 DOI: 10.1080/07420528.2024.2305663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Circadian rhythms in the physiological and behavioral processes of humans play a crucial role in the quality of living and also in the magnitude of success and failure in various endeavors including competitive sports. The rhythmic activities of the body and performance in sportspersons do have a massive impact on their every cutthroat competition. It is essential to schedule sports activities and training of players according to their circadian typology and time of peak performance for improved performance and achievement. In this review, the focus is on circadian rhythms and diurnal variations in peak athletic performance in sportspersons. Accuracy and temporal variability in peak performance in an individual could be attributed to various factors, namely chronotype, time of the day, body temperature, jetlag, hormones, and prior light exposure. Circadian rhythm of mood, alertness, T-core, and ultimately athletic performance is not only affected by sleep but also by circadian variations in hormones, such as cortisol, testosterone, and melatonin. There are, however, a few reports that are not consistent with the conclusions drawn in this review. Nevertheless, circadian rhythm and performance among sportspersons and athletes are important areas of research. This review might be useful to the managers and policymakers associated with competitive sports and athletic events.
Collapse
Affiliation(s)
- Sraddha Pradhan
- School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur, India
| | - Arti Parganiha
- School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pt. Ravishankar Shukla University, Raipur, India
| | - C D Agashe
- School of Studies in Physical Education, Pt. Ravishankar Shukla University, Raipur, India
| | - Atanu Kumar Pati
- School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pt. Ravishankar Shukla University, Raipur, India
- School of Comparative Indic Studies and Tribal Sciences, Kalinga Institute of Social Sciences - Deemed to be a University, Bhubaneswar, India
- Odisha State Higher Education Council, Government of Odisha, Bhubaneswar, India
| |
Collapse
|
4
|
Zhao N, Chung TD, Guo Z, Jamieson JJ, Liang L, Linville RM, Pessell AF, Wang L, Searson PC. The influence of physiological and pathological perturbations on blood-brain barrier function. Front Neurosci 2023; 17:1289894. [PMID: 37937070 PMCID: PMC10626523 DOI: 10.3389/fnins.2023.1289894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
The blood-brain barrier (BBB) is located at the interface between the vascular system and the brain parenchyma, and is responsible for communication with systemic circulation and peripheral tissues. During life, the BBB can be subjected to a wide range of perturbations or stresses that may be endogenous or exogenous, pathological or therapeutic, or intended or unintended. The risk factors for many diseases of the brain are multifactorial and involve perturbations that may occur simultaneously (e.g., two-hit model for Alzheimer's disease) and result in different outcomes. Therefore, it is important to understand the influence of individual perturbations on BBB function in isolation. Here we review the effects of eight perturbations: mechanical forces, temperature, electromagnetic radiation, hypoxia, endogenous factors, exogenous factors, chemical factors, and pathogens. While some perturbations may result in acute or chronic BBB disruption, many are also exploited for diagnostic or therapeutic purposes. The resultant outcome on BBB function depends on the dose (or magnitude) and duration of the perturbation. Homeostasis may be restored by self-repair, for example, via processes such as proliferation of affected cells or angiogenesis to create new vasculature. Transient or sustained BBB dysfunction may result in acute or pathological symptoms, for example, microhemorrhages or hypoperfusion. In more extreme cases, perturbations may lead to cytotoxicity and cell death, for example, through exposure to cytotoxic plaques.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Tracy D. Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - John J. Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Raleigh M. Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alex F. Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Linus Wang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Yu Q, Kong Z, Zou L, Chapman R, Shi Q, Nie J. Comparative efficacy of various hypoxic training paradigms on maximal oxygen consumption: A systematic review and network meta-analysis. J Exerc Sci Fit 2023; 21:366-375. [PMID: 37854170 PMCID: PMC10580050 DOI: 10.1016/j.jesf.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Background Enhancement in maximal oxygen consumption (VO2max) induced by hypoxic training is important for both athletes and non-athletes. However, the lack of comparison of multiple paradigms and the exploration of related modulating factors leads to the inability to recommend the optimal regimen in different situations. This study aimed to investigate the efficacy of seven common hypoxic training paradigms on VO2max and associated moderators. Methods Electronic (i.e., five databases) and manual searches were performed, and 42 studies involving 1246 healthy adults were included. Pairwise meta-analyses were conducted to compare different hypoxic training paradigms and hypoxic training and control conditions. The Bayesian network meta-analysis model was applied to calculate the standardised mean differences (SMDs) of pre-post VO2max alteration among hypoxic training paradigms in overall, athlete, and non-athlete populations, while meta-regression analyses were employed to explore the relationships between covariates and SMDs. Results All seven hypoxic training paradigms were effective to varying degrees, with SMDs ranging from 1.45 to 7.10. Intermittent hypoxia interval training (IHIT) had the highest probability of being the most efficient hypoxic training paradigm in the overall population and athlete subgroup (42%, 44%), whereas intermittent hypoxic training (IHT) was the most promising hypoxic training paradigm among non-athletes (66%). Meta-regression analysis revealed that saturation hours (coefficient, 0.004; P = 0.038; 95% CI [0.0002, 0.0085]) accounted for variations of VO2max improvement induced by IHT. Conclusion Efficient hypoxic training paradigms for VO2max gains differed between athletes and non-athletes, with IHIT ranking best for athletes and IHT for non-athletes. The practicability of saturation hours is confirmed with respect to dose-response issues in the future hypoxic training and associated scientific research. Registration This study was registered in the PROSPERO international prospective register of systematic reviews (CRD42022333548).
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Liye Zou
- Exercise Psychophysiology Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Robert Chapman
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| |
Collapse
|
6
|
Han J, Liu M, Shi J, Li Y. Construction of a Machine Learning Model to Estimate Physiological Variables of Speed Skating Athletes Under Hypoxic Training Conditions. J Strength Cond Res 2023; 37:1543-1550. [PMID: 34100790 DOI: 10.1519/jsc.0000000000004058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Han, J, Liu, M, Shi, J, and Li, Y. Construction of a machine learning model to estimate physiological variables of speed skating athletes under hypoxic training conditions. J Strength Cond Res 37(7): 1543-1550, 2023-Monitoring changes in athletes' physiological variables is essential to create a safe and effective hypoxic training plan for speed skating athletes. This research aims to develop a machine learning estimation model to estimate physiological variables of athletes under hypoxic training conditions based on their physiological measurements collected at sea level. The research team recruited 64 professional speed skating athletes to participate in a 10-week training program, including 3 weeks of sea-level training, followed by 4 weeks of hypoxic training and then a 3-week sea-level recovery period. We measured several physiological variables that could reflect the athletes' oxygen transport capacity in the first 7 weeks, including red blood cell (RBC) count and hemoglobin (Hb) concentration. The physiological variables were measured once a week and then modeled as a mathematical model to estimate measurements' changes using the maximum likelihood method. The mathematical model was then used to construct a machine learning model. Furthermore, the original data (measured once per week) were used to construct a polynomial model using curve fitting. We calculated and compared the mean absolute error between estimated values of the 2 models and measured values. Our results show that the machine learning model estimated RBC count and Hb concentration accurately. The errors of the estimated values were within 5% of the measured values. Compared with the curve fitting polynomial model, the accuracy of the machine learning model in estimating hypoxic training's physiological variables is higher. This study successfully constructed a machine learning model that used physiological variables measured at the sea level to estimate the physiological variables during hypoxic training.
