1
|
Le Bras C, Mouchard A, Rault L, Cochet MF, Ménard O, Jacquet N, Chuat V, Valence F, Le Loir Y, Bellanger A, Deglaire A, Le Huërou-Luron I, Even S. New insights into the cultivability of human milk bacteria from ingestion to digestion and implications for their Immunomodulatory properties. Sci Rep 2025; 15:10985. [PMID: 40164734 PMCID: PMC11958788 DOI: 10.1038/s41598-025-95668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Human milk (HM) microbiota is increasingly studied for its potential health benefits. However, the physiological state of HM bacteria and consequently their effects on gut homeostasis remain a question. This study investigated the physiological state of the HM microbiota by characterizing its cultivable fraction as it might be at the point of ingestion and assessing the effects of digestion, in the specific context of the immature infant digestive tract, on the cultivability and immunomodulatory properties of six HM strains representative of prevalent genera in HM. Twenty-eight HM samples were analysed by 16 S metabarcoding either directly on raw milk (raw milk microbiota, RM) or on the complete cultivable fraction obtained from seven non-selective media (cultivable milk microbiota, CM). This approach enabled a more in-depth investigation of CM than conventional methods based on the individual sequencing of a subset of isolates and resulted in a moderate gain in diversity within each HM sample. It confirmed that diversity was lower in CM than in RM, with ~ 7 versus 69 genera per sample in CM and RM respectively, and an under-representation of strictly anaerobic genera in CM. In vitro infant gastrointestinal digestion resulted in overall good survival of the 6 HM strains but partial or complete loss of their immunomodulatory properties on the monocyte THP1 cell line, except for a Staphylococcus epidermidis strain that gained immunomodulatory potential. These results highlight the potential of HM bacteria to survive during the infant gastrointestinal digestion and interact with the intestinal epithelium and immune system, as well as the importance of considering the digestion process when evaluating host-bacteria interactions.
Collapse
Affiliation(s)
- Charles Le Bras
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
- Institut NuMeCan, INRAE, INSERM, Université de Rennes, Saint Gilles, France
| | - Alizé Mouchard
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | - Lucie Rault
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | - Olivia Ménard
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | - Victoria Chuat
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | - Yves Le Loir
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | | | | | - Sergine Even
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France.
| |
Collapse
|
2
|
Garrigues Q, Apper E, Mercier F, Rodiles A, Rovere N, Chastant S, Mila H. Composition of the fecal, vaginal and colostrum microbiotas of dams at parturition and their relationship with neonatal outcomes in dogs. Anim Microbiome 2025; 7:23. [PMID: 40050995 PMCID: PMC11887402 DOI: 10.1186/s42523-025-00384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Microbial seeding in early life is critical for the host's short- and long-term health, and the mother is the first source of bacteria for the newborn. The objective of this study was to characterize the maternal fecal, vaginal, and colostral microbiotas in the canine species one day after parturition and to evaluate the relationship between the microbial profiles of 36 dams and the neonatal outcomes of 284 newborns. RESULTS The first part of the study revealed the presence of 2 fecal, 3 vaginal, and 2 colostral microbial clusters on the basis of the core microbiota of the dams. Among these three maternal microbiotas, only the vaginal microbiome was found to be associated with neonatal outcomes. Compared with those in the other clusters, females in Cluster 1, with the lowest stillbirth and neonatal mortality ratios, presented a greater abundance of Moraxellaceae in their vaginal microbiota; Cluster 2, with a greater abundance of Pasteurellaceae, mostly from the Haemophilus genus; and Cluster 3 (with the highest stillbirth and neonatal mortality ratios), a greater abundance of Enterobacteriaceae, mostly E. coli. Moreover, Cluster 3 dams presented significantly lower species richness according to the Shannon index than did dams from the other clusters. CONCLUSIONS This study underscores the strong association between maternal microbiota, particularly the vaginal microbiota, and newborn health. The results of this study call for further research to gain a deeper understanding of the optimal vaginal microbiota composition in canine species and the ways to modulate it to improve neonatal outcomes.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, Reproduction, ENVT, Université de Toulouse, Toulouse, France
| | | | - Fanny Mercier
- NeoCare, Reproduction, ENVT, Université de Toulouse, Toulouse, France
| | | | - Nicoletta Rovere
- Department of Health, Animal Science and Food Safety (VESPA), The Faculty of Veterinary Medicine at University of Milan, Milan, 20134, Italy
| | - Sylvie Chastant
- NeoCare, Reproduction, ENVT, Université de Toulouse, Toulouse, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Hanna Mila
- NeoCare, Reproduction, ENVT, Université de Toulouse, Toulouse, France.
