1
|
Gao D, Bing C, Griffiths HR. Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy. Adipocyte 2025; 14:2485927. [PMID: 40176539 PMCID: PMC11980453 DOI: 10.1080/21623945.2025.2485927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 04/04/2025] Open
Abstract
Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases Xi’an Jiaotong University, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| | - Chen Bing
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
2
|
Ferreira YAM, Santamarina AB, Mennitti LV, de Souza EA, Prado CM, Pisani LP. Unsaturated fatty acids enhance mitochondrial function and PGC1-α expression in brown adipose tissue of obese mice on a low-carbohydrate diet. J Nutr Biochem 2025; 140:109873. [PMID: 39986635 DOI: 10.1016/j.jnutbio.2025.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/06/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Brown adipose tissue (BAT) exhibits greater resilience against inflammation compared to white adipose tissue. However, chronic consumption of a high-fat diet can render brown adipocytes vulnerable to proinflammatory conditions, leading to a decline in their thermogenic capacity and subsequent dysfunction. The analysis of the effects of type fatty acids intake must be important in the context of the dietary pattern and obesity. This study aims to investigate the impact of a low-carbohydrate/high-fat diet, enriched with different types of fatty acids, on mitochondrial activity on brown adipose tissue in obese mice. Male mice were allocated into different dietary groups: a control diet (CTL), and a high-fat diet (HFD) for a duration of 10 weeks to induce obesity. Subsequently, the HFD group was subdivided into the following categories for an additional 6 weeks: HFD with a low carbohydrate content enriched with saturated fatty acids; HFD with a low carbohydrate content enriched with fish oil; HFD with a low carbohydrate content enriched with soybean oil; and HFD with a low carbohydrate content enriched with olive oil. The findings indicated that in comparison to a low-carbohydrate diet rich in saturated fats, diets rich in unsaturated fatty acids-particularly omega-6 (n-6) and omega-9 (n-9)-resulted in elevated expression of UCP1, a marker of BAT activity. Moreover, there was an increase in the expression of PGC1-α, a protein involved in mitochondrial biogenesis, and enhanced functionality of the oxidative phosphorylation system within BAT mitochondria. These results suggest that n-6 and n-9 fatty acids may confer greater benefits to BAT functionality than saturated fats within the context of a low-carbohydrate diet. Therefore, this study revealed some molecular components that mediate BAT mitochondria function influenced by different fatty acids in a low carbohydrate diet, making it an important therapeutic target in obesity.
Collapse
Affiliation(s)
- Yasmin Alaby Martins Ferreira
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Aline Boveto Santamarina
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Laís Vales Mennitti
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Esther Alves de Souza
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Carla Maximo Prado
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.
| |
Collapse
|
3
|
Kupczyk D, Bilski R, Szeleszczuk Ł, Mądra-Gackowska K, Studzińska R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025; 17:1603. [PMID: 40362911 PMCID: PMC12073256 DOI: 10.3390/nu17091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatic diseases such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are chronic autoimmune disorders characterized by persistent inflammation and oxidative stress, leading to joint damage and reduced quality of life. In recent years, increasing attention has been given to diet as a modifiable environmental factor that can complement pharmacological therapy. This review summarizes current evidence on how key dietary components-such as omega-3 fatty acids, fiber, polyphenols, and antioxidant vitamins-affect inflammatory pathways and oxidative balance. Special emphasis is placed on the Mediterranean diet, low-starch diets, and hypocaloric regimens, which have shown potential in improving disease activity. The gut microbiota emerges as a critical mediator between diet and immune function, with dietary interventions capable of restoring eubiosis and strengthening the intestinal barrier. Additionally, this paper discusses challenges in the clinical implementation of diet therapy, the need for personalized nutritional strategies, and the importance of integrating diet into holistic patient care. Collectively, findings suggest that dietary interventions may reduce disease activity, mitigate systemic inflammation, and enhance patients' overall well-being.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland;
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland;
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Son S, Xu C, Jang J, Dinh M, Skorobogatko Y, Fu H, Valentine JM, An G, Ying W, Yu RT, Downes M, Evans RM, Saltiel AR. Sympathetic activation of white adipose tissue recruits neutrophils to limit energy expenditure. RESEARCH SQUARE 2025:rs.3.rs-6414640. [PMID: 40321773 PMCID: PMC12047989 DOI: 10.21203/rs.3.rs-6414640/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Adipose tissue maintains energy homeostasis by storing lipids during nutrient surplus and releasing them through lipolysis in times of energy demand. While lipolysis is essential for short term metabolic adaptation, prolonged metabolic stress requires adaptive changes that preserve energy reserves. Here, we report that β-adrenergic activation of adipocytes induces a transient and depot-specific infiltration of neutrophils into white adipose tissue (WAT), particularly in lipid-rich visceral WAT. Neutrophil recruitment requires the stimulation of both lipolysis and p38 MAPK activation in adipocytes. Recruited neutrophils locally secrete IL-1β, which suppresses lipolysis and limits excessive energy expenditure. Neutrophil depletion or blockade of IL-1β production increased lipolysis, leading to reduced WAT mass upon repeated β3-adrenergic stimulation. Together, these findings reveal an unexpected role of neutrophil-derived IL-1β in preserving lipid stores during metabolic stress, highlighting a physiological function of innate immune cells in maintaining energy homeostasis.