Collapse
Affiliation(s)
- Junhao Han
- College of Instrumentation and Electrical Engineering, Jilin University, Jilin Province, China ; and
| | - Mingyang Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Jilin Province, China ; and
| | - Jizu Shi
- Jilin Institute of Physical Education, Jilin Province, China
| | - Yuguang Li
- College of Instrumentation and Electrical Engineering, Jilin University, Jilin Province, China ; and
| |
Collapse
|
7
|
Zhao N, Kulkarni S, Zhang S, Linville RM, Chung TD, Guo Z, Jamieson JJ, Norman D, Liang L, Pessell AF, Searson P. Modeling angiogenesis in the human brain in a tissue-engineered post-capillary venule. Angiogenesis 2023; 26:203-216. [PMID: 36795297 PMCID: PMC10789151 DOI: 10.1007/s10456-023-09868-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
Angiogenesis plays an essential role in embryonic development, organ remodeling, wound healing, and is also associated with many human diseases. The process of angiogenesis in the brain during development is well characterized in animal models, but little is known about the process in the mature brain. Here, we use a tissue-engineered post-capillary venule (PCV) model incorporating stem cell derived induced brain microvascular endothelial-like cells (iBMECs) and pericyte-like cells (iPCs) to visualize the dynamics of angiogenesis. We compare angiogenesis under two conditions: in response to perfusion of growth factors and in the presence of an external concentration gradient. We show that both iBMECs and iPCs can serve as tip cells leading angiogenic sprouts. More importantly, the growth rate for iPC-led sprouts is about twofold higher than for iBMEC-led sprouts. Under a concentration gradient, angiogenic sprouts show a small directional bias toward the high growth factor concentration. Overall, pericytes exhibited a broad range of behavior, including maintaining quiescence, co-migrating with endothelial cells in sprouts, or leading sprout growth as tip cells.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
8
|
Held S, Rappelt L, Donath L. Acute and Chronic Performance Enhancement in Rowing: A Network Meta-analytical Approach on the Effects of Nutrition and Training. Sports Med 2023; 53:1137-1159. [PMID: 37097415 DOI: 10.1007/s40279-023-01827-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION This systematic review and network meta-analysis assessed via direct and indirect comparison the occurrence and magnitude of effects following different nutritional supplementation strategies and exercise interventions on acute and chronic rowing performance and its surrogates. METHODS PubMed, Web of Science, PsycNET and SPORTDiscus searches were conducted until March 2022 to identify studies that met the following inclusion criteria: (a) controlled trials, (b) rowing performance and its surrogate parameters as outcomes, and (c) peer-reviewed and published in English. Frequentist network meta-analytical approaches were calculated based on standardized mean differences (SMD) using random effects models. RESULTS 71 studies with 1229 healthy rowers (aged 21.5 ± 3.0 years) were included and two main networks (acute and chronic) with each two subnetworks for nutrition and exercise have been created. Both networks revealed low heterogeneity and non-significant inconsistency (I2 ≤ 35.0% and Q statistics: p ≥ 0.12). Based on P-score rankings, while caffeine (P-score 84%; SMD 0.43) revealed relevantly favorable effects in terms of acute rowing performance enhancement, whilst prior weight reduction (P-score 10%; SMD - 0.48) and extensive preload (P-score 18%; SMD - 0.34) impaired acute rowing performance. Chronic blood flow restriction training (P-score 96%; SMD 1.26) and the combination of β-hydroxy-β-methylbutyrate and creatine (P-score 91%; SMD 1.04) induced remarkably large positive effects, while chronic spirulina (P-score 7%; SMD - 1.05) and black currant (P-score 9%; SMD - 0.88) supplementation revealed impairment effects. CONCLUSION Homogeneous and consistent findings from numerous studies indicate that the choice of nutritional supplementation strategy and exercise training regimen are vital for acute and chronic performance enhancement in rowing.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany.
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
- Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
| |
Collapse
|
9
|
García-Río F, Miravitlles M, Soriano JB, Cosío BG, Soler-Cataluña JJ, Casanova C, de Lucas P, Alfageme I, González-Moro JMR, Sánchez Herrero MG, Ancochea J. Dissociation between physical capacity and daily physical activity in COPD patients. A population-based approach. Respir Med 2023; 207:107115. [PMID: 36610693 DOI: 10.1016/j.rmed.2023.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BADKGROUND Physical capacity (PC) and daily physical activity (PA) are two crucial factors in the clinical course of COPD, although they do not always maintain a close relationship. The objectives were to evaluate the frequency of PC-PA dissociation in patients with COPD and subjects without airflow limitation (AL) and to identify its risk factors. METHODS A sample of 319 COPD patients and 399 subjects without AL was consecutively obtained from a population-based sample of 9092 subjects evaluated in the EPISCAN II study. Baseline evaluation included clinical questionnaires, lung function testing, blood analysis and low-dose computed tomography (CT) scan with evaluation of lung density and airway wall thickness. A distance walked in 6 min > 70% predicted was considered an indicator of normal PC, while a Yale Physical Activity Survey summary index score <51 was used to identify with sedentary lifestyle. RESULTS 166 COPD patients (52.0%) reported a sedentary lifestyle with evidence of preserved PC, while this phenomenon was present in 188 (47.1%) subjects without AL. In the COPD group, symptoms of chronic bronchitis, depression and elevated hematocrit and blood eosinophil count were identified as independent risk factors for PC-PA dissociation. In turn, in the subjects without AL, the risk factors for PC-PA dissociation were low fat-free mass, obesity and anxiety, as well as reduced levels of HDL-cholesterol and the absence of osteoporosis. CONCLUSIONS Almost half of COPD patients and subjects without airflow limitation with preserved PC maintain a sedentary lifestyle, with different risk factors for sedentarism between both groups.
Collapse
Affiliation(s)
- Francisco García-Río
- Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Pneumology Department, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joan B Soriano
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Neumología, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Borja G Cosío
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Neumología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
| | - Juan José Soler-Cataluña
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Neumología, Hospital Arnau de Vilanova-Lliria, Universitat de València, Valencia, Spain
| | - Ciro Casanova
- Servicio de Neumología, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Tenerife, Spain
| | - Pilar de Lucas
- Servicio de Neumología, Hospital General Gregorio Marañón, Madrid, Spain
| | - Inmaculada Alfageme
- Unidad de Gestión Clínica de Neumología, Hospital Universitario Virgen de Valme, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Julio Ancochea
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Neumología, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Effects of Acute Moderate Hypoxia versus Normoxia on Metabolic and Cardiac Function and Skeletal Muscle Oxygenation during Endurance Exercise at the Same Heart Rate Level. Metabolites 2022; 12:metabo12100975. [PMID: 36295877 PMCID: PMC9609186 DOI: 10.3390/metabo12100975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the effects of acute moderate hypoxia (HYP), compared with those of normoxia (NORM), during endurance exercise with the same HR level on metabolic function, skeletal muscle oxygenation, and cardiac function. Twelve healthy men (aged 25.1 ± 2.3 years) completed 30 min of endurance exercise using a cycle ergometer with the same HR level (136.5 ± 1.5 bpm) corresponding to 70% maximal heart rate (HRmax) under NORM (760 mmHg) and HYP (526 mmHg, simulated 3000 m altitude) after a 30 min exposure in the respective environments on different days, in random order. Exercise load, rating of perceived exertion (RPE), metabolic function (saturation of percutaneous oxygen; SpO2, minute ventilation; oxygen uptake; VO2, carbon dioxide excretion; respiratory exchange ratio; RER, and oxygen pulse), skeletal muscle oxygen profiles (oxyhemoglobin, oxhb, deoxyhemoglobin, dxhb, total hemoglobin, and tissue oxygenation index; StO2), and cardiac function (heart rate, stroke volume, cardiac output, end-diastolic volume, end-systolic volume, and ejection fraction) were measured during endurance exercise. HYP showed a lower exercise load with the same RPE during exercise than did NORM. In addition, HYP showed a lower SpO2, VO2, oxygen pulse, oxhb, and StO2, and a higher RER and dxhb during exercise than NORM. We found that HYP showed lower exercise load and VO2 at the same RPE than NORM and also confirmed a higher anaerobic metabolism and oxygen inflow into skeletal muscle tissue due to the limitation of oxygen delivery capacity.
