1
|
Zhang L, Liu R, Song Z, Zhang X. Exercise, Diet, and Brain Health: From the Perspective of Gut Microbiota Regulation. Nutrients 2025; 17:1686. [PMID: 40431427 DOI: 10.3390/nu17101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The existing body of evidence has highlighted gut microbiota as a versatile regulator of body wellness affecting not only multiple physiological metabolisms but also the function of remote organs. Emerging studies revealed a reciprocal relationship between physical exercise and intestinal microbiota, suggesting that physical exercise could enhance gut health, including regulating intestinal barrier integrity, increasing microbial diversity, and promoting beneficial microbial metabolism. Furthermore, the beneficial outcomes of exercise on the intestine may also promote brain health through the gut-brain axis. Diet is an important factor in boosting exercise performance and also greatly impacts the structure of gut microbiota. Abundant research has reported that diet alongside exercise could exert beneficial effects on metabolism, immune regulation, and the neuropsychiatric system. In this paper, we used a narrative review, primarily searching PubMed, Web of Science, and Elsevier, to review the existing research on how moderate-intensity exercise promotes gut health, and we introduced the effects of exercise on the nervous system through the gut-brain axis. We also proposed dietary strategies targeting the regulation of gut microbiota to provide guidelines for boosting brain health. This review highlights that moderate exercise and a healthy diet promote gut and brain health.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Renhe Liu
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Jiménez-González C, Alonso-Peña M, Argos Vélez P, Crespo J, Iruzubieta P. Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions. Nutrients 2025; 17:1580. [PMID: 40362889 PMCID: PMC12073168 DOI: 10.3390/nu17091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiota has a crucial role in the pathophysiology of metabolic-associated steatotic liver disease (MASLD), influencing various metabolic mechanisms and contributing to the development of the disease. Dietary interventions targeting gut microbiota have shown potential in modulating microbial composition and mitigating MASLD progression. In this context, the integration of multi-omics analysis and artificial intelligence (AI) in personalized nutrition offers new opportunities for tailoring dietary strategies based on individual microbiome profiles and metabolic responses. The use of chatbots and other AI-based health solutions offers a unique opportunity to democratize access to health interventions due to their low cost, accessibility, and scalability. Future research should focus on the clinical validation of AI-powered dietary strategies, integrating microbiome-based therapies and precision nutrition approaches. Establishing standardized protocols and ethical guidelines will be crucial for implementing AI in MASLD management, paving the way for a more personalized, data-driven approach to disease prevention and treatment.
Collapse
Affiliation(s)
- Carolina Jiménez-González
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
| | - Paula Argos Vélez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| |
Collapse
|
3
|
Zhu J, Qin S, Gu R, Ji S, Wu G, Gu K. Amuc_1434 From Akkermansia muciniphila Enhances CD8+ T Cell-Mediated Anti-Tumor Immunity by Suppressing PD-L1 in Colorectal Cancer. FASEB J 2025; 39:e70540. [PMID: 40231387 DOI: 10.1096/fj.202403295rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Colorectal cancer (CRC) shows a limited response to programmed death-ligand 1 (PD-L1) immunotherapies. Akkermansia muciniphila (AKK) may enhance tumor immunity. This study examines how its Outer Membrane Vesicles (OMVs) and Amuc_1434 influence PD-L1 expression and CD8+ T cell activity in CRC. OMVs were isolated and their characteristics were examined through transmission electron microscopy and Western blotting. PD-L1 expression was quantified via Western blot, while CD8+ T cell proliferation was measured using flow cytometry. Cytokine production (interferon-gamma (IFN-γ) and interleukin-2 (IL-2)) was evaluated using ELISA. A CRC mouse model was employed to examine its impact on tumor growth and immune cell infiltration. In CRC cells, treatment with AKK-derived OMVs (AKK-OMVs) significantly downregulated PD-L1 expression (p < 0.05) and markedly increased CD8+ T cell proliferation and the levels of IFN-γ and IL-2 (p < 0.01). Amuc_1434 was identified as the key protein mediating these effects. In vivo, AKK-OMVs treatment substantially reduced tumor volume (p < 0.01) and significantly enhanced CD8+ T cell infiltration into the tumor microenvironment (p < 0.01). Additionally, AKK-OMVs-treated mice showed increased expression of immune activation markers within the tumor tissue, further indicating enhanced antitumor immunity. This study reveals that AKK-OMVs, particularly those containing Amuc_1434, can modulate PD-L1 expression and potentiate CD8+ T cell-mediated antitumor immunity in CRC. These findings suggest a novel approach to overcoming resistance to immune checkpoint inhibitors in CRC.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Shaolei Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ruike Gu
