1
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
2
|
Deng Z, Zeng X, Lin B, Chen L, Wu J, Zheng J, Ma Y, Lyu FJ, Zheng Q. Human umbilical cord mesenchymal stem cells on treating osteoarthritis in a rabbit model: Injection strategies. Heliyon 2024; 10:e38384. [PMID: 39430502 PMCID: PMC11489144 DOI: 10.1016/j.heliyon.2024.e38384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UCMSCs) are a novel stem-cell source to treat osteoarthritis (OA). Here we investigated the therapeutic effects of UCMSCs injection strategies on knee OA in a rabbit model. Thirty OA rabbits randomly received normal saline, a single dose of 1 × 106 UCMSCs, or three injections of 1 × 106 UCMSCs at 2, 4, 6 weeks. Articular cartilages were collected after 8 weeks. Macroscopic and histological assessments indicated that intra-articular injection of UCMSCs, both single and multiple injection, significantly reduced the formation of periarticular osteophytes and articular cartilage degeneration when compared with the control. Furthermore, both UCMSCs injections increased the expression of chondrogenic markers in the articular cartilage, and reduced the levels of TNF-α and IL-6 in synovium. Micro-CT showed significant reduction of sub-chondral bone degeneration and osteophytes in the multiple-injection group compared to the control and single-injection group. Taken together, intra-articular injection of UCMSCs for OA treatment is safe and effective. Single and multiple injection of UCMSCs had comparable reparative effect on cartilage lesions, while multiple injection of UCMSCs further exerted effect on enhancing subchondral bone volume.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoli Zeng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Bofu Lin
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lixuan Chen
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jiwei Wu
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jie Zheng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Lin X, Liu R, Beitzel J, Zhou Y, Lagadon C, Zhang M. Injectable Biodegradable Chitosan-PEG/PEG-Dialdehyde Hydrogel for Stem Cell Delivery and Cartilage Regeneration. Gels 2024; 10:508. [PMID: 39195037 DOI: 10.3390/gels10080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cell-based therapy holds promise for cartilage regeneration in treating knee osteoarthritis (KOA). Injectable hydrogels have been developed to mimic the extracellular matrix (ECM) and facilitate stem cell growth, proliferation, and differentiation. However, these hydrogels face limitations such as poor mechanical strength, inadequate biocompatibility, and suboptimal biodegradability, collectively hindering their effectiveness in cartilage regeneration. This study introduces an injectable, biodegradable, and self-healing hydrogel composed of chitosan-PEG and PEG-dialdehyde for stem cell delivery. This hydrogel can form in situ by blending two polymer solutions through injection at physiological temperature, encapsulating human adipose-derived stem cells (hADSCs) during the gelation process. Featuring a 3D porous structure with large pore size, optimal mechanical properties, biodegradability, easy injectability, and rapid self-healing capability, the hydrogel supports the growth, proliferation, and differentiation of hADSCs. Notably, encapsulated hADSCs form 3D spheroids during proliferation, with their sizes increasing over time alongside hydrogel degradation while maintaining high viability for at least 10 days. Additionally, hADSCs encapsulated in this hydrogel exhibit upregulated expression of chondrogenic differentiation genes and proteins compared to those cultured on 2D surfaces. These characteristics make the chitosan-PEG/PEG-dialdehyde hydrogel-stem cell construct suitable for direct implantation through minimally invasive injection, enhancing stem cell-based therapy for KOA and other cell-based treatments.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Ruofan Liu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jacob Beitzel
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Chloe Lagadon
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Feng W, Zhu C, Miao R, Li D, Xiong X, Wang R, Liu G, Ma J. Comparative Efficacy of Endogenous Stem Cells Recruiting Hydrogels and Stem Cell-loaded Hydrogels in Knee Cartilage Regeneration: A Meta- analysis. Curr Stem Cell Res Ther 2024; 19:993-1008. [PMID: 37711133 DOI: 10.2174/1574888x19666230914123443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cartilage defects remain a challenge in diseases such as osteoarthritis (OA) and fractures. Scientists have explored the use of hydrogels in conjunction with stem cell technology as a tissue engineering method to treat cartilage defects in joints. In recent years, research into hydrogels containing stem cell technology for cartilage repair has mainly focused on two categories: stem cell-loaded hydrogels and endogenous stem cell recruiting hydrogels. The latter, utilizing cell-free products, represents a novel concept with several advantages, including easier dose standardization, wider sources, and simpler storage. This meta-analysis aims to assess and compare the therapeutic effects of endogenous stem cell recruiting hydrogels and stem cell-loaded hydrogels in promoting articular cartilage regeneration in animal models, with the goal of exploring endogenous stem cell recruiting hydrogels as a promising replacement therapy for knee cartilage regeneration in preclinical animal studies. METHODS We systematically searched PubMed, Web of Science, Cochrane Library, and Embase until January 2023 using key words related to stem cells, cartilage regeneration and hydrogel. A random-effects meta-analysis was performed to evaluate the therapeutic effect on newborn cartilage formation. Stratified analyses were also carried out by independently classifying trials according to similar characteristics. The level of evidence was determined using the GRADE method. RESULTS Twenty-eight studies satisfied the inclusion criteria. Comprehensive analyses revealed that the use of endogenous stem cell recruiting hydrogels significantly promoted the formation of new cartilage in the knee joint, as evidenced by the histological score (3.77, 95% CI 2.40, 5.15; p < 0.0001) and the International Cartilage Repair Society (ICRS) macroscopic score (3.00, 95% CI 1.83, 4.18; p = 0.04), compared with the control group. The stem cell-loaded hydrogels also increased cartilage regeneration in the knee with the histological score (3.13, 95% CI 2.22, 4.04; p = 0.02) and the ICRS macroscopic score (2.49, 95% CI 1.16, 3.82; p = 0.03) in comparison to the control. Significant heterogeneity between studies was observed, and further stratified and sensitivity analyses identified the transplant site and modelling method as the sources of heterogeneity. CONCLUSION The current study indicates that both endogenous stem cell recruiting hydrogels and stem cell loaded hydrogels can effectively promote knee joint cartilage regeneration in animal trials.