Collapse
|
11
|
New Trend of Physical Activity and Exercise for Health Promotion and Functional Ability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137939. [PMID: 35805597 PMCID: PMC9265872 DOI: 10.3390/ijerph19137939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
|
12
|
Hohenauer E, Freitag L, Herten M, Siallagan J, Pollock E, Taube W, Clijsen R. The Methodological Quality of Studies Investigating the Acute Effects of Exercise During Hypoxia Over the Past 40 years: A Systematic Review. Front Physiol 2022; 13:919359. [PMID: 35784889 PMCID: PMC9243659 DOI: 10.3389/fphys.2022.919359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia has gained attention in the last decades. However, methodological quality assessment of articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the methodologic quality of trials studying exercise under hypoxia. An electronic search was conducted until December 2021. The search was conducted in PubMed, CENTRAL, and PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess the methodological quality (internal validity) of the studies. A linear regression model was used to evaluate the evolution of trials in this area, using the total PEDro score of the rated trials. A total of n = 81 studies met the inclusion criteria and were processed in this study. With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean methodological quality can be described as "fair." Only one study reached the highest score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear regression showed an increase of the PEDro score of 0.1 points per decade. A positive and small tendency toward increased methodologic quality was observed. The current results demonstrate that a positive and small tendency can be seen for the increase in the methodological quality in the field of exercise science under hypoxia. A "good" methodological quality, reaching a PEDro score of 6 points can be expected in the year 2063, using a linear regression model analysis. To accelerate this process, future research should ensure that methodological quality criteria are already included during the planning phase of a study.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Miriam Herten
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Julia Siallagan
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Elke Pollock
- Department of Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
13
|
Park HY, Jung WS, Kim SW, Kim J, Lim K. Effects of Interval Training Under Hypoxia on Hematological Parameters, Hemodynamic Function, and Endurance Exercise Performance in Amateur Female Runners in Korea. Front Physiol 2022; 13:919008. [PMID: 35665230 PMCID: PMC9158122 DOI: 10.3389/fphys.2022.919008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Interval training under hypoxia (IHT) is commonly used to enhance endurance exercise performance. However, previous studies examining hematologic changes related to the immune system that affect health and conditioning are lacking. This study aimed to evaluate the effects of IHT for 6-weeks on hematological parameters, hemodynamic function, and endurance exercise performance in amateur Korean female runners. Twenty healthy amateur Korean female runners (age: 24.85 ± 3.84 years) were equally assigned to normoxic training group (NTG) for interval training under normoxia (760 mmHg) and hypoxic training group (HTG) for interval training under hypobaric hypoxia (526 mmHg, 3000 m simulated altitude) according to their body composition and endurance exercise performance. All participants performed 120-min of training sessions, consisting of 20-min of warm-up, 60-min of interval training, and 20-min of cool-down. The training program was performed 3-days per week for 6-weeks. Warm-up and cool-down were performed for 20-min at 60% maximal heart rate (HRmax). The interval training sessions comprised 10 repetitions of interval exercise (5-min of exercise corresponding to 90–95% HRmax and 1-min of rest) on a treadmill. All participants underwent measurements of hematological parameters, hemodynamic function, and endurance exercise performance before and after training. Both groups showed a significant increase in erythropoietin (EPO) level and a decrease in monocyte abundance, with EPO showing a greater increase in the HTG than in the NTG. B cell abundance significantly increased in the NTG; hematocrit and neutrophil counts significantly increased, and lymphocyte counts significantly decreased in the HTG. The HTG showed a significant improvement in oxygen uptake, stroke volume index, and end-diastolic volume index compared to the NTG. In addition, both groups showed significant improvements in heart rate, end-systolic volume index, and cardiac output index. The maximal oxygen uptake and 3000 m time trial record were significantly improved in both groups, and the HTG showed a tendency to improve more than the NTG. In conclusion, the IHT was effective in enhancing endurance exercise performance through improved hemodynamic function. Furthermore, hematological parameters of immune system showed a normal range before and after training and were not negatively affected.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Won-Sang Jung
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Jisu Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
- Department of Physical Education, Konkuk University, Seoul, South Korea
- *Correspondence: Kiwon Lim,
| |
Collapse
|
14
|
Grau M, Zollmann E, Bros J, Seeger B, Dietz T, Noriega Ureña JA, Grolle A, Zacher J, Notbohm HL, Suck G, Bloch W, Schumann M. Autologous Blood Doping Induced Changes in Red Blood Cell Rheologic Parameters, RBC Age Distribution, and Performance. BIOLOGY 2022; 11:biology11050647. [PMID: 35625375 PMCID: PMC9137932 DOI: 10.3390/biology11050647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Autologous blood doping (ABD) refers to the artificial increase in circulating red blood cell (RBC) mass by sampling, storage, and transfusion of one’s own blood. It is assumed that some athletes apply this prohibited technique to improve oxygen transport capacity and thus exercise performance. The primary aim of this study was to test whether RBC rheological and associated parameters significantly change due to ABD with the consideration of whether this type of measurement might be suitable for detecting ABD. Further, it was assessed whether those changes are translated into indices of endurance performance. Eight males underwent an ABD protocol combined with several blood parameter measurements and two exercise tests (pre and post transfusion). Results of this investigation suggest a change in the distribution of age-related RBC sub-populations and altered deformability of total RBC as well as of the respective sub-populations. Further, the identified changes in RBC also appear to improve sports performance. In conclusion, these data demonstrate significant changes in hematological and hemorheological parameters, which could be of interest in the context of new methods for ABD detection. However, additional research is needed with larger and more diverse study groups to widen the knowledge gained by this study. Abstract Autologous blood doping (ABD) refers to the transfusion of one’s own blood after it has been stored. Although its application is prohibited in sports, it is assumed that ABD is applied by a variety of athletes because of its benefits on exercise performance and the fact that it is not detectable so far. Therefore, this study aims at identifying changes in hematological and hemorheological parameters during the whole course of ABD procedure and to relate those changes to exercise performance. Eight healthy men conducted a 31-week ABD protocol including two blood donations and the transfusion of their own stored RBC volume corresponding to 7.7% of total blood volume. Longitudinal blood and rheological parameter measurements and analyses of RBC membrane proteins and electrolyte levels were performed. Thereby, responses of RBC sub-populations—young to old RBC—were detected. Finally, exercise tests were carried out before and after transfusion. Results indicate a higher percentage of young RBC, altered RBC deformability and electrolyte concentration due to ABD. In contrast, RBC membrane proteins remained unaffected. Running economy improved after blood transfusion. Thus, close analysis of RBC variables related to ABD detection seems feasible but should be verified in further more-detailed studies.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
- Correspondence:
| | - Emily Zollmann
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Janina Bros
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Benedikt Seeger
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Thomas Dietz
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Javier Antonio Noriega Ureña
- German Red Cross Blood Donation Service West, Center for Transfusion Medicine Hagen, Feithstraße 184, 58097 Hagen, Germany; (J.A.N.U.); (A.G.); (G.S.)
| | - Andreas Grolle
- German Red Cross Blood Donation Service West, Center for Transfusion Medicine Hagen, Feithstraße 184, 58097 Hagen, Germany; (J.A.N.U.); (A.G.); (G.S.)
| | - Jonas Zacher
- Department of Preventive and Rehabilitative Sports and Performance Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany;
| | - Hannah L. Notbohm
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Garnet Suck
- German Red Cross Blood Donation Service West, Center for Transfusion Medicine Hagen, Feithstraße 184, 58097 Hagen, Germany; (J.A.N.U.); (A.G.); (G.S.)