- Department of Rehabilitation Medical, Suzhou Rehabilitation Hospital (Suzhou Municipal Hospital Rehabilitation Medical Center), Suzhou, Jiangsu, People's Republic of China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Gang Wu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Mun D, Ryu S, Lee DJ, Kwak MJ, Choi H, Kang AN, Lim DH, Oh S, Kim Y. Bovine colostrum-derived extracellular vesicles protect against non-alcoholic steatohepatitis by modulating gut microbiota and enhancing gut barrier function. Curr Res Food Sci 2025; 10:101039. [PMID: 40231313 PMCID: PMC11995039 DOI: 10.1016/j.crfs.2025.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
Non-alcoholic steatohepatitis (NASH), characterized by severe fatty liver-associated inflammation and hepatocellular damage, is a major precursor to cirrhosis and hepatocellular carcinoma. While the exact pathogenesis of NASH remains unclear, gut microbiota dysbiosis has been implicated as a key factor contributing to endotoxin translocation and chronic liver inflammation. Recent studies have highlighted the therapeutic potential of bovine colostrum-derived extracellular vesicles (BCEVs) in modulating gut microbiota and enhancing gut barrier function, but their effects on NASH remain largely unexplored. To investigate the potential protective effects of BCEVs against NASH, 8-wk-old mice were fed a NASH-inducing diet for 3 wks while concurrently receiving oral BCEV administration. BCEV treatment markedly ameliorated hepatic steatosis, fibrosis, and inflammation. Transcriptomic analyses demonstrated a notable reduction in lipid metabolism, bacterial response, and inflammatory pathways in the intestine, as well as reduced expression of inflammation- and fibrosis-related pathways in the liver. Gut microbiota profiling revealed an increased abundance of Akkermansia, accompanied by enhanced cholesterol excretion. Furthermore, BCEV treatment promoted the production of tight junction proteins and mucin in the gut, reinforcing intestinal barrier integrity. These findings suggest that BCEVs promote the proliferation of Akkermansia, which in turn prevents endotoxin translocation to the liver. This reduction in endotoxin leakage alleviates hepatic inflammation and fibrosis. Overall, this study highlights the therapeutic potential of BCEVs as a novel strategy for managing NASH by targeting the gut-liver axis through the modulation of gut microbiota and barrier function.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangdon Ryu
- Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Bañares C, Paterson S, Gómez-Garre D, Ortega-Hernández A, Sánchez-González S, Cueva C, de la Fuente MÁ, Hernández-Ledesma B, Gómez-Cortés P. Modulation of Gut Microbiota and Short-Chain Fatty Acid Production by Simulated Gastrointestinal Digests from Microalga Chlorella vulgaris. Int J Mol Sci 2025; 26:2754. [PMID: 40141395 PMCID: PMC11942968 DOI: 10.3390/ijms26062754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Chlorella vulgaris is a source of potential bioactive compounds that can reach the large intestine and interact with colonic microbiota. However, the effects of consumption of this microalga on gastrointestinal function have scarcely been studied. This paper simulates, for the first time, the passage of C. vulgaris through the gastrointestinal tract, combining the INFOGEST method and in vitro colonic fermentation to evaluate potential effects on the human colonic microbiota composition by 16S rRNA gene sequencing and its metabolic functionality. The results show that the presence of this microalga increased the release of short-chain fatty acids (SCFAs), such as acetic, propionic, butyric, and isobutyric fatty acids, after 48 h colonic fermentation, being indicators of gut health. In correlation with the release of SCFAs, a significant reduction in bacterial groups causing intestinal imbalance, such as Enterobacteriaceae, Enterococcus spp., and Staphylococcus spp., was observed. In addition, digests from C. vulgaris favored intestinal health-related taxa, such as Akkermansia and Lactobacillus. C. vulgaris is, therefore, a promising food ingredient for good intestinal health and the maintenance of a balanced colonic microbiota.
Collapse
Affiliation(s)
- Celia Bañares
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (C.B.); (S.P.); (C.C.); (M.Á.d.l.F.)
| | - Samuel Paterson
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (C.B.); (S.P.); (C.C.); (M.Á.d.l.F.)
| | - Dulcenombre Gómez-Garre
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), C/ Prof. Martín Lagos, 28040 Madrid, Spain; (D.G.-G.); (A.O.-H.); (S.S.-G.)