Collapse
Affiliation(s)
- Seunghwan Son
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Cindy Xu
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Janice Jang
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Maddox Dinh
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Yuliya Skorobogatko
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Haipeng Fu
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Joseph M. Valentine
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Garam An
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Alan R. Saltiel
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Li Y, Zhang H, Ibáñez CF, Xie M. Characterization of subcutaneous and visceral de-differentiated fat cells. Mol Metab 2025; 93:102105. [PMID: 39884650 PMCID: PMC11848481 DOI: 10.1016/j.molmet.2025.102105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE The capacity of mature adipocytes to de-differentiate into fibroblast-like cells has been demonstrated in vitro and a few, rather specific in vivo conditions. A detailed comparison between de-differentiated fat (DFAT) cells and adipose stem and progenitor cells (ASPCs) from different adipose depots is yet to be conducted. Moreover, whether de-differentiation of mature adipocytes from classical subcutaneous and visceral depots occurs under physiological conditions remains unknown. METHODS Here, we used in vitro "ceiling culture", single cell/nucleus RNA sequencing, epigenetic anaysis and genetic lineage tracing to address these unknowns. RESULTS We show that in vitro-derived DFAT cells have lower adipogenic potential and distinct cellular composition compared to ASPCs. In addition, DFAT cells derived from adipocytes of inguinal origin have dramatically higher adipogenic potential than DFAT cells of the epididymal origin, due in part to enhanced NF-KB signaling in the former. We also show that high-fat diet (HFD) feeding enhances DFAT cell colony formation and re-differentiation into adipocytes, while switching from HFD to chow diet (CD) only reverses their re-differentiation. Moreover, HFD deposits epigenetic changes in DFAT cells and ASPCs that are not reversed after returning to CD. Finally, combining genetic lineage tracing and single cell/nucleus RNA sequencing, we demonstrate the existence of DFAT cells in inguinal and epididymal adipose depots in vivo, with transcriptomes resembling late-stage ASPCs. CONCLUSIONS These data uncover the cell type- and depot-specific properties of DFAT cells, as well as their plasticity in response to dietary intervention. This knowledge may shed light on their role in life style change-induced weight loss and regain.
Collapse
Affiliation(s)
- Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Neuroscience, Karolinska Institute, Stockholm 17165, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China; Biosciences and Nutrition Unit, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14183, Sweden.
| |
Collapse
|
6
|
Kim YR, Choi TR, Jo SH, Song WS, Kim T, Kim MG, Baek JH, Kwon SY, Choi BG, Seo SW, Jang CS, Yang YH, Kim YG. Deciphering the anti-obesity mechanisms of pharmabiotic probiotics through advanced multiomics analysis. iScience 2025; 28:111890. [PMID: 40017507 PMCID: PMC11867264 DOI: 10.1016/j.isci.2025.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Probiotics with "pharmabiotic" properties are increasingly recognized as effective tools for combating obesity by altering gut microbiota and reducing body fat. However, the molecular mechanisms underlying their anti-obesity effects remain largely unexplored due to the absence of a universal methodology. Herein, we developed a multiomics-based strategy to elucidate how probiotics reduce lipid production in adipocytes. Our initial investigation assessed the impact of probiotics at defined adipocyte differentiation stages. Leveraging these insights, we performed comprehensive multiomics analyses at key intervals to identify the suppression mechanisms of lipid formation. Lactobacillus reuteri, specifically, targets early differentiation stages, inhibits branched-chain amino acid catabolism, and reduces lipid accumulation in adipocytes by suppressing Krüppel-like factor 5. Concurrently, enhanced hypoxia-inducible factor 1 expression impedes adipogenesis by downregulating lipin-1 expression. This study not only demonstrates the effectiveness of our approach in revealing complex host-microbe interactions but also significantly advances probiotic therapeutic development, offering promising avenues for obesity management.