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Moritz Schumann
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| |
Collapse
|
15
|
Park HY, Jung WS, Kim SW, Lim K. Effects of Interval Training Under Hypoxia on the Autonomic Nervous System and Arterial and Hemorheological Function in Healthy Women. Int J Womens Health 2022; 14:79-90. [PMID: 35140525 PMCID: PMC8818981 DOI: 10.2147/ijwh.s344233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/15/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose The present study verified the effects of interval training under hypoxia, a novel exercise modality for health promotion, on the autonomic nervous system (ANS) and arterial and hemorheological function in healthy women. Methods Twenty healthy Korean women (age: 19–29 [24.85 ± 3.84] years) were equally assigned to interval normoxic training (INT, n = 10; residing and training under normoxia) and interval hypoxic training (IHT, n = 10; residing under normoxia and training under 526 mmHg hypobaric hypoxia) groups. All participants performed 90-min of training sessions composed of 15-min of warm-up, 60-min of interval training, and 15-min of cool-down. The interval training sessions composed of 10 repetitions of interval exercise using a treadmill (5 min of exercise corresponding to 90–95% maximal heart rate [HR] and 1 min of rest). The training was performed 3 days per week for 6 weeks. All participants underwent body composition, HR variability, brachial-ankle pulse wave velocity, flow-mediated dilation (FMD), red blood cell (RBC) deformability and aggregation, and maximal oxygen uptake (VO2max) measurements before and after training. Results There were no significant differences in body composition between the groups. The IHT group showed a significant improvement in the ANS function (root mean square of successive differences, high frequency, and low frequency/high frequency ratio), arterial stiffness, arterial endothelial function (FMD), hemorheological function (RBC deformability and aggregation), and aerobic performance (VO2max) compared with the INT (all p < 0.05). Conclusion In comparison with the interval training under normoxia, the interval training under hypoxia is a novel and effective exercise modality for promoting aerobic performance with the ANS and arterial and hemorheological function in healthy women.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduated School, Konkuk University, Seoul, Republic of Korea.,Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduated School, Konkuk University, Seoul, Republic of Korea.,Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea.,Department of Physical Education, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
16
|
The Effects of Six-Month Subalpine Training on the Physical Functions and Athletic Performance of Elite Chinese Cross-Country Skiers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: This study investigated the changes in the blood indices, specific athletic abilities, and physical fitness of outstanding cross-country skiers, trained in the subalpine; Methods: Twenty-eight athletes (twenty males and eight females) from the National Cross-country Ski Training Team completed sub-alpine training during the 2020–2021 snow season. The athletes′ physical functions were evaluated by collecting blood from elbow veins and measuring blood biochemical indexes. To compare the treadmill roller-skiing athletic ability and physical fitness of athletes before and after subalpine; Results: Male and female athletes showed different trends in red blood cells (RBC), hemoglobin (Hb), cortisol (C), Creatine Kinase (CK) and blood urea (BU) (p < 0.05 or p < 0.01). Overall, the female athletes’ mean values of RBC, Hb, CK, and BU were lower than that of male athletes, while C was just the opposite. Comparing the athletic performance of athletes before and after the subalpine, it was found that blood lactate concentrations were significantly lower in both male and female athletes at the same load intensity (p < 0.05 or p < 0.01), whereas 10 km endurance running and 1 RM deep squat were significantly higher in both male and female athletes (p < 0.05 or p < 0.01). Conclusions: After 6 months of subalpine training, cross-country skiers improved their oxygen-carrying capacity and anabolism, and showed significant improvements in specific athletic ability, physical endurance, acid tolerance and 1 RM absolute strength for both male and female athletes.
Collapse
|
17
|
A Comparative Study of Hematological Parameters of Endurance Runners at Guna Athletics Sport Club (3100 Meters above Sea Level) and Ethiopian Youth Sport Academy (2400 Meters above Sea Level), Ethiopia. JOURNAL OF SPORTS MEDICINE 2021; 2021:8415100. [PMID: 34869775 PMCID: PMC8635926 DOI: 10.1155/2021/8415100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Introduction. Endurance running performance is dependent upon hematological, physiological, anthropometrical, diet, genetic, and training characteristics. Increased oxygen transport and efficiency of tissue in extracting oxygen are the major determinants to competitions that require endurance. Thus, altitude training is often employed to increase blood oxygen-carrying capacity to improve sea-level endurance performance. This study aimed to compare hematological parameters of endurance runners’ training at different clubs with different altitudes (Guna Athletics Sport Club at Guna (3100 meter above sea level) and Ethiopian Youth Sport Academy at Addis Ababa (2400 meter above sea level)). Methods. A comparative cross-sectional study was conducted at GASC and EYSA. Data were collected from a total of 102 eligible study subjects (26 runners and 25 controls at Guna and 26 runners and 25 controls at Addis Ababa) from May to October 2019. About 3 ml of the venous blood was drawn from the antecubital vein by aseptic procedure and analyzed using a hematology analyzer (DIRUI BCC-3000B, China). One-way ANOVA and independent-sample t-tests were used to compare means. Result. Male runners in Guna had significantly higher hemoglobin (Hgb), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and white blood cell (WBC) count than male runners in Addis Ababa. Besides, female runners in Guna had significantly higher MCH and MCHC than female runners in Addis Ababa. However, there were no significant differences between Guna and Addis Ababa runners in red blood cell (RBC) count, Hct, MCV, and platelet count in both sexes, while Hgb and WBC count in females. Conclusion. Decisively, Guna Athletics Sport Club endurance runners had significantly higher hematological parameters than Ethiopian Youth Sport Academy endurance runners. This provides invaluable information for coaches and sport physicians to monitor the hematological profile and the health status of an athlete living and training at different altitudes.
Collapse
|
18
|
Kim SW, Jung WS, Kim JW, Nam SS, Park HY. Aerobic Continuous and Interval Training under Hypoxia Enhances Endurance Exercise Performance with Hemodynamic and Autonomic Nervous System Function in Amateur Male Swimmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083944. [PMID: 33918616 PMCID: PMC8068973 DOI: 10.3390/ijerph18083944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022]
Abstract
Hypoxic training is often performed by competitive swimmers to enhance their performance in normoxia. However, the beneficial effects of aerobic continuous and interval training under hypoxia on hemodynamic function, autonomic nervous system (ANS) function, and endurance exercise performance remain controversial. Here we investigated whether six weeks of aerobic continuous and interval training under hypoxia can improve hematological parameters, hemodynamic function, ANS function, and endurance exercise performance versus normoxia in amateur male swimmers. Twenty amateur male swimmers were equally assigned to the hypoxic training group or normoxic training group and evaluated before and after six weeks of training. Aerobic continuous and interval training in the hypoxia showed a more significantly improved hemodynamic function (heart rate, −653.4 vs. −353.7 beats/30 min; oxygen uptake, −62.45 vs. −16.22 mL/kg/30 min; stroke volume index, 197.66 vs. 52.32 mL/30 min) during submaximal exercise, ANS function (root mean square of successive differences, 10.15 vs. 3.32 ms; total power, 0.72 vs. 0.20 ms2; low-frequency/high-frequency ratio, −0.173 vs. 0.054), and endurance exercise performance (maximal oxygen uptake, 5.57 vs. 2.26 mL/kg/min; 400-m time trial record, −20.41 vs. −7.91 s) than in the normoxia. These indicate that hypoxic training composed of aerobic continuous and interval exercise improves the endurance exercise performance of amateur male swimmers with better hemodynamic function and ANS function.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Jeong-Weon Kim
- Graduate School of Professional Therapy, Gachon University, 1332 Seongnam-daero, Sujeong-gu, Seongnam-si 13306, Korea;
| | - Sang-Seok Nam
- Taekwondo Research Institute of Kukkiwon, 32 Teheran7gil, Gangnam-gu, Seoul 06130, Korea;
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6035
| |
Collapse
|
19
|
Meng Z, Gao H, Li T, Ge P, Xu Y, Gao B. Effects of Eight Weeks Altitude Training on the Aerobic Capacity and Microcirculation Function in Trained Rowers. High Alt Med Biol 2021; 22:24-31. [PMID: 33719550 DOI: 10.1089/ham.2020.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meng, Zhijun, Huan Gao, Tao Li, Peng Ge, Yixiao Xu, and Binghong Gao. Effects of eight weeks altitude training on the aerobic capacity and microcirculation function in trained rowers. High Alt Med Biol. 22:24-31, 2021. Background: The mechanism of aerobic improvement after altitude training (AT) has not been resolved yet. Few studies have looked at microcirculation changes after AT in athletes. Materials and Methods: Thirty-three male rowers were recruited and divided into either the AT (n = 18, altitude 2,280 m) or the sea level training (ST group, n = 15, altitude 50 m) for 8 weeks training. Microcirculation function was monitored using a laser Doppler flowmeter. VO2peak and ergometer 5 km time trial (Er5k) were conducted. Results: Within the AT group there was an 8.8% increment in VO2peak from pre- to post-training (4,708.9 ± 455.2 vs. 5,123.3 ± 391.2 ml/min, p < 0.01), whereas in ST group there was a 3.1% increase of VO2peak from pre- to post-training (4,975.4 ± 501.1 vs. 5,128.0 ± 499.3 m/min, p = 0.125). Er5k performance in AT group was significantly improved (1,040.3 ± 26.3 vs. 1,033.2 ± 27.5 seconds, p = 0.038), whereas in ST group Er5k performance was not improved (1,059.6 ± 30.9 vs. 1,060.4 ± 33.2 seconds, p = 0.819). Postocclusive reactive hyperemia reserve and heat reserve in the forearm of AT subjects increased significantly after 8 weeks. Meanwhile, the AT group's resting blood flow and cutaneous vascular conductance (CVC) of the thigh were higher after AT. For the ST group, resting blood flow and CVC in the thigh decreased significantly at third week post-training. There was a low correlation between the change of VO2peak and blood flow of the thigh (r = 0.45, p = 0.01). Conclusions: Trained rowers benefit more from 8 weeks of AT than from 8 weeks ST in terms of aerobic capacity. We have found that 8 weeks of AT increases thigh blood flow and improves endothelial function.