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Adv. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Faculty of Medicine, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain
| | - Adriana Ortega-Hernández
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), C/ Prof. Martín Lagos, 28040 Madrid, Spain; (D.G.-G.); (A.O.-H.); (S.S.-G.)
| | - Silvia Sánchez-González
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), C/ Prof. Martín Lagos, 28040 Madrid, Spain; (D.G.-G.); (A.O.-H.); (S.S.-G.)
| | - Carolina Cueva
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (C.B.); (S.P.); (C.C.); (M.Á.d.l.F.)
| | - Miguel Á. de la Fuente
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (C.B.); (S.P.); (C.C.); (M.Á.d.l.F.)
| | - Blanca Hernández-Ledesma
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (C.B.); (S.P.); (C.C.); (M.Á.d.l.F.)
| | - Pilar Gómez-Cortés
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (C.B.); (S.P.); (C.C.); (M.Á.d.l.F.)
| |
Collapse
|
6
|
Zhang Z, Wang J, Dang S, Liu X, Zhang Y, Zhang H. The worldview of Akkermansia muciniphila, a bibliometric analysis. Front Microbiol 2025; 16:1500893. [PMID: 40104597 PMCID: PMC11913835 DOI: 10.3389/fmicb.2025.1500893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Akkermansia muciniphila (A. muciniphila), a critical bacterium within the gut microbiota, plays a key role in human health and immunomodulation. Since its identification in 2004, A. muciniphila has emerged as a significant agent in treating metabolic diseases, gastroenterological diseases, and tumor immunotherapy. Its rapid ascent in scientific translation underscores its importance in gut microbiome research. However, there has been a lack of visualization and analysis of the rapidly occurring commercialization in this field, which has critically hindered insights into the current knowledge structure and understanding of the cutting-edge of the discipline. This study employs the Web of Science Core Collection (WOSCC) and Innography platforms to provide the first comprehensive analysis of A. muciniphila's academic progresses and commercialization over the past two decades, highlighting its growing prominence in global health research. Our analysis delineates that, following the academic trajectory, the evolution of A. muciniphila patents from foundational research through to application development and maturity, with particular emphasis on its expansive potential in emerging fields, including gastroenterological disorders, non-alcoholic fatty liver disease, cancer immunotherapy, stress management, and neurodegenerative disease treatment. Concluding, A. muciniphila presents as a next-generation probiotic with vast implications for human health. Our findings provide essential insights for future research and product development, contributing to the advancement of this burgeoning field.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaoqing Dang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Gao F, Cheng C, Li R, Chen Z, Tang K, Du G. The role of Akkermansia muciniphila in maintaining health: a bibliometric study. Front Med (Lausanne) 2025; 12:1484656. [PMID: 39967592 PMCID: PMC11833336 DOI: 10.3389/fmed.2025.1484656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Background Akkermansia muciniphila, as a probiotic, is negatively linked to IBD, obesity, and T2DM. The aim of this study was to comprehensively assess the research status of Akkermansia muciniphila over the past decade and explore the relationships between this bacterium and various health-related aspects. Methods Tools VOSviewer, Bibliometrix, and CiteSpace were used to analyze various aspects including publication metrics, contributors, institutions, geography, journals, funding, and keywords. Results Over the past decade, research on Akkermansia muciniphila has demonstrated a consistent annual growth in the number of publications, with a notable peak in 2021. China led in the number of publications, totaling 151, whereas the United States exhibited a higher centrality value. Among the 820 institutions involved in the research, the University of California (from the United States) and the Chinese Academy of Sciences (from China) occupied central positions. Willem M. De Vos ranked at the top, with 12 publications and 1,108 citations. The journal GUT, which had 5,125 citations and an Impact Factor of 23.0 in 2024, was the most highly cited. The most cited articles deepened the understanding of the bacterium's impact on human health, spanning from basic research to translational medicine. Thirty-nine high-frequency keywords were grouped into five clusters, illustrating Akkermansia muciniphila's associations with metabolic diseases, chronic kidney disease, the gut-brain axis, intestinal inflammation, and Bacteroidetes-Firmicutes shifts. Conclusion Given Akkermansia muciniphila's anti-inflammatory and gut-barrier-strengthening properties, it holds promise as a therapeutic for obesity, metabolic disorders, and inflammatory conditions. Therefore, future research should explore its potential further by conducting clinical trials, elucidating its mechanisms of action, and investigating its efficacy and safety in diverse patient populations.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Canyu Cheng