- , Toulouse Cedex 3, 31076, France.
| |
Collapse
|
3
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
4
|
Salas-López M, Vélez-Ixta JM, Rojas-Guerrero DL, Piña-Escobedo A, Hernández-Hernández JM, Rangel-Calvillo MN, Pérez-Cruz C, Corona-Cervantes K, Juárez-Castelán CJ, García-Mena J. Human Milk Archaea Associated with Neonatal Gut Colonization and Its Co-Occurrence with Bacteria. Microorganisms 2025; 13:85. [PMID: 39858853 PMCID: PMC11767358 DOI: 10.3390/microorganisms13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Archaea have been identified as early colonizers of the human intestine, appearing from the first days of life. It is hypothesized that the origin of many of these archaea is through vertical transmission during breastfeeding. In this study, we aimed to characterize the archaeal composition in samples of mother-neonate pairs to observe the potential vertical transmission. We performed a cross-sectional study characterizing the archaeal diversity of 40 human colostrum-neonatal stool samples by next-generation sequencing of V5-V6 16S rDNA libraries. Intra- and inter-sample analyses were carried out to describe the Archaeal diversity in each sample type. Human colostrum and neonatal stools presented similar core microbiota, mainly composed of the methanogens Methanoculleus and Methanosarcina. Beta diversity and metabolic prediction results suggest homogeneity between sample types. Further, the co-occurrence network analysis showed associations between Archaea and Bacteria, which might be relevant for these organisms' presence in the human milk and neonatal stool ecosystems. According to relative abundance proportions, beta diversity, and co-occurrence analyses, the similarities found imply that there is vertical transmission of archaea through breastfeeding. Nonetheless, differential abundances between the sample types suggest other relevant sources for colonizing archaea to the neonatal gut.
Collapse
Affiliation(s)
- Maricarmen Salas-López
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Diana Laura Rojas-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - José Manuel Hernández-Hernández
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | | | - Claudia Pérez-Cruz
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico;
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
- Institute for Obesity Research, Monterrey Institute of Technology and Higher Education, Monterrey 64849, Mexico
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| |
Collapse
|
5
|
Mosaico G, Pinna M, Grassi R, Orrù G, Scribante A, Maiorani C, Casu C, Nardi GM, Butera A. Oral Health and Caries Prevention: How Tongue Hygiene Helps Maintain Balance of Microbiota and Overall Health in Pediatric Patients. CHILDREN (BASEL, SWITZERLAND) 2024; 11:816. [PMID: 39062265 PMCID: PMC11276146 DOI: 10.3390/children11070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND/OBJECTIVES The tongue harbors about two-thirds of the microorganisms present in the mouth; the stable bacterial population consists mainly of aerobic and facultative anaerobic streptococci. These bacterial colonies, found more frequently on the tongue than on the outside of the hard part of the dental enamel in children younger than 18 months, suggest that the tongue is a potential bacterial reservoir. The aim of this review is to examine the scientific literature to clarify whether the mechanical removal of bacterial biofilm on the tongue can have a positive effect on caries prevention, with the reduction in colony-forming unit (CFU) of salivary streptococcus and the whole-mouth plaque index (FMPS). METHODS An open literature search was conducted by using PubMed (MEDLINE), Cochrane Library and Google Scholar. The most studied age range was 9 to 12 years, with groups of children with no caries and groups with a minimum number of two teeth that were reconstructed, decayed and/or missing (DMFS/dmfs > 2) who experienced different tongue hygiene methods for the first time. RESULTS Four randomized trials met the search criteria and were included in this review. CONCLUSIONS The results obtained suggest that specific tongue hygiene protocols, combined with a healthy diet and lifestyle, could be considered the gold standard to enable more effective primary prevention and improve the health of pediatric patients. This review improves the understanding of the impact of tongue hygiene in controlling the bacteria responsible for the onset of carious disease and its systemic correlates; however, further research with more data is needed to further confirm the findings of this research.