Collapse
Affiliation(s)
- Zhijun Meng
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China.,The Research Institute of Sports Science of Yunnan Province, Kunming, China
| | - Huan Gao
- The First Research Center of Competitive Sports, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Tao Li
- The First Research Center of Competitive Sports, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Peng Ge
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yixiao Xu
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
20
|
Lasshofer M, Seifert J, Wörndle AM, Stöggl T. Physiological Responses and Predictors of Performance in a Simulated Competitive Ski Mountaineering Race. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:250-257. [PMID: 34211317 DOI: 10.52082/jssm.2021.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Competitive ski mountaineering (SKIMO) has achieved great popularity within the past years. However, knowledge about the predictors of performance and physiological response to SKIMO racing is limited. Therefore, 21 male SKIMO athletes split into two performance groups (elite: VO2max 71.2 ± 6.8 ml· min-1· kg-1 vs. sub-elite: 62.5 ± 4.7 ml· min-1· kg-1) were tested and analysed during a vertical SKIMO race simulation (523 m elevation gain) and in a laboratory SKIMO specific ramp test. In both cases, oxygen consumption (VO2), heart rate (HR), blood lactate and cycle characteristics were measured. During the race simulation, the elite athletes were approximately 5 min faster compared with the sub-elite (27:15 ± 1:16 min; 32:31 ± 2:13 min; p < 0.001). VO2 was higher for elite athletes during the race simulation (p = 0.046) and in the laboratory test at ventilatory threshold 2 (p = 0.005) and at maximum VO2 (p = 0.003). Laboratory maximum power output is displayed as treadmill speed and was higher for elite than sub-elite athletes (7.4 ± 0.3 km h-1; 6.6 ± 0.3 km h-1; p < 0.001). Lactate values were higher in the laboratory maximum ramp test than in the race simulation (p < 0.001). Pearson's correlation coefficient between race time and performance parameters was highest for velocity and VO2 related parameters during the laboratory test (r > 0.6). Elite athletes showed their superiority in the race simulation as well as during the maximum ramp test. While HR analysis revealed a similar strain to both cohorts in both tests, the superiority can be explainable by higher VO2 and power output. To further push the performance of SKIMO athletes, the development of named factors like power output at maximum and ventilatory threshold 2 seems crucial.
Collapse
Affiliation(s)
- Michael Lasshofer
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria
| | - John Seifert
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Department of Health & Human Development, Montana State University, Bozeman, MT, USA
| | - Anna-Maria Wörndle
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria.,Red Bull Athlete Performance Center, Salzburg, Austria
| |
Collapse
|
21
|
Transcriptomics of Long-Term Meditation Practice: Evidence for Prevention or Reversal of Stress Effects Harmful to Health. ACTA ACUST UNITED AC 2021; 57:medicina57030218. [PMID: 33804348 PMCID: PMC8001870 DOI: 10.3390/medicina57030218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023]
Abstract
Background and Objectives: Stress can overload adaptive mechanisms, leading to epigenetic effects harmful to health. Research on the reversal of these effects is in its infancy. Early results suggest some meditation techniques have health benefits that grow with repeated practice. This study focused on possible transcriptomic effects of 38 years of twice-daily Transcendental Meditation® (TM®) practice. Materials and Methods: First, using Illumina® BeadChip microarray technology, differences in global gene expression in peripheral blood mononuclear cells (PBMCs) were sought between healthy practitioners and tightly matched controls (n = 12, age 65). Second, these microarray results were verified on a subset of genes using quantitative polymerase chain reaction (qPCR) and were validated using qPCR in larger TM and control groups (n = 45, age 63). Bioinformatics investigation employed Ingenuity® Pathway Analysis (IPA®), DAVID, Genomatix, and R packages. Results: The 200 genes and loci found to meet strict criteria for differential expression in the microarray experiment showed contrasting patterns of expression that distinguished the two groups. Differential expression relating to immune function and energy efficiency were most apparent. In the TM group, relative to the control, all 49 genes associated with inflammation were downregulated, while genes associated with antiviral and antibody components of the defense response were upregulated. The largest expression differences were shown by six genes related to erythrocyte function that appeared to reflect a condition of lower energy efficiency in the control group. Results supporting these gene expression differences were obtained with qPCR-measured expression both in the well-matched microarray groups and in the larger, less well-matched groups. Conclusions: These findings are consistent with predictions based on results from earlier randomized trials of meditation and may provide evidence for stress-related molecular mechanisms underlying reductions in anxiety, post-traumatic stress disorder (PTSD), cardiovascular disease (CVD), and other chronic disorders and diseases.
Collapse
|
22
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
23
|
Nam SS, Park HY. Effects of endurance exercise under hypoxia on acid-base and ion balance in healthy males. Phys Act Nutr 2020; 24:7-12. [PMID: 33108712 PMCID: PMC7669468 DOI: 10.20463/pan.2020.0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022] Open
Abstract
[Purpose] This study was performed to investigate the acid-base and ion balance at rest and after exercise in healthy males under normoxia, moderate hypoxia, and severe hypoxia. [Methods] Ten healthy Korean males completed three different trials on different days, comprising exercise under normoxia (FiO2 = 20.9%, N trial), moderate hypoxia (FiO2 = 16.5%, MH trial), and severe hypoxia (FiO2 = 12.8%, SH trial). They undertook endurance exercise for 30 min on a cycle ergometer at the same relative exercise intensity equivalent to 80% maximal heart rate under all conditions. Capillary blood samples were obtained to determine acid-base and ion balance at rest and after exercise. [Results] Exercise-induced blood lactate elevations were significantly increased as hypoxic conditions became more severe; SH > MH > N trials (P = 0.003). After exercise, blood glucose levels were significantly higher in the SH trial than in the N and MH trials (P = 0.001). Capillary oxygen saturation (SCO2) levels were significantly lowered as hypoxic conditions became more severe; SH > MH > N trials (P < 0.001). The pH levels were significantly lower in the MH trial than that in the N trial (P = 0.010). Moreover, HCO3- levels were significantly lower in the SH trial than in the N trial, with significant interaction (P = 0.003). There were no significant differences in blood Na+, K+, and Ca2+ levels between the trials. [Conclusion] MH and SH trials induced greater differences in glucose, lactate, SCO2, pH, and HCO3- levels in capillary blood compared to the N trial. Additionally, lactate, SCO2, and HCO3- levels showed greater changes in the SH trial than in the MH trial. However, there were no significant differences in Na+, K+, and Ca2+ levels in MH and SH trials compared to the N trial.
Collapse
Affiliation(s)
- Sang-Seok Nam
- Taekwondo Research Institute of Kukkiwon, Seoul, Korea
| | - Hun-Young Park
- Department of Sports Medicine and Science of Graduated School, Konkuk University, Seoul, Korea.,Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| |
Collapse
|
24
|
Jung WS, Kim SW, Park HY. Interval Hypoxic Training Enhances Athletic Performance and Does Not Adversely Affect Immune Function in Middle- and Long-Distance Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061934. [PMID: 32188027 PMCID: PMC7143158 DOI: 10.3390/ijerph17061934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of intermittent interval training in hypoxic conditions for six weeks compared with normoxic conditions, on hemodynamic function, autonomic nervous system (ANS) function, immune function, and athletic performance in middle- and long-distance runners. Twenty athletes were divided into normoxic training (normoxic training group (NTG); n = 10; residing and training at sea level) and hypoxic training (hypoxic training group (HTG); n = 10; residing at sea level but training in 526-mmHg hypobaric hypoxia) groups. All dependent variables were measured before, and after, training. The training frequency was 90 min, 3 d per week for six weeks. Body composition showed no significant difference between the two groups. However, the HTG showed more significantly improved athletic performance (e.g., maximal oxygen uptake). The hemodynamic function (e.g., oxygen uptake, oxygen pulse, and cardiac output) during submaximal exercise and ANS function (e.g., standard deviation and root mean square of successive differences, high frequency, and low/high frequency) improved more in the HTG. Immune function parameters were stable within the normal range before and after training in both groups. Therefore, hypoxic training was more effective in enhancing athletic performance, and improving hemodynamic and ANS function; further, it did not adversely affect immune function in competitive runners.