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Runwei Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Zongcun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Paterson S, Majchrzak M, Gómez-Garre D, Ortega-Hernández A, Sánchez-González S, de la Fuente MÁ, Gómez-Cortés P, Hernández-Ledesma B. Role of Simulated Nannochloropsis gaditana Digests in Shaping Gut Microbiota and Short-Chain Fatty Acid Levels. Nutrients 2024; 17:99. [PMID: 39796532 PMCID: PMC11723233 DOI: 10.3390/nu17010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The connection between gut microbiota and factors like diet is crucial for maintaining intestinal balance, which in turn impacts the host's overall health. Nannochloropsis gaditana microalgae is a sustainable source of bioactive compounds, mainly known for its used in aquaculture and extraction of bioactive lipids, with potential health benefits whose effects on human gut microbiota are still unknown. Therefore, the goal of this work was to assess the impact of N. gaditana on human gut microbiota composition and derived metabolites by combining the INFOGEST protocol and in vitro colonic fermentation process to evaluate potential effects on human gut microbiota conformation through 16S rRNA gene sequencing and its metabolic functionality. The results have demonstrated the ability of the digests from N. gaditana to significantly modify gut microbiota composition, promoting an increase in beneficial bacterial genera such as Akkermansia, Butyricicoccus, Eisenbergiella, Lachnoclostridium, and Marvinbryantia, in contrast to inulin, after 48 h of colonic fermentation. Additionally, the digests increased the levels of both major and minor short-chain fatty acids (SCFAs), particularly butyric and valeric acids, considered as intestinal biomarkers, and increased ammonium production. This research has demonstrated, for the first time, the potential of N. gaditana microalgae as a sustainable agent for influencing the composition and functionality of human gut microbiota.
Collapse
Affiliation(s)
- Samuel Paterson
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (M.M.); (M.Á.d.l.F.)
| | - Marta Majchrzak
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (M.M.); (M.Á.d.l.F.)
| | - Dulcenombre Gómez-Garre
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Prof. Martín Largos, s/n, 28040 Madrid, Spain; (D.G.-G.); (A.O.-H.); (S.S.-G.)
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Physiology Department, Faculty of Medicine, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Adriana Ortega-Hernández
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Prof. Martín Largos, s/n, 28040 Madrid, Spain; (D.G.-G.); (A.O.-H.); (S.S.-G.)
| | - Silvia Sánchez-González
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Prof. Martín Largos, s/n, 28040 Madrid, Spain; (D.G.-G.); (A.O.-H.); (S.S.-G.)
| | - Miguel Ángel de la Fuente
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (M.M.); (M.Á.d.l.F.)
| | - Pilar Gómez-Cortés
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (M.M.); (M.Á.d.l.F.)
| | - Blanca Hernández-Ledesma
- Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (M.M.); (M.Á.d.l.F.)
| |
Collapse
|
9
|
Łoniewski I, Banasiewicz T, Sieńko J, Skonieczna-Zydecka K, Stachowska E. Microbiota modifications in prehabilitation - the next step towards comprehensive preparation for surgery. The scoping review. PRZEGLAD GASTROENTEROLOGICZNY 2024; 16:347-361. [PMID: 39810873 PMCID: PMC11726224 DOI: 10.5114/pg.2024.145833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
This scoping review highlights the role of microbiota modifications in prehabilitation for surgical patients. It emphasises the importance of optimising gut microbiota through probiotics, synbiotics, and postbiotics to reduce surgical complications, such as surgical site infections (SSIs). The review highlights that gut dysbiosis, worsened by surgery, stress, antibiotics, and poor diet, can lead to increased infection risk and slower recovery. Evidence from systematic reviews, meta-analyses, and randomised controlled trials suggests that microbiota-targeted interventions can reduce SSIs, enhance immune responses, and promote quicker recovery. The review advocates for an individualised approach to prehabilitation, incorporating microbiota modifications based on patient-specific factors and surgery type. However, it also notes the need for further research to standardise therapeutic regimens and confirm the safety and efficacy of these interventions in clinical practice.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Banasiewicz
- Department of General Surgery, Endo- and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Sieńko
- Institute of Physical and Cultural Sciences, University of Szczecin, Szczecin, Poland
| | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
10
|
Haro-Reyes J, Raghupathi JK, Reddivari L. Composition of Human-Associated Gut Microbiota Determines 3-DF and 3-HF Anti-Colitic Activity in IL-10 -/- Mice. Nutrients 2024; 16:4232. [PMID: 39683625 DOI: 10.3390/nu16234232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Gut bacterial dysbiosis along with intestinal mucosal disruption plays a critical role in inflammatory disorders like ulcerative colitis. Flavonoids and other food bioactives have been studied in mice models as alternative treatments with minimal side effects. However, most of the research has been carried out with mice-native microbiota, which limits the comprehension of the interaction between flavonoids and human-associated bacteria. Hence, the objective of our study was to determine the effect of healthy human-associated microbiota on the anti-colitic activity of diets rich in anthocyanins (3-HF) and phlobaphenes (3-DF). METHODS In this regard, the interleukin (IL)-10 -/- mice model was utilized. Mice were divided into three groups for inoculation with human gut bacteria from three different healthy donors and assigned to four diets. A purified diet (Diet P) and three diets containing 25% near-isogenic lines (NILs) of corn were evaluated. Diets were substituted with NILs expressing only 3-DFs (diet B), only 3-HFs (diet C), and both 3-DF and 3-HF (diet D). RESULTS In an overall analysis, flavonoid-rich diets did not affect inflammatory markers, microbiota diversity, or gut metabolites, but diets containing anthocyanins improved barrier function parameters. However, when data was segmented by the recipient's microbiota from different human donors, the diet effects became significant. Furthermore, 3-HFs showed more beneficial effects than 3-DFs across the recipient's microbiota. CONCLUSIONS Our study suggests that the anti-colitic activity of 3-DF and 3-HF and their gut metabolites depends on the donor's microbial composition.
