1
|
Valentin C, Brito Rodrigues P, Verce M, Delbauve S, La Palombara L, Demaret F, Allard J, Salmon I, Cani PD, Köhler A, Everard A, Flamand V. Maternal probiotic exposure enhances CD8 T cell protective neonatal immunity and modulates offspring metabolome to control influenza virus infection. Gut Microbes 2025; 17:2442526. [PMID: 39710590 DOI: 10.1080/19490976.2024.2442526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to Lacticaseibacillus rhamnosus (L.rh) or Bifidobacterium animalis subsp. lactis (B.lac) increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood. This was compatible with a higher protection of the offspring upon a secondary infection. Interestingly, only mice born to L.rh supplemented mothers further displayed an increased activation of IFN-γ producing virtual memory CD8 T cells and a production of IL-10 by CD4 and CD8 T cells that could explain a better control of the lung damages upon infection. In the offspring and the mothers, no disturbance of the gut microbiota was observed but, as analyzed through an untargeted metabolomic approach, both exposures modified neonatal plasma metabolites. Among them, we further demonstrated that genistein and 3-(3-hydroxyphenyl)propionic acid recapitulate viral clearance or cDC1 activation in neonates exposed to IAV. We conclude that maternal L.rh or B.lac supplementation confers the neonates specific metabolomic modulations with a better CD8 T cell-mediated immune protection against IAV infection.
Collapse
Affiliation(s)
- Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Patricia Brito Rodrigues
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Léa La Palombara
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Florine Demaret
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
2
|
Li F, Armet AM, Korpela K, Liu J, Quevedo RM, Asnicar F, Seethaler B, Rusnak TBS, Cole JL, Zhang Z, Zhao S, Wang X, Gagnon A, Deehan EC, Mota JF, Bakal JA, Greiner R, Knights D, Segata N, Bischoff SC, Mereu L, Haqq AM, Field CJ, Li L, Prado CM, Walter J. Cardiometabolic benefits of a non-industrialized-type diet are linked to gut microbiome modulation. Cell 2025; 188:1226-1247.e18. [PMID: 39855197 DOI: 10.1016/j.cell.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Industrialization adversely affects the gut microbiome and predisposes individuals to chronic non-communicable diseases. We tested a microbiome restoration strategy comprising a diet that recapitulated key characteristics of non-industrialized dietary patterns (restore diet) and a bacterium rarely found in industrialized microbiomes (Limosilactobacillus reuteri) in a randomized controlled feeding trial in healthy Canadian adults. The restore diet, despite reducing gut microbiome diversity, enhanced the persistence of L. reuteri strain from rural Papua New Guinea (PB-W1) and redressed several microbiome features altered by industrialization. The diet also beneficially altered microbiota-derived plasma metabolites implicated in the etiology of chronic non-communicable diseases. Considerable cardiometabolic benefits were observed independently of L. reuteri administration, several of which could be accurately predicted by baseline and diet-responsive microbiome features. The findings suggest that a dietary intervention targeted toward restoring the gut microbiome can improve host-microbiome interactions that likely underpin chronic pathologies, which can guide dietary recommendations and the development of therapeutic and nutritional strategies.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Anissa M Armet
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Katri Korpela
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Uusimaa, Finland
| | - Junhong Liu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Rodrigo Margain Quevedo
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento 38123, Trentino, Italy
| | - Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Baden-Württemberg, Germany
| | - Tianna B S Rusnak
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Janis L Cole
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zhihong Zhang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Shuang Zhao
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada
| | - Xiaohang Wang
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada
| | - Adele Gagnon
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edward C Deehan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - João F Mota
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; Faculty of Nutrition, Federal University of Goiás, Goiânia, Goiás 74605-080, Brazil
| | - Jeffrey A Bakal
- Division of General Internal Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Machine Intelligence Institute, Edmonton, AB T5J 3B1, Canada
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento 38123, Trentino, Italy
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Baden-Württemberg, Germany
| | - Laurie Mereu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Liang Li
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada; Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Carla M Prado
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Medicine, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
3
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|