Collapse
Affiliation(s)
- Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (W.-S.J.); (S.-W.K.)
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (W.-S.J.); (S.-W.K.)
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (W.-S.J.); (S.-W.K.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +(82)-2-2049-6035
| |
Collapse
|
25
|
Effects of Living High-Training Low and High on Body Composition and Metabolic Risk Markers in Overweight and Obese Females. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3279710. [PMID: 32104687 PMCID: PMC7036094 DOI: 10.1155/2020/3279710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
This study examined the effects of 4 weeks of living high-training low and high (LHTLH) under moderate hypoxia on body weight, body composition, and metabolic risk markers of overweight and obese females. Nineteen healthy overweight or obese females participated in this study. Participants were assigned to the normoxic training group (NG) or the LHTLH group (HG). The NG participants lived and trained at sea level. The HG participants stayed for approximately 10 hours in a simulated 2300 m normobaric state of hypoxia for six days a week and trained for 2 hours 3 times a week under the same simulated hypoxia. The interventions lasted for 4 weeks. All groups underwent dietary restriction based on resting metabolic rate. The heart rate of the participants was monitored every ten minutes during exercise to ensure that the intensity was in the aerobic range. Compared with the preintervention values, body weight decreased significantly in both the NG and the HG (−8.81 ± 2.09% and −9.09 ± 1.15%, respectively). The fat mass of the arm, leg, trunk, and whole body showed significant reductions in both the NG and the HG, but no significant interaction effect was observed. The percentage of lean soft tissue mass loss in the total body weight loss tended to be lower in the HG (27.61% versus 15.94%, P=0.085). Between the NG and the HG, significant interaction effects of serum total cholesterol (−12.66 ± 9.09% versus −0.05 ± 13.36%,) and apolipoprotein A1 (−13.66 ± 3.61% versus −5.32 ± 11.07%, P=0.042) were observed. A slight increase in serum high-density lipoprotein cholesterol (HDL-C) was observed in the HG (1.12 ± 12.34%) but a decrease was observed in the NG (−11.36 ± 18.91%). The interaction effect of HDL-C between NG and HG exhibited a significant trend (P=0.055). No added effects on serum triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), or APO-B were observed after 4 weeks of LHTLH. In conclusion, 4 weeks of LHTLH combined with dietary restriction could effectively reduce the body weight and body fat mass of overweight and obese females. Compared with training and sleeping under normoxia, no additive benefit of LHTLH on the loss of body weight and body fat mass was exhibited. However, LHTLH may help to relieve the loss of lean soft tissue mass and serum HDL-C.
Collapse
|
26
|
Aoki K, Sugasawa T, Yanazawa K, Watanabe K, Takemasa T, Takeuchi Y, Aita Y, Yahagi N, Yoshida Y, Kuji T, Sekine N, Takeuchi K, Ueda H, Kawakami Y, Takekoshi K. The detection of trans gene fragments of hEPO in gene doping model mice by Taqman qPCR assay. PeerJ 2020; 8:e8595. [PMID: 32140302 PMCID: PMC7047860 DOI: 10.7717/peerj.8595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/18/2020] [Indexed: 01/09/2023] Open
Abstract
Background With the rapid progress of genetic engineering and gene therapy methods, the World Anti-Doping Agency has raised concerns regarding gene doping, which is prohibited in sports. However, there is no standard method available for detecting transgenes delivered by injection of naked plasmids. Here, we developed a detection method for detecting transgenes delivered by injection of naked plasmids in a mouse model that mimics gene doping. Methods Whole blood from the tail tip and one piece of stool were used as pre-samples of injection. Next, a plasmid vector containing the human erythropoietin (hEPO) gene was injected into mice through intravenous (IV), intraperitoneal (IP), or local muscular (IM) injection. At 1, 2, 3, 6, 12, 24, and 48 h after injection, approximately 50 µL whole blood was collected from the tail tip. One piece of stool was collected at 6, 12, 24, and 48 h. From each sample, total DNA was extracted and transgene fragments were analyzed by Taqman quantitative PCR (qPCR) and SYBR green qPCR. Results In whole blood DNA samples evaluated by Taqman qPCR, the transgene fragments were detected at all time points in the IP sample and at 1, 2, 3, 6, and 12 h in the IV and IM samples. In the stool-DNA samples, the transgene fragments were detected at 6, 12, 24, and 48 h in the IV and IM samples by Taqman qPCR. In the analysis by SYBR green qPCR, the transgene fragments were detected at some time point in both specimens; however, many non-specific amplicons were detected. Conclusions These results indicate that transgene fragments evaluated after each injection method of naked plasmids were detected in whole-blood and stool DNA samples. These findings may facilitate the development of methods for detecting gene doping.
Collapse
Affiliation(s)
- Kai Aoki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takehito Sugasawa
- Laboratory of Laboratory/Sports medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kouki Yanazawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuko Yoshida
- Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Tomoaki Kuji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nanami Sekine
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Basic Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Ueda
- Laboratory of Environmental Microbiology, Division of Basic Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Kawakami
- Laboratory of Laboratory/Sports medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory/Sports medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
27
|
Effects of 2-Week Exercise Training in Hypobaric Hypoxic Conditions on Exercise Performance and Immune Function in Korean National Cycling Athletes with Disabilities: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030861. [PMID: 32019079 PMCID: PMC7037344 DOI: 10.3390/ijerph17030861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
We aimed to evaluate the effects of a 2-week exercise training program in hypobaric hypoxic conditions on exercise performance and immune function in Korean national cycling athletes with disabilities. Six Korean national cycling athletes with disabilities participated in exercise training consisting of continuous aerobic exercise and anaerobic interval exercise in hypobaric hypoxic conditions. The exercise training frequency was 60 min (5 days per week for 2 weeks). Before and after the exercise training, exercise performance and immune function were measured in all athletes. Regarding the exercise performance parameters, the 3-km time trial significantly decreased and blood lactate levels after the 3-km time trial test significantly increased by exercise training in hypobaric hypoxic conditions. Regarding the oxygen-transporting capacity, significant differences were not observed. Regarding immune function, the number of leukocytes and natural killer cells significantly decreased and that of eosinophils, B cells, and T cells significantly increased. These results indicated that our 2-week hypoxic training showed the potential to improve exercise performance in Korean national disabled athletes. However, the effects of our hypoxic training method on immune function remained unclear.
Collapse
|
28
|
Serum Autofluorescence and Biochemical Markers in Athlete's Response to Strength Effort in Normobaric Hypoxia: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5201351. [PMID: 31886223 PMCID: PMC6925827 DOI: 10.1155/2019/5201351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023]
Abstract
The human organism has the ability to adapt to hypoxia conditions. Training in hypoxia is used in sport to improve the efficiency of athletes; however, type of training affects the direction and scope of this process. Therefore, in this study, the usefulness of serum fluorescence spectroscopy to study the assessment of athlete's response to strength effort in hypoxia is considered in comparison with biochemical assay. Six resistance-trained male subjects took part in a research experiment. They performed barbell squats in simulated normobaric hypoxic conditions with deficiency of oxygen 11.3%, 13% 14.3% compared to 21% in normoxic conditions. Fluorescence intensity of tyrosine revealed high sensitivity on strength effort whereas tryptophan was more dependent on high altitude. Changes in emission in the visible region are associated with altering cell metabolism dependent on high altitude as well as strength training and endurance training. Significant changes in serum fluorescence intensity with relatively weak modifications in biochemical assay at 3000 m above sea level (ASL) were observed. Training at 5000 m ASL caused changes in fluorescence parameters towards the normobaric specific values, and pronounced decreases of lactate level and kinase creatine activity were observed. Such modifications of fluorescence and biochemical assay indicate increased adaptation of the organism to effort in oxygen-deficient conditions at 5000 m ASL, unlike 3000 m ASL. Fluorescence spectroscopy study of serum accompanied by biochemical assay can contribute to the understanding of metabolic regulation and the physiological response to hypoxia. The results of serum autofluorescence during various concepts of altitude training may be a useful method to analyze individual response to acute and chronic hypoxia. An endogenous tryptophan could be exploited as intrinsic biomarker in autofluorescence studies. However, these issues require further research.