Collapse
Affiliation(s)
- Jose Haro-Reyes
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jayaprakash Kanijam Raghupathi
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Acharya Nagarjuna University, Guntur 522510, Andhra Pradesh, India
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Yang Y, Hong J, Zhang Z, Zheng M, Zhao J, Fang X, Liang X, Liu J, Yang Y, Tian G, Fang C. Oral supplementation with lactic acid bacteria improve the intestinal epithelial barrier and gut microbiota of broiler chicks to alleviate Salmonella Enteritidis infection. Poult Sci 2024; 103:104385. [PMID: 39442198 PMCID: PMC11538865 DOI: 10.1016/j.psj.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Lactic acid bacteria (LAB) play a key role in regulating the balance of gut microbiota and serve as a suitable alternative to antibiotics. This study aims to evaluate the characteristics of 2 LAB isolates Lactiplantibacillus plantarum Lp71 (L. plantarum Lp71) and Enterococcus faecium Ef72 (E. faecium Ef72), and their roles in alleviating Salmonella Enteritidis infection. Sixty 1-day-old chicks were randomly divided into 4 groups which treated with or without L. plantarum Lp71 and E. faecium Ef72 mixture for 21 d, and then intestinal samples were collected for gut microbiota analysis, pathological and immunohistochemical analysis at 24 h post infection with or without Salmonella Enteritidis on the 22nd d. The results showed that L. plantarum Lp71 and E. faecium Ef72 had the ability to anti-acid and anti-bile salt. Salmonella Enteritidis infection damaged the intestinal epithelial barrier and reduced the expression level of tight junction proteins (ZO-1, Claudin-1, Occludin). Oral supplementation with L. plantarum Lp71 and E. faecium Ef72 mixture could alleviated the damages to intestinal epithelial barrier by Salmonella Enteritidis infection. Salmonella Enteritidis could cause abnormal Akkermansia muciniphila proliferation and decrease the diversity of cecal microbiota in chicks. These conditions could have further led to reduce gut microbiota health index (GMHI), and improve microbial dysbiosis index (MDI). Moreover, oral supplementation with L. plantarum Lp71 and E. faecium Ef72 mixture could effectively prevent the aforementioned infection outcomes and increase the abundance proportions of the several key functions in metabolic pathways metabolic pathways such as transcription and signal transduction mechanisms. In summary, L. plantarum Lp71 and E. faecium Ef72 could be the probiotics candidates that used to prevent the damage from enteric pathogens such as Salmonella Enteritidis in broiler chicks.