Collapse
Affiliation(s)
- Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - TaeHyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Bo-Gyeong Choi
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chol-Soon Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
7
|
Alzubi A, Glowacki HX, Burns JL, Van K, Martin JLA, Monk JM. Dose-Dependent Effects of Short-Chain Fatty Acids on 3T3-L1 Adipocyte Adipokine Secretion and Metabolic Function. Nutrients 2025; 17:571. [PMID: 39940429 PMCID: PMC11820615 DOI: 10.3390/nu17030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) produced from microbial fermentation of non-digestible carbohydrates and protein have been shown to modulate adipocyte adipokine secretion and metabolic function, which has implications for mitigating dysfunction in obese adipose tissue; however, the individual effects of different SCFAs and the optimal concentration required is unknown. The purpose of this study was to dose-dependently determine the effects of individual SCFAs on adipocyte adipokine secretion and metabolic function. METHODS We recapitulated the obese adipocyte inflammatory conditions using mature 3T3-L1 adipocytes and a physiological concentration of lipopolysaccharide (LPS) ± individual SCFAs, namely acetate, propionate, and butyrate, in a dose-dependent manner (0.25 mM, 0.5 mM, and 1 mM) for 24 h. RESULTS SCFAs dose-dependently affected inflammatory adipokine secretion, wherein at 1 mM, all three SCFAs reduced the secretion of leptin, IL-6 and IL-1β, but only propionate and butyrate reduced MCP-1/CCL2 and MIP-1α/CCL3 compared to control (p < 0.05). Interestingly, 1 mM acetate increased RANTES/CCL5 secretion versus control, whereas propionate and butyrate decreased RANTES/CCL5 secretion, and only 1 mM propionate reduced MCP-3/CCL7 secretion (p < 0.05). At the lower 0.5 mM concentration, both propionate and butyrate reduced IL-6 and IL-1β secretion compared to control (p < 0.05), and there was no difference in adipokine secretion between groups at the 0.25 mM SCFA concentration (p > 0.05). Intracellular protein expression in the ratio of phosphorylated-to-total STAT3 was reduced by all SCFAs at 1 mM and by propionate and butyrate at 0.5 mM versus control (p < 0.05). The ratio fo phosphorylated-to-total NFκB p65 expression was reduced by propionate and butyrate at 1 mM and by butyrate alone at 0.5 mM compared to control (p < 0.05). Basal (no insulin stimulation) and insulin-stimulated glucose uptake did not differ between control and any 1 mM SCFA treatment conditions (p > 0.05). CONCLUSIONS Individual SCFAs exert different dose-dependent effects on LPS-stimulated adipocyte function.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Sowka A, Balatskyi VV, Navrulin VO, Ntambi JM, Dobrzyn P. Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet. J Cell Physiol 2025; 240:e31510. [PMID: 39943782 DOI: 10.1002/jcp.31510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025]
Abstract
The dysregulation of perivascular adipose tissue (PVAT) is a key contributor to obesity-induced vascular dysfunction. Mouse periaortic adipose tissue is divided into two parts: thoracic perivascular adipose tissue (TPVAT) and abdominal perivascular adipose tissue (APVAT). These two parts have different physiological properties, which translate into different effects on the vascular wall in the onset of metabolic syndrome. Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the synthesis of monounsaturated fatty acids and has been shown to play an important role in metabolic syndrome, including vascular homeostasis. Despite a considerable focus on the role of SCD1 in the development of vascular disorders, there is currently a lack of knowledge of the relationship between SCD1 and PVAT. The present study investigated effects of SCD1 deficiency on lipolysis, β-oxidation, mitochondrial dynamics, and inflammation in mouse TPVAT and APVAT under high-fat diet (HFD) feeding conditions. We found lower triglyceride levels in PVAT in SCD1-/- mice both in vitro and in vivo compared with wildtype perivascular adipocytes, attributable to activated lipolysis and β-oxidation. Moreover, PVAT in HFD-fed SCD1-/- mice was characterized by higher levels of oxidative phosphorylation complexes and mitochondrial respiratory potential and alterations of mitochondrial morphology compared with wildtype mice. Furthermore, TPVAT and APVAT in SCD1-/- mice showed signs of greater pro-inflammatory macrophage polarization and higher inflammatory markers that were induced by a HFD. This may be related to the accumulation free fatty acids and diacylglycerols, which are enriched in saturated fatty acids. These findings elucidate the role of SCD1 in maintaining vascular integrity.