Collapse
|
29
|
PARK HY, JUNG WS, KIM J, HWANG H, LIM K. Changes in the Paradigm of Traditional Exercise in Obesity Therapy and Application of a New Exercise Modality: A Narrative Review Article. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1395-1404. [PMID: 32292722 PMCID: PMC7145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Obesity is recognized as an important global health problem that increases the risk of all-cause death. It is a major risk factor for various cardiovascular and metabolic diseases. METHODS We conducted this review through searching the related literature plus internet links. RESULTS Recently, many researchers have been applying various efficient alternative exercise paradigms for treating obesity, such as high-intensity interval training, whole-body vibration training, and hypoxic therapy. Compared with moderate-intensity continuous training, high-intensity interval training involves a shorter exercise time but higher energy expenditure and excess post-exercise oxygen consumption via a higher exercise intensity and is effective for treating obesity. Whole-body vibration training effectively reduces the rate of fat production and accumulation through passive vibration of the whole body and improving the body composition, muscle function, and cardiovascular function of the obese population. Hypoxic therapy has been reported to improve obesity and obesity-related diseases through appetite loss, reduced dietary intake, increased energy consumption, improved glycogen storage and fatty acid oxidation, angiogenesis and left ventricle remodeling, decreased mechanical load, and reduced sarcopenia progression due to aging. CONCLUSION The new therapeutic exercise modalities, namely, high-intensity interval training, whole-body vibration training, and hypoxic therapy, are practical, useful, and effective for improving obesity and various metabolic and cardiovascular diseases induced by obesity.
Collapse
Affiliation(s)
- Hun-Young PARK
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Won-Sang JUNG
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Jisu KIM
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Hyejung HWANG
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Kiwon LIM
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea,Department of Physical Education, Konkuk University, Seoul, Republic of Korea,Corresponding Author:
| |
Collapse
|
30
|
Bogorad MI, DeStefano JG, Linville RM, Wong AD, Searson PC. Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 2019; 39:1413-1432. [PMID: 31208241 PMCID: PMC6681538 DOI: 10.1177/0271678x19855875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.
Collapse
Affiliation(s)
- Max I Bogorad
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
31
|
Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Cells 2019; 8:cells8060542. [PMID: 31195688 PMCID: PMC6627613 DOI: 10.3390/cells8060542] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Significant progress has expanded our knowledge of the signaling pathways coordinating muscle protein turnover during various conditions including exercise. In this manuscript, the multiple mechanisms that govern the turnover of cellular components are reviewed, and their overall roles in adaptations to exercise training are discussed. Recent studies have highlighted the central role of the energy sensor (AMP)-activated protein kinase (AMPK), forkhead box class O subfamily protein (FOXO) transcription factors and the kinase mechanistic (or mammalian) target of rapamycin complex (MTOR) in the regulation of autophagy for organelle maintenance during exercise. A new cellular trafficking involving the lysosome was also revealed for full activation of MTOR and protein synthesis during recovery. Other emerging candidates have been found to be relevant in organelle turnover, especially Parkin and the mitochondrial E3 ubiquitin protein ligase (Mul1) pathways for mitochondrial turnover, and the glycerolipids diacylglycerol (DAG) for protein translation and FOXO regulation. Recent experiments with autophagy and mitophagy flux assessment have also provided important insights concerning mitochondrial turnover during ageing and chronic exercise. However, data in humans are often controversial and further investigations are needed to clarify the involvement of autophagy in exercise performed with additional stresses, such as hypoxia, and to understand the influence of exercise modality. Improving our knowledge of these pathways should help develop therapeutic ways to counteract muscle disorders in pathological conditions.
Collapse
|
32
|
박훈영, 임기원, 김지수. Exercise physiology basis and necessity of hypoxic training to improve exercise performance in elite athletes. ACTA ACUST UNITED AC 2018. [DOI: 10.24985/kjss.2018.29.4.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Sanchez AMJ, Borrani F. Effects of intermittent hypoxic training performed at high hypoxia level on exercise performance in highly trained runners. J Sports Sci 2018; 36:2045-2052. [PMID: 29394148 DOI: 10.1080/02640414.2018.1434747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study exanimated the effects of intermittent hypoxic training (IHT) conducted at a high level of hypoxia with recovery at ambient air on aerobic/anaerobic capacities at sea level and hematological variations. According to a double-blind randomized design, fifteen highly endurance-trained runners completed a 6-weeks regimented training with 3 sessions per week consisting of intermittent runs (6x work-rest ratio of 5':5') on a treadmill at 80-85% of maximal aerobic speed ([Formula: see text]). Nine athletes (hypoxic group, HG) performed the exercise bouts at FI02 = 10.6-11.4% while six athletes (normoxic group, NG) exercised at ambient air. Running time to exhaustion at a velocity corresponding to 95% [Formula: see text] significantly increased for HG while no effect was found for NG. Regarding [Formula: see text], no significant effects were found in either training group. In addition, the decline of jumping performances over a 45s-continuous maximal vertical jump test (i.e. anaerobic capacity index) tended to be lower in HG compared to NG. The levels of the studied hematological variables, including erythropoietin and hematocrit, did not significantly change for either HG or NG. These results highlight that our IHT protocol may induce additional effects on aerobic performance without compromising the anaerobic capacity index in highly-trained athletes.
Collapse
Affiliation(s)
- Anthony M J Sanchez
- a Laboratoire Européen Performance Santé Altitude, EA4604 , University of Perpignan Via Domitia, Department of Sports Sciences , Font-Romeu , France
| | - Fabio Borrani
- b Institute of Sport Sciences of University of Lausanne (ISSUL), Faculty of Biology and Medicine , University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
34
|
Intermittent hypoxic training for 6 weeks in 3000 m hypobaric hypoxia conditions enhances exercise economy and aerobic exercise performance in moderately trained swimmers. Biol Sport 2017; 35:49-56. [PMID: 30237661 PMCID: PMC6135977 DOI: 10.5114/biolsport.2018.70751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 12/18/2022] Open
Abstract
Athletic endurance performance at sea level can be improved via intermittent hypoxic training (IHT). However, the efficacy of IHT for enhancement of aerobic exercise performance at sea level is controversial because of methodological differences. Therefore, the aim of the study was to determine whether the IHT regimen ameliorates exercise economy and aerobic exercise performance in moderately trained swimmers. A total of 20 moderately trained swimmers were equally assigned to the control group (n=10) training in normoxic conditions and the IHT group (n=10) training at a simulated altitude of 3000 m. They were evaluated for metabolic parameters and skeletal muscle oxygenation during 30 min submaximal exercise on a bicycle, and aerobic exercise performance before and after 6 weeks of training composed of aerobic continuous exercise set at 80% maximal heart rate (HRmax) during 30 min and anaerobic interval exercise set at the exercise load with 90% HRmax measured in pre-test during 30 min (10 times 2 min exercise and 1 min rest). According to the results, the IHT group demonstrated greater improvement in exercise economy due to decreases in VO2 (p=.016) and HHb (p=.002) and increases in O2Hb (p<.001) and TOI (p=.006). VCO2 was decreased in the IHT group (p=.010) and blood lactate level was decreased in the control (p=.005) and IHT groups (p=.001). All aerobic exercise performance including VO2max (p=.001) and the 400 m time trial (p<.001) were increased in the IHT group. The present findings indicate that the 6 week IHT regime composed of high-intensity aerobic continuous exercise and anaerobic interval exercise can be considered an effective altitude/hypoxic training method for improvement of exercise economy and aerobic exercise performance in moderately trained swimmers.