Collapse
Affiliation(s)
- Yuting Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Jiajun Hong
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Zheng Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Minghao Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Jingang Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiaowei Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
12
|
Lee HW, Lee SN, Seo JG, Koo Y, Kang SY, Choi CW, Park SY, Lee SY, Kim SR, Kim JH, Choi HS. Efficacy of ETB-F01, Heat-Killed Akkermansia muciniphila Strain EB-AMDK19, in Patients with Respiratory Symptoms: A Multicenter Clinical Trial. Nutrients 2024; 16:4113. [PMID: 39683507 PMCID: PMC11643724 DOI: 10.3390/nu16234113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Respiratory symptoms are prevalent in the general population, and they are associated with a decline in lung function and increased mortality. The gut-lung connection suggests intestinal dysbiosis may impact lung diseases, with Akkermansia muciniphila showing promise in regulating extraintestinal diseases. However, its application in patients with respiratory symptoms lacks clinical trial evidence. In this randomized, double-blind trial, ETB-F01, containing heat-killed A. muciniphila strain EB-AMDK19, was compared with a placebo in patients experiencing respiratory symptoms for 4 to 12 weeks. The primary outcome was improvement in Breathlessness, Cough, and Sputum Scale (BCSS) score over 12 weeks. Secondary outcomes included lung function, fractional exhaled nitric oxide (FeNO), modified Medical Research Council (mMRC) dyspnea scale, St. George's Respiratory Questionnaire (SGRQ), and Visual Analog Scale (VAS) score. The primary analysis was performed in the per-protocol set, with a sensitivity analysis in the full analysis set. In the per-protocol population, 68 participants were randomly assigned to the ETB-F01 group and 65 to the placebo group. ETB-F01 had a superior efficacy over placebo in improving BCSS total scores (between-group difference = -0.8 (95% confidence interval, -1.4--0.3), p-value = 0.004). Specifically, there was a significant reduction in BCSS breathlessness and cough domain scores with ETB-F01. While trends toward improvement in lung function were noted, statistical significance was not achieved. No significant differences were observed in FeNO and other symptom scores (mMRC, SGRQ, and VAS). In safety profile, ETB-F01 did not cause any serious adverse events. These results suggest that ETB-F01 is safe and effective for alleviating respiratory symptoms.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, College of Medicine, Seoul National University, Seoul 07061, Republic of Korea;
| | - Sang-Nam Lee
- Enterobiome Inc., Goyang-si 10326, Republic of Korea; (S.-N.L.); (J.-G.S.); (Y.K.)
| | - Jae-Gu Seo
- Enterobiome Inc., Goyang-si 10326, Republic of Korea; (S.-N.L.); (J.-G.S.); (Y.K.)
| | - Yemo Koo
- Enterobiome Inc., Goyang-si 10326, Republic of Korea; (S.-N.L.); (J.-G.S.); (Y.K.)
| | - Sung-Yoon Kang
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea;
| | - Cheon Woong Choi
- Department of Respiratory, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - So-Young Park
- Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Suh-Young Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul 07061, Republic of Korea;
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 07061, Republic of Korea
| | - Sung-Ryeol Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Hye Sook Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Lee B, Jo D, Park J, Kim OY, Song J. Gut microbiota and their relationship with circulating adipokines in an acute hepatic encephalopathy mouse model induced by surgical bile duct ligation. Heliyon 2024; 10:e38534. [PMID: 39391493 PMCID: PMC11466606 DOI: 10.1016/j.heliyon.2024.e38534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background and aims Various studies have shown the importance of the gut microbiota in human health. However, little is known about gut microbiome patterns and their effect on circulating adipo-myokine levels in hepatic encephalopathy (HE). We investigated the relationship between the gut microbiota and adipo-myokine levels using a mouse model of HE induced by surgical bile duct ligation (BDL). Methods and results Wild-type C57BL/6J mice were subjected to sham surgery or BDL. Severe body weight loss, suppressed feed intake, and liver failure were observed in BDL mice compared with sham control mice. Additionally, changes in gut microbial communities and serum adipo-myokine levels were noted in BDL mice. In the BDL mouse gut, we identified 15 differentially abundant taxa including the phylum Verrucomicrobiota, the classes Actinomycetes and Verrucomicrobiae, the order Verrucomicrobiales, the families Akkermansiaceae, Bacteroidaceae, Rikenellaceae, and Oscillospiraceae, the genera Alistipes, Akkermansia, Muribaculum, and Phocaeicola, and the species Akkermansia muciniphila, Alistipes okayasuensis, and Muribaculum gordoncarteri by LEfSe analysis (LDA score≥4.0). Higher levels of certain adipo-myokines such as BDNF were detected in the serum of BDL mice. Spearman correlation analysis revealed that certain adipo-myokines (e.g., FSTL1) were positively correlated with the class Actinomycetes, the family Rikenellaceae, the genus Alistipes, and the species Alistipes okayasuensis. Interestingly, A. okayasuensis and M. gordoncarteri, recently isolated microbes, showed richness in the gut of BDL mice and demonstrated positive correlations with adipo-myokines such as FGF21. Conclusions Overall, our results suggest that alteration of the gut microbiota in patients with HE may be closely correlated to the levels of adipo-myokines in the blood.