Collapse
Affiliation(s)
- Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Evans AJ, Li YL. Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics. Int J Mol Sci 2024; 25:12464. [PMID: 39596529 PMCID: PMC11594459 DOI: 10.3390/ijms252212464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Jenkins SW, Grunz EA, Ramos KR, Boerman EM. Perivascular Adipose Tissue Becomes Pro-Contractile and Remodels in an IL10 -/- Colitis Model of Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:10726. [PMID: 39409054 PMCID: PMC11476586 DOI: 10.3390/ijms251910726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Inflammatory Bowel Diseases (IBDs) are associated with aberrant immune function, widespread inflammation, and altered intestinal blood flow. Perivascular adipose tissue (PVAT) surrounding the mesenteric vasculature can modulate vascular function and control the local immune cell population, but its structure and function have never been investigated in IBD. We used an IL10-/- mouse model of colitis that shares features with human IBD to test the hypothesis that IBD is associated with (1) impaired ability of PVAT to dilate mesenteric arteries and (2) changes in PVAT resident adipocyte and immune cell populations. Pressure myography and electrical field stimulation of isolated mesenteric arteries show that PVAT not only loses its anti-contractile effect but becomes pro-contractile in IBD. Quantitative immunohistochemistry and confocal imaging studies found significant adipocyte hyperplasia and increased PVAT leukocytes, particularly macrophages, in IBD. PCR arrays suggest that these changes occur alongside the altered cytokine and chemokine gene expression associated with altered NF-κB signaling. Collectively, these results show that the accumulation of macrophages in PVAT during IBD pathogenesis may lead to local inflammation, which ultimately contributes to increased arterial constriction and decreased intestinal blood flow with IBD.
Collapse
Affiliation(s)
| | | | | | - Erika M. Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
11
|
Primaguna MR, Rasyid H, Aman M, Bakri S, Kasim H, Iskandar H, Dwiyanti R, Junita AR, Ridwan R, Noviyanthi RA, Purnamasar NI, Hatta M. The Strong Effect of Propolis in Suppressing NF-κB, CysC, and ACE2 on a High-fat Diet. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2024; 17:1539-1554. [DOI: 10.13005/bpj/2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: A high fat diet (HFD)is one of the main causes of obesity and is closely linked to metabolic disorders brought on by stress and malfunctioning tissues. Propolis (Trigona Honey) is considered to be helpful in treating inflammatory diseases because it has also been demonstrated to have anti-inflammatory and anti-free radical properties. This study to demonstrate how much propolis supplementation affects BW, NF-κB, CysC, and ACE2 levels in Wistar rats (Rattus norvegicus) fed a HFD. Methods: Post-test and control group designs in an experimental setup. A total of twenty-four rats were randomly assigned to four groups of six. Group I received a normal diet for sixteen weeks (ND), Group II received a high fat diet (HFD) for sixteen weeks (HFD), Group III received an HFD for sixteen weeks plus propolis for eight weeks (HFD-8), and Group IV received an HFD and propolis for sixteen weeks (HFD-16). Using the Enzyme-Linked Immunosorbent Assay (ELISA), body weight (BW), serum NF-κB, Cys C, and ACE2 levels were measured before treatment (week 0), after 8 weeks of HFD (HFD-8) (week 8), and after 16 weeks of HFD (HFD-16). Results: The mean starting weight in the ND, HFD, HFD-8, and HFD-16 groups did not differ significantly (p > 0.001). By week eight, the HFD group's body weight had increased considerably (254.83 grams vs. 202.0 grams) in comparison to the ND group (p<0.001). The HFD and HFD-8 groups' body weight increased significantly at week 16 in comparison to the ND group (334.83 grams and 269.50 grams vs. 208.67 grams) (p<0.001). At week 16, there was no discernible difference in mean BW between ND and HFD-16 (p > 0.001). There was no significant difference found in the mean initial NF-κB levels between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). At week 8, NF-κB levels in the HFD group were significantly higher (5,038 ng/ml vs. 3,655 ng/ml) (p<0.001) than in the ND group. At week 16, NF-κB levels in the HFD and HFD-8 groups were notably higher than those in the ND group (p<0.001), at 6,136 ng/ml and 4,378 