Collapse
Affiliation(s)
| | - Mara Pinna
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.O.); (C.C.)
| | - Roberta Grassi
- Department of Oral Surgery, Tor Vergata University, 00100 Rome, Italy;
| | - Germano Orrù
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.O.); (C.C.)
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (C.M.); (A.B.)
| | - Carolina Maiorani
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (C.M.); (A.B.)
| | - Cinzia Casu
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.O.); (C.C.)
| | - Gianna Maria Nardi
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (C.M.); (A.B.)
| |
Collapse
|
6
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
7
|
Rizzo SM, Alessandri G, Lugli GA, Fontana F, Tarracchini C, Mancabelli L, Viappiani A, Bianchi MG, Bussolati O, van Sinderen D, Ventura M, Turroni F. Exploring Molecular Interactions between Human Milk Hormone Insulin and Bifidobacteria. Microbiol Spectr 2023; 11:e0066523. [PMID: 37191543 PMCID: PMC10269646 DOI: 10.1128/spectrum.00665-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | | | - Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| |
Collapse
|
8
|
Krupa-Kotara K, Grajek M, Grot M, Czarnota M, Wypych-Ślusarska A, Oleksiuk K, Głogowska-Ligus J, Słowiński J. Pre- and Postnatal Determinants Shaping the Microbiome of the Newborn in the Opinion of Pregnant Women from Silesia (Poland). Life (Basel) 2023; 13:1383. [PMID: 37374165 PMCID: PMC10305644 DOI: 10.3390/life13061383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Pre- and postnatal factors influence the formation of the newborn's microbiome as early as birth and the intrauterine period has a substantial impact on the composition of the baby's gastrointestinal microbiota and its subsequent development. This study intends to measure pregnant women's knowledge of the importance of microbiota for the health of the newborn. The sample was selected based on defined inclusion and exclusion criteria. The assessment of women's knowledge was assessed by the Kolmogorov-Smirnov and Kruskal-Wallis statistical tests. This study population comprised 291 adult pregnant women with a mean age of 28.4 ± 4.7 years. A total of 34% (n = 99), 35% (n = 101), and 31.3% (n = 91) were at the 1-3 trimester, respectively. The results showed that 36.4% of the women were aware that the intrauterine period changes the makeup of the gastrointestinal microbiota, whereas 5.8% exhibited awareness of the composition of the child's normal gut microbiota. Most of the women surveyed-(72.1%)-know that colonization of the tract occurs as early as the birth period. Women with student status (those who will pursue higher education in the future) and those who had given birth to the most children exhibited higher levels of knowledge.
Collapse
Affiliation(s)
- Karolina Krupa-Kotara
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Martina Grot
- Student Scientific Society, Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.G.); (M.C.)
- Doctoral School, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Martina Czarnota
- Student Scientific Society, Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.G.); (M.C.)
| | - Agata Wypych-Ślusarska
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Klaudia Oleksiuk
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Joanna Głogowska-Ligus
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Jerzy Słowiński
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| |
Collapse
|
9
|
Ruxton CHS, Kajita C, Rocca P, Pot B. Microbiota and probiotics: chances and challenges - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e6. [PMID: 39295904 PMCID: PMC11406417 DOI: 10.1017/gmb.2023.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/21/2024]
Abstract
The 10th International Yakult Symposium was held in Milan, Italy, on 13-14 October 2022. Two keynote lectures covered the crewed journey to space and its implications for the human microbiome, and how current regulatory systems can be adapted and updated to ensure the safety of microorganisms used as probiotics or food processing ingredients. The remaining lectures were split into sections entitled "Chances" and "Challenges." The "Chances" section explored opportunities for the science of probiotics and fermented foods to contribute to diverse areas of health such as irritable bowel syndrome, major depression, Parkinson's disease, immune dysfunction, infant colic, intensive care, respiratory infections, and promoting healthy longevity. The "Challenges" section included selecting appropriate clinical trial participants and methodologies to minimise heterogeneity in responses, how to view probiotics in the context of One Health, adapting regulatory frameworks, and understanding how substances of bacterial origin can cross the blood-brain barrier. The symposium provided evidence from cutting-edge research that gut eubiosis is vital for human health and, like space, the microbiota deserves further exploration of its vast potential.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| |