Collapse
Affiliation(s)
- Bokyung Lee
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
15
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Brown K, Funk K, Figueroa Barrientos A, Bailey A, Shrader S, Feng W, McClain CJ, Song ZH. The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut. Cells 2024; 13:1618. [PMID: 39404382 PMCID: PMC11475737 DOI: 10.3390/cells13191618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Collapse
Affiliation(s)
- Kevin Brown
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kyle Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alexa Figueroa Barrientos
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ashly Bailey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sarah Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
17
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
18
|
Jiang P, Ji S, Su D, Zhao Y, Goncalves VBE, Xu G, Zhang M. The biofunction of Akkermansia muciniphila in intestinal-related diseases. MICROBIOME RESEARCH REPORTS 2024; 3:47. [PMID: 39741950 PMCID: PMC11684987 DOI: 10.20517/mrr.2024.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 01/03/2025]
Abstract
Intestinal homeostasis is essential for maintaining human health, and its dysfunction is related to the onset and progression of various diseases, including immune and metabolic disorders, and even tumorigenesis. Intestinal microbiota plays a critical role in intestinal homeostasis, with Akkermansia muciniphila (A. muciniphila) emerging as a key commensal bacterium utilizing mucin as its sole carbon and nitrogen source. A. muciniphila has been recognized in both experimental and clinical studies for its beneficial role in managing intestinal inflammation, tumors, functional gastrointestinal disorders, and secondary conditions such as liver and metabolic diseases. This review provides a comprehensive overview of the research history and current understanding of A. muciniphila, its association with various intestinal-related diseases, and the potential mechanisms behind its effects. This paper also explores the possibilities of leveraging the probiotic enzyme such as the active ingredients of A. muciniphila for the innovative clinical treatment of intestinal-related diseases.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Authors contributed equally
| | - Siqi Ji
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Authors contributed equally
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, MA 02472, USA
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL 60637, USA
| | - Viriania Berta Esperanca Goncalves
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
19
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Geerlings SY, van der Ark K, Nijsse B, Boeren S, van Loosdrecht M, Belzer C, de Vos WM. Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media. MICROBIOME RESEARCH REPORTS 2024; 3:36. [PMID: 39421255 PMCID: PMC11480725 DOI: 10.20517/mrr.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background and Aim: Over the past years, the gut microbiota and its correlation to health and disease has been studied extensively. In terms of beneficial microbes, an increased interest in Akkermansia muciniphila (A. muciniphila) has been observed since its discovery. Direct evidence for the role of A. muciniphila in host health has been provided in both mice and human studies. However, for human interventions with A. muciniphila cells, industrial-scale fermentations are needed, and hence, the used cultivation media should be free of animal-derived components, food-grade, non-allergenic and allow for efficient growth to high densities to provide cost-effective production platforms. In this study, we assessed the growth and performance of A. muciniphila in batch bioreactors using newly developed plant-based media. Methods: The bioreactors were supplemented with varying carbon sources, including different ratios of N-acetylglucosamine (GlcNAc) and glucose. We monitored the growth of A. muciniphila in the plant-based medium using optical density (OD600) measurements and microscopy. In addition, we used a combination of biochemical analysis as well as transcriptional and proteomics analysis to gain detailed insight into the physiology. Results: Comparisons between growth on these media and that on mucin revealed differences at both transcriptome and proteome levels, including differences in the expression of glycosyltransferases, signaling proteins, and stress response. Furthermore, elongated cells and higher OD600 values were observed using the plant-based media as compared to cultivation media containing mucin. Conclusion: These differences do not hamper growth, and therefore, our data suggest that the food-grade medium composition described here could be used to produce A. muciniphila with high yields for therapeutic purposes.
Collapse
Affiliation(s)
- Sharon Y. Geerlings
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Kees van der Ark
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
21
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
22
|
Kang EJ, Kim JH, Kim YE, Lee H, Jung KB, Chang DH, Lee Y, Park S, Lee EY, Lee EJ, Kang HB, Rhyoo MY, Seo S, Park S, Huh Y, Go J, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Kim KS, Hwang JH, Jeong JS, Kwon HJ, Yoo HM, Son MY, Kim YG, Lee DH, Kim TY, Kwon HJ, Kim MH, Kim BC, Kim YH, Kang D, Lee CH. The secreted protein Amuc_1409 from Akkermansia muciniphila improves gut health through intestinal stem cell regulation. Nat Commun 2024; 15:2983. [PMID: 38582860 PMCID: PMC10998920 DOI: 10.1038/s41467-024-47275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/β-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/β-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.