ng/ml, respectively, compared to 3,775 ng/ml. Between ND and HFD-16, there was no significant distinction in the mean NF-κB levels at week 16 (p>0.001). There was no significant difference observed in the mean CysC and ACE2 between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). CysC and ACE2 levels in the HFD group were significantly higher than those in the ND group at week 8, and in the HFD and HFD-8 groups, they were significantly higher than those in the ND group at week 16. When propolis is administered for eight weeks, the rise in BW, NF-κB, CysC, and ACE2 is suppressed until the eighth week, at which point it increases once more until the sixteenth week. Propolis administration, however, will halt the rise in BW, NF-κB, CysC, and ACE2 until the sixteenth week. Conclusion: Propolis administration for 16 weeks can suppress the increase in BW, LI, RI, NF-κB, CysC and ACE2 levels in rats given a high fat diet (HFD).
Collapse
Affiliation(s)
- Muhammad Reza Primaguna
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Haerani Rasyid
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Makbul Aman
- 3Endocrine and Metabolic Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syakib Bakri
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hasyim Kasim
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Harun Iskandar
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ressy Dwiyanti
- 4Department of Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ade Rifka Junita
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ridwan Ridwan
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rizki Amelia Noviyanthi
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nur Indah Purnamasar
- 7Department of Obstetrics and Gynecology, Faculty of Medicine, Haluoleo University, Kendari, Indonesia
| | - Mochammad Hatta
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
12
|
Choi S, Dalloul RSD, Vemulapalli PB, Yousef S, Goswami N, Schmidt F. Comprehensive Proteomic Profiling of Converted Adipocyte-like Cells from Normal Human Dermal Fibroblasts Using Data-Independent Acquisition Mass Spectrometry. ACS OMEGA 2024; 9:40034-40050. [PMID: 39346858 PMCID: PMC11425921 DOI: 10.1021/acsomega.4c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Adipocytes play an important role in the regulation of systemic energy homeostasis and are closely related to metabolic disorders, such as type-2 diabetes and inflammatory bowel diseases. Particularly, there is an increasing need for a human adipocyte model for studying metabolic diseases and obesity. However, utilizing human primary adipocyte culture and stem-cell-based models presents several practical limitations due to their time-consuming nature, requirement for relatively intensive labor, and high cost. Here, we applied direct conversion of normal human dermal fibroblasts (NHDFs) into adipocyte-like cells using an adipogenic cocktail containing 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and rosiglitazone and confirmed prominent lipid droplet accumulation in the converted cells. For profiling the proteome changes in the converted cells, we conducted a comprehensive quantitative proteome analysis of both the intracellular and extracellular proteome fractions using data-independent acquisition mass spectrometry. We observed that several proteins, which are known to be highly expressed in adipocytes specifically, were dominantly increased in the converted cells. In this study, we suggest that NHDFs can be converted into adipocyte-like cells by an adipogenic cocktail and can serve as a useful tool for studying human adipocytes and their metabolism.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Rajaa S D Dalloul
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Praveen Babu Vemulapalli
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Sondos Yousef
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Neha Goswami
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| |
Collapse
|
13
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
14
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Vaittinen M, Ilha M, Herbers E, Wagner A, Virtanen KA, Pietiläinen KH, Pirinen E, Pihlajamäki J. Liraglutide demonstrates a therapeutic effect on mitochondrial dysfunction in human SGBS adipocytes in vitro. Diabetes Res Clin Pract 2023; 199:110635. [PMID: 36958431 DOI: 10.1016/j.diabres.2023.110635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