Collapse
|
35
|
Park HY, Nam SS. Application of "living high-training low" enhances cardiac function and skeletal muscle oxygenation during submaximal exercises in athletes. J Exerc Nutrition Biochem 2017; 21:13-20. [PMID: 28712261 PMCID: PMC5508055 DOI: 10.20463/jenb.2017.0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The aim of this study was to determine the efficiency of the application of living high-training low (LHTL) on cardiac function and skeletal muscle oxygenation during submaximal exercises compared with that of living low-training low (LLTL) in athletes. METHODS Male middle- and long-distance runners (n = 20) were randomly assigned into the LLTL group (n = 10, living at 1000-m altitude and training at 700-1330-m altitude) and the LHTL group (n = 10, living at simulated 3000-m altitude and training at 700-1330-m altitude). Their cardiac function and skeletal muscle oxygenation during submaximal exercises at sea level before and after training at each environmental condition were evaluated. RESULTS There was a significant interaction only in the stroke volume (SV); however, the heart rate (HR), end-diastolic volume (EDV), and end-systolic volume (ESV) showed significant main effects within time; HR and SV significantly increased during training in the LHTL group compared with those in the LLTL group. EDV also significantly increased during training in both groups; however, the LHTL group had a higher increase than the LLTL group. ESV significantly increased during training in the LLTL group. There was no significant difference in the ejection fraction and cardiac output. The skeletal muscle oxygen profiles had no significant differences but improved in the LHTL group compared with those in the LLTL group. CONCLUSION LHTL can yield favorable effects on cardiac function by improving the HR, SV, EDV, and ESV during submaximal exercises compared with LLTL in athletes.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
- Department of Sports Medicine, Kyung Hee University, YonginRepublic of Korea
| | - Sang-Seok Nam
- Department of Sports Medicine, Kyung Hee University, YonginRepublic of Korea
| |
Collapse
|
36
|
Park HY, Kim S, Nam SS. Four-week "living high training low" program enhances 3000-m and 5000-m time trials by improving energy metabolism during submaximal exercise in athletes. J Exerc Nutrition Biochem 2017; 21:1-6. [PMID: 28712259 PMCID: PMC5508059 DOI: 10.20463/jenb.2017.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/18/2017] [Indexed: 11/22/2022] Open
Abstract
[Purpose] This study aimed to determine the effect of a 4-week living high training low (LHTL) versus a living low training low (LLTL) program on energy metabolism during submaximal exercise and 3000-m and 5000-m time trial (TT) in athletes. [Methods] Male athletes (n = 20) were randomly assigned to the LLTL (n = 10, living at 1000 m and training at 700–1330 m) and LHTL (n = 10, living at simulated 3000 m and training at 700–1330 m) groups. We compared energy metabolisms during submaximal exercise on a treadmill and aerobic exercise performance (3000 m and 5000 m TT) before and after 4 weeks of training. [Results] As expected, the LHTL group demonstrated enhanced energy metabolism during submaximal exercise via significant interaction (time × group) in heart rate, oxygen consumption, and carbon dioxide excretion; these variables were significantly decreased in the LHTL group compared with the LLTL group. Additionally, both training groups revealed significantly decreased blood lactate levels during submaximal exercise, 3000 m TT, and 5000 m TT but significant interactions (time × group) in the 3000 m and 5000 m TT. Thus, the LHTL group demonstrated greater improvements in 3000 m and 5000 m TT than the LLTL group via significant interactions. [Conclusion] Our results suggest that 4-week LHTL intervention enhances 3000 m and 5000 m TT by improving energy metabolism during submaximal exercise. The proposed LHTL intervention in this study is a novel and effective method for improving aerobic exercise performance in male athletes.
Collapse
Affiliation(s)
- Hun-Young Park
- Performance Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea
| | - Sungho Kim
- Department of Sports Medicine, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sang-Seok Nam
- Department of Sports Medicine, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
37
|
Park HY, Sunoo S, Nam SS. The Effect of 4 Weeks Fixed and Mixed Intermittent Hypoxic Training (IHT) on Respiratory Metabolic and Acid-base Response of Capillary Blood During Submaximal Bicycle Exercise in Male Elite Taekwondo Players. J Exerc Nutrition Biochem 2016; 20:35-43. [PMID: 28150471 PMCID: PMC5545197 DOI: 10.20463/jenb.2016.0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The purpose of our study was to determine the effectiveness of 4 weeks fixed and mixed intermittent hypoxic training (IHT) and its difference from exercise training at sea-level on exercise load, respiratory metabolic and acid-base response of capillary blood during 80% maximal heart rate (HRmax) bicycle exercise in male elite Taekwondo players. [Methods] Male elite Taekwondo players (n = 25 out of 33) were randomly assigned to training at sea-level (n = 8, control group), training at 16.5%O2 (2000 m) simulated hypoxic condition (n = 9, fixed IHT group), and training at 14.5%O2 (3000 m) up to 2 weeks and 16.5%O2 (2000 m) simulated hypoxic condition (n = 8, mixed IHT group) for 3 weeks. We compared their average exercise load, respiratory metabolic, and acid-base response of the capillary blood during 80% HRmax submaximal bicycle exercise before and after 4 weeks training. [Results] Fixed and mixed IHT groups showed positive improvement in respiratory metabolic and acid-base response of the capillary blood during 80% HRmax submaximal bicycle exercise after 4 weeks training. However, all dependent variables showed no significant difference between fixed IHT and mix IHT. [Conclusion] Results suggested that mixed and fixed IHT is effective in improving respiratory metabolic and acid-base response of capillary blood in male elite Taekwondo players. Thus, IHT could be a novel and effective method for improving exercise performance through respiratory metabolic and acid-base response.
Collapse
Affiliation(s)
- Hun-Young Park
- Performance Activity and Performance Institute, Konkuk University, Seoul, Republic of Korea.,Department of Sports Medicine, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sub Sunoo
- Department of Sports Medicine, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sang-Seok Nam
- Department of Sports Medicine, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
38
|
Moon HW, Sunoo S, Park HY, Lee DJ, Nam SS. Effects of various acute hypoxic conditions on metabolic parameters and cardiac function during exercise and recovery. SPRINGERPLUS 2016; 5:1294. [PMID: 27547668 PMCID: PMC4977266 DOI: 10.1186/s40064-016-2952-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023]
Abstract
Purpose Evaluation of metabolic parameters and cardiac function is important to determine the decrease in aerobic exercise capacity under hypoxic conditions. However, the variations in metabolic parameters and cardiac function and the reasons for the decrease in aerobic exercise capacity under hypoxic conditions have not been clearly explained. The purpose of this study was to compare the responses between sea level and various acute normobaric hypoxic conditions on metabolic parameters and cardiac function during exercise and recovery in order to evaluate aerobic exercise capacity. Methods Ten healthy male participants (21.3 ± 3.06 y) performed submaximal bicycle exercise (116.7 ± 20.1 W and 60 rpm) at sea level (20.9 % O2) and under various normobaric hypoxic conditions (16.5 % O2, 14.5 % O2, 12.8 % O2, and 11.2 % O2) in a random order. Metabolic parameters (arterial oxygen saturation; SPO2, oxygen consumption; VO2, blood lactate level) and cardiac function (heart rate; HR, stroke volume; SV, end-systolic volume; ESV, end-diastolic volume; EDV, ejection fraction; EF, cardiac output; CO) were measured at rest, during exercise (30 min), and recovery (30 min). We compared the responses on metabolic parameters and cardiac function between the different oxygen partial pressure conditions during exercise and recovery. Results The various acute normobaric hypoxic conditions did not affect VO2 and SV during exercise and recovery. SPO2 decreased (p < .05) and blood lactate level increased (p < .05) as the oxygen partial pressure decreased. HR, EF, CO increased (p < .05) and EDV, ESV decreased (p < .05) at oxygen partial pressures of 14.5 % O2 and below compared with 20.9 and 16.5 % O2 during exercise and recovery. Conclusion A decrease in the oxygen partial pressure to 14.5 % O2 and below might be associated with significant changes in metabolic parameters and cardiac function during exercise and recovery. These changes are an acute compensation response to reduced aerobic exercise capacity by decreased oxygen delivering and utilizing capacities under hypoxic conditions.
Collapse
Affiliation(s)
- Hwang-Woon Moon
- Department of Sports and Outdoors, Eulji University, Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 Republic of Korea
| | - Sub Sunoo
- Department of Sports Medicine, Kyunghee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Hun-Young Park
- Performance Activity and Performance Institute, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Dong-Jun Lee
- Department of Physical Education, MyongJi University, Yongin Campus, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728 Republic of Korea
| | - Sang-Seok Nam
- Department of Sports Medicine, Kyunghee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|