Collapse
Affiliation(s)
- Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Livestock Products Analysis Division, Division of Animal health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon, 34146, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hana Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ho Bum Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Moon-Young Rhyoo
- Laboratory Animal Resource Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sohee Park
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yubin Huh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Ji-Seon Jeong
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Applied Biological Engineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- HealthBiome Inc., Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Konstanti P, Ligthart K, Fryganas C, Constantinos P, Smidt H, de Vos WM, Belzer C. Physiology of γ-aminobutyric acid production by Akkermansia muciniphila. Appl Environ Microbiol 2024; 90:e0112123. [PMID: 38088552 PMCID: PMC10807452 DOI: 10.1128/aem.01121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 01/25/2024] Open
Abstract
Gut bacteria hold the potential to produce a broad range of metabolites that can modulate human functions, including molecules with neuroactive potential. One such molecule is γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter of the central nervous system in animals. Metagenomic analyses suggest that the genomes of many gut bacteria encode glutamate decarboxylase (GAD), the enzyme that catalyzes GABA production. The genome of Akkermansia muciniphila, a mucin specialist and potential next-generation probiotic from the human gut, is predicted to encode GAD, suggesting a contributing role in GABA production in the human gut. In this study, A. muciniphila was grown in batch cultures with and without pH control. In both experiments, A. muciniphila was found to produce GABA as a response to acid (pH <5.5), although only when GABA precursors, either glutamate or glutamine, were present in the medium. Proteomic analysis comparing A. muciniphila grown with and without precursors at pH 4 did not show a difference in GAD expression, suggesting that it is expressed regardless of the presence of GABA precursors. To further investigate the function of A. muciniphila GAD, we heterologously expressed the gad gene (encoded by locus tag Amuc_0372) with a His tag in Escherichia coli and purified the GAD protein. Enzyme assays showed GAD activity in a pH range between 4 and 6, with the highest specific activity at pH 5 of 144 ± 16 µM GABA/min/mg. Overall, our results demonstrate the ability of A. muciniphila to produce GABA as an acid response and unravel the conditions under which GABA production in A. muciniphila occurs.IMPORTANCEAkkermansia muciniphila is considered to be a beneficial bacterium from the human gut, but the exact mechanisms by which A. muciniphila influences its host are not yet fully understood. To this end, it is important to identify which metabolites are produced and consumed by A. muciniphila that may contribute to a healthy gut. In the present study, we demonstrate the ability of A. muciniphila to produce γ-aminobutyric acid (GABA) when grown in an acidic environment, which often occurs in the gut. GABA is the major inhibitory neurotransmitter in the central nervous system and is present in the human gut. For this reason, it is considered an important bacterial metabolite. Our finding that A. muciniphila produces GABA in acidic environments adds to the growing body of understanding of its relationship with host health and provides an explanation on how it can survive acid stress in the human gut.
Collapse
Affiliation(s)
- Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kate Ligthart
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Christos Fryganas
- Food Quality and Design, Wageningen University & Research, Wageningen, the Netherlands
| | - Patinios Constantinos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
24
|
Abot A, Brochot A, Pomié N, Astre G, Druart C, de Vos WM, Knauf C, Cani PD. Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release. Heliyon 2023; 9:e18196. [PMID: 37501991 PMCID: PMC10368821 DOI: 10.1016/j.heliyon.2023.e18196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Background and objective Pasteurized Akkermansia muciniphila cells have shown anti-diabetic effects in rodents and human. Although, its primary site of action consists in maintaining the gut barrier function, there are no study exploring if A. muciniphila controls glycemia via a gut to brain axis. Targeting the gut motility represents an alternative pathway to treat hyperglycemia. Here, we tested the impact of pasteurized A. muciniphila on gut motility, gut-brain axis and glucose metabolism. Methods We used mice fed a 45% high-fat (HFD) treated or not with pasteurized A. muciniphila MucT during 12 weeks. We measured the effects of the treatment on body weight gain, glucose metabolism (insulin, glycemia, glucose tolerance), gut contraction and enteric neurotransmitter release, and hypothalamic nitric oxide (NO) release. Results We show that pasteurized A. muciniphila exerts positive effects on different metabolic parameters such as body weight, fat mass, insulin, glycemia and glucose tolerance. This could be explained by the ability of pasteurized A. muciniphila supplementation to decrease duodenal contraction and to increase hypothalamic NO release in HFD mice. Conclusion We demonstrate a novel mode of action of pasteurized A. muciniphila explaining its beneficial impact on the control of glycemia in a preclinical model of type 2 diabetes via gut-brain axis signaling.
Collapse
Affiliation(s)
- Anne Abot
- Enterosys SAS, 31670, Labège, France
| | | | | | | | - Céline Druart
- The Akkermansia Company, 1435, Mont-Saint-Guibert, Belgium
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6700, EH Wageningen, the Netherlands
- Human Microbiome Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Claude Knauf
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS, 60039, CEDEX 3, 31024, Toulouse, France
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France
| | - Patrice D. Cani
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
| |
Collapse
|