AIMS Liraglutide (LG), a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been shown to improve white adipose tissue mitochondrial metabolism in mice but not in human adipocytes. Therefore, we explored whether LG has therapeutic efficacy in mitochondrial dysfunction in human adipocytes in vitro. METHODS We tested the effects of short-term (ST-LG: 24 h) and long-term (LT-LG: D0-15 days) treatments in human SGBS adipocytes on mitochondrial respiration, mRNA and protein expression. GLP-1R inhibition was investigated by the co-treatment of GLP-1R inhibitor, exendin 9-39 (Ex9-39) and ST-LG treatment. We also explored the ability of ST-LG to alleviate mitochondrial dysfunction induced by tumor necrosis factor-alpha (TNFα). RESULTS LT-LG treatment induced the formation of smaller lipid droplets and increased the expression of genes related to lipolysis. Both ST-LG and LT-LG treatments promoted mitochondrial respiration. Additionally, LT-LG treatment increased the expression of a brown adipocyte marker, uncoupling protein 1 (UCP-1), and the markers of mitochondrial biogenesis. Interestingly, ST-LG rescued TNFα-induced defects in mitochondrial energy metabolism and inflammation in SGBS adipocytes. CONCLUSION LG stimulates mitochondrial respiration and biogenesis in human adipocytes, potentially via UCP-1-mediated adipocyte browning. Importantly, our study demonstrates for the first time that LG has a therapeutic potential on mitochondrial activity in human adipocytes.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Mariana Ilha
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Elena Herbers
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Anita Wagner
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, FIN-90220 Oulu, Finland
| | - Kirsi A Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, FIN-90220 Oulu, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
16
|
Madsen S, Nelson ME, Deshpande V, Humphrey SJ, Cooke KC, Howell A, Diaz-Vegas A, Burchfield JG, Stöckli J, James DE. Deep Proteome Profiling of White Adipose Tissue Reveals Marked Conservation and Distinct Features Between Different Anatomical Depots. Mol Cell Proteomics 2023; 22:100508. [PMID: 36787876 PMCID: PMC10014311 DOI: 10.1016/j.mcpro.2023.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
White adipose tissue is deposited mainly as subcutaneous adipose tissue (SAT), often associated with metabolic protection, and abdominal/visceral adipose tissue, which contributes to metabolic disease. To investigate the molecular underpinnings of these differences, we conducted comprehensive proteomics profiling of whole tissue and isolated adipocytes from these two depots across two diets from C57Bl/6J mice. The adipocyte proteomes from lean mice were highly conserved between depots, with the major depot-specific differences encoded by just 3% of the proteome. Adipocytes from SAT (SAdi) were enriched in pathways related to mitochondrial complex I and beiging, whereas visceral adipocytes (VAdi) were enriched in structural proteins and positive regulators of mTOR presumably to promote nutrient storage and cellular expansion. This indicates that SAdi are geared toward higher catabolic activity, while VAdi are more suited for lipid storage. By comparing adipocytes from mice fed chow or Western diet (WD), we define a core adaptive proteomics signature consisting of increased extracellular matrix proteins and decreased fatty acid metabolism and mitochondrial Coenzyme Q biosynthesis. Relative to SAdi, VAdi displayed greater changes with WD including a pronounced decrease in mitochondrial proteins concomitant with upregulation of apoptotic signaling and decreased mitophagy, indicating pervasive mitochondrial stress. Furthermore, WD caused a reduction in lipid handling and glucose uptake pathways particularly in VAdi, consistent with adipocyte de-differentiation. By overlaying the proteomics changes with diet in whole adipose tissue and isolated adipocytes, we uncovered concordance between adipocytes and tissue only in the visceral adipose tissue, indicating a unique tissue-specific adaptation to sustained WD in SAT. Finally, an in-depth comparison of isolated adipocytes and 3T3-L1 proteomes revealed a high degree of overlap, supporting the utility of the 3T3-L1 adipocyte model. These deep proteomes provide an invaluable resource highlighting differences between white adipose depots that may fine-tune their unique functions and adaptation to an obesogenic environment.