Collapse
|
10
|
Ahuja JKC, Casavale KO, Li Y, Hopperton KE, Chakrabarti S, Hines EP, Brooks SPJ, Bondy GS, MacFarlane AJ, Weiler HA, Wu X, Borghese MM, Ahluwalia N, Cheung W, Vargas AJ, Arteaga S, Lombo T, Fisher MM, Hayward D, Pehrsson PR. Perspective: Human Milk Composition and Related Data for National Health and Nutrition Monitoring and Related Research. Adv Nutr 2022; 13:2098-2114. [PMID: 36084013 PMCID: PMC9776678 DOI: 10.1093/advances/nmac099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
National health and nutrition monitoring is an important federal effort in the United States and Canada, and the basis for many of their nutrition and health policies. Understanding of child exposures through human milk (HM) remains out of reach due to lack of current and representative data on HM's composition and intake volume. This article provides an overview of the current national health and nutrition monitoring activities for HM-fed children, HM composition (HMC) and volume data used for exposure assessment, categories of potential measures in HM, and associated variability factors. In this Perspective, we advocate for a framework for collection and reporting of HMC data for national health and nutrition monitoring and programmatic needs, including a shared vision for a publicly available Human Milk Composition Data Repository (HMCD-R) to include essential metadata associated with HMC. HMCD-R can provide a central, integrated platform for researchers and public health officials for compiling, evaluating, and sharing HMC data. The compiled compositional and metadata in HMCD-R would provide pertinent measures of central tendency and variability and allow use of modeling techniques to approximate compositional profiles for subgroups, providing more accurate exposure assessments for purposes of monitoring and surveillance. HMC and related metadata could facilitate understanding the complexity and variability of HM composition, provide crucial data for assessment of infant and maternal nutritional needs, and inform public health policies, food and nutrition programs, and clinical practice guidelines.
Collapse
Affiliation(s)
- Jaspreet K C Ahuja
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| | - Kellie O Casavale
- Center for Food Safety and Applied Nutrition, Food and Drug
Administration, US Department of Health and Human Services, College
Park, Maryland, USA
| | - Ying Li
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| | - Kathryn E Hopperton
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Subhadeep Chakrabarti
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Erin P Hines
- Reproductive and Developmental Toxicology Branch, Public Health and
Integrated Toxicology Division, US Environmental Protection Agency,
Chapel Hill, North Carolina, USA
| | - Stephen P J Brooks
- Nutrition Research Division, Bureau of Nutritional Sciences, Food
Directorate, Health Products and Food Branch, Health Canada, Ottawa,
Ontario, Canada
| | - Genevieve S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food
Branch, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Nutrition Research Division, Bureau of Nutritional Sciences, Food
Directorate, Health Products and Food Branch, Health Canada, Ottawa,
Ontario, Canada
| | - Hope A Weiler
- Nutrition Research Division, Bureau of Nutritional Sciences, Food
Directorate, Health Products and Food Branch, Health Canada, Ottawa,
Ontario, Canada
| | - Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| | - Michael M Borghese
- Environmental Health Sciences and Research Bureau, Health
Canada, Ottawa, Ontario, Canada
| | - Namanjeet Ahluwalia
- National Center for Health Statistics, Centers for Disease Control and
Prevention, Department of Health and Human Services, Hyattsville,
Maryland, USA
| | - Winnie Cheung
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Ashley J Vargas
- Eunice Kennedy Shriver National Institute of Child Health and Human
Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonia Arteaga
- Environmental influences on Child Health Outcomes (ECHO) Program, Office of
the Director, National Institutes of Health, Bethesda, Maryland,
USA
| | - Tania Lombo
- Maternal Adolescent Pediatric Research Branch, Prevention Science Program,
Division of AIDS, National Institute of Allergy and Infectious Diseases
(NIAID), Bethesda, Maryland, USA
| | - Mandy M Fisher
- Environmental Health Sciences and Research Bureau, Health
Canada, Ottawa, Ontario, Canada
| | - Deborah Hayward
- Nutrition Premarket Assessment Division, Bureau of Nutritional Sciences,
Food Directorate, Health Products and Food Branch, Health Canada,
Ottawa, Ontario, Canada
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human
Nutrition Research Center, Agricultural Research Services, US Department
of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|