Collapse
Affiliation(s)
- Søren Madsen
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Marin E Nelson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Vinita Deshpande
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anna Howell
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
17
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
18
|
Damián-Medina K, Milenkovic D, Salinas-Moreno Y, Corral-Jara KF, Figueroa-Yáñez L, Marino-Marmolejo E, Lugo-Cervantes E. Anthocyanin-rich extract from black beans exerts anti-diabetic effects in rats through a multi-genomic mode of action in adipose tissue. Front Nutr 2022; 9. [DOI: https:/doi.org/10.3389/fnut.2022.1019259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Black beans (BB) are an important source of a range of plant bioactive compounds including polyphenols, particularly anthocyanins. Several studies support that consumption of BB is associated with health benefits, including prevention of type 2 diabetes mellitus (T2DM). However, molecular mechanisms underlying the potential health properties of BB on adipose tissue (AT) are still largely unknown. The purpose of this study was to investigate multi-genomic effects of BB intake and identify regulatory networks potentially mediating T2DM on AT. Male Wistar diabetic rats consumed an anthocyanin-rich black bean extract for 5 weeks. Global gene expression from AT, protein coding and non-coding RNA profiles were determined using RNAseq. Biological function analyses were performed using a variety of bioinformatic tools. The evaluation of global gene expression profiles exhibited significant change following BB consumption with 406 significantly differentially expressed genes, 33 miRNA and 39 lncRNA and 3 snRNA. Functional analyses indicated that these genes play an important role in regulation of PI3K signaling, NIN/NF-kB signaling, insulin secretion, and endoplasmic reticulum (ER) organization. Interestingly, transcription factors such as GATA2, or POU2AF1 demonstrated to modulate their activity by BB extract by direct interaction with polyphenol metabolites, or by interactions with cell signaling proteins, like PKB, AKT or PI3K, that could control transcription factor activity and as a result impact on adipogenesis regulation. Therefore, the constant consumption of an anthocyanin-rich black bean extract may have anti-diabetic protective effects by modulating gene expression, resulting in a promising alternative for T2DM patients.
Collapse
|
19
|
Damián-Medina K, Milenkovic D, Salinas-Moreno Y, Corral-Jara KF, Figueroa-Yáñez L, Marino-Marmolejo E, Lugo-Cervantes E. Anthocyanin-rich extract from black beans exerts anti-diabetic effects in rats through a multi-genomic mode of action in adipose tissue. Front Nutr 2022; 9:1019259. [PMID: 36451736 PMCID: PMC9702351 DOI: 10.3389/fnut.2022.1019259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2023] Open
Abstract
Black beans (BB) are an important source of a range of plant bioactive compounds including polyphenols, particularly anthocyanins. Several studies support that consumption of BB is associated with health benefits, including prevention of type 2 diabetes mellitus (T2DM). However, molecular mechanisms underlying the potential health properties of BB on adipose tissue (AT) are still largely unknown. The purpose of this study was to investigate multi-genomic effects of BB intake and identify regulatory networks potentially mediating T2DM on AT. Male Wistar diabetic rats consumed an anthocyanin-rich black bean extract for 5 weeks. Global gene expression from AT, protein coding and non-coding RNA profiles were determined using RNAseq. Biological function analyses were performed using a variety of bioinformatic tools. The evaluation of global gene expression profiles exhibited significant change following BB consumption with 406 significantly differentially expressed genes, 33 miRNA and 39 lncRNA and 3 snRNA. Functional analyses indicated that these genes play an important role in regulation of PI3K signaling, NIN/NF-kB signaling, insulin secretion, and endoplasmic reticulum (ER) organization. Interestingly, transcription factors such as GATA2, or POU2AF1 demonstrated to modulate their activity by BB extract by direct interaction with polyphenol metabolites, or by interactions with cell signaling proteins, like PKB, AKT or PI3K, that could control transcription factor activity and as a result impact on adipogenesis regulation. Therefore, the constant consumption of an anthocyanin-rich black bean extract may have anti-diabetic protective effects by modulating gene expression, resulting in a promising alternative for T2DM patients.
Collapse
Affiliation(s)
- Karla Damián-Medina
- Food Technology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Yolanda Salinas-Moreno
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Guadalajara, Jalisco, Mexico
| | | | - Luis Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Erika Marino-Marmolejo
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Eugenia Lugo-Cervantes
- Food Technology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|