Collapse
Affiliation(s)
- Wanyun Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
| | - Chaohua Zhu
- The First Hospital of Hebei Medical University, Hebei Province, 050000, China
| | - Ruoxiang Miao
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
| | - Danni Li
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
| | - Xi Xiong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
| | - Ruyu Wang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
| | - Guobin Liu
- The First Hospital of Hebei Medical University, Hebei Province, 050000, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Department of Human Anatomy, Hebei Medical University, Hebei Province, 050017, China
| |
Collapse
|
6
|
Makarczyk MJ. Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis 2023; 19:2278235. [PMID: 37963189 PMCID: PMC10898818 DOI: 10.1080/15476278.2023.2278235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Articular cartilage is a common cartilage type found in a multitude of joints throughout the human body. However, cartilage is limited in its regenerative capacity. A range of methods have been employed to aid adults under the age of 45 with cartilage defects, but other cartilage pathologies such as osteoarthritis are limited to non-steroidal anti-inflammatory drugs and total joint arthroplasty. Cell therapies and synthetic biology can be utilized to assist not only cartilage defects but have the potential as a therapeutic approach for osteoarthritis as well. In this review, we will cover current cell therapy approaches for cartilage defect regeneration with a focus on autologous chondrocyte implantation and matrix autologous chondrocyte implantation. We will then discuss the potential of stem cells for cartilage repair in osteoarthritis and the use of synthetic biology to genetically engineer cells to promote cartilage regeneration and potentially reverse osteoarthritis.
Collapse
Affiliation(s)
- Meagan J Makarczyk
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Xie Y, Peng Y, Fu G, Jin J, Wang S, Li M, Zheng Q, Lyu FJ, Deng Z, Ma Y. Nano wear particles and the periprosthetic microenvironment in aseptic loosening induced osteolysis following joint arthroplasty. Front Cell Infect Microbiol 2023; 13:1275086. [PMID: 37854857 PMCID: PMC10579613 DOI: 10.3389/fcimb.2023.1275086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Joint arthroplasty is an option for end-stage septic arthritis due to joint infection after effective control of infection. However, complications such as osteolysis and aseptic loosening can arise afterwards due to wear and tear caused by high joint activity after surgery, necessitating joint revision. Some studies on tissue pathology after prosthesis implantation have identified various cell populations involved in the process. However, these studies have often overlooked the complexity of the altered periprosthetic microenvironment, especially the role of nano wear particles in the etiology of osteolysis and aseptic loosening. To address this gap, we propose the concept of the "prosthetic microenvironment". In this perspective, we first summarize the histological changes in the periprosthetic tissue from prosthetic implantation to aseptic loosening, then analyze the cellular components in the periprosthetic microenvironment post prosthetic implantation. We further elucidate the interactions among cells within periprosthetic tissues, and display the impact of wear particles on the disturbed periprosthetic microenvironments. Moreover, we explore the origins of disease states arising from imbalances in the homeostasis of the periprosthetic microenvironment. The aim of this review is to summarize the role of relevant factors in the microenvironment of the periprosthetic tissues, in an attempt to contribute to the development of innovative treatments to manage this common complication of joint replacement surgery.
Collapse
Affiliation(s)
- Yu Xie
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Guangtao Fu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mengyuan Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
李 驰, 樊 瑜, 郑 丽. [Differentiation of stem cells regulated by biophysical cues]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:609-616. [PMID: 37666749 PMCID: PMC10477397 DOI: 10.7507/1001-5515.202208002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/03/2022] [Indexed: 09/06/2023]
Abstract
Stem cells have been regarded with promising application potential in tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities. However, their fate is relied on their local microenvironment, or niche. Recent studied have demonstrated that biophysical factors, defined as physical microenvironment in which stem cells located play a vital role in regulating stem cell committed differentiation. In vitro, synthetic physical microenvironments can be used to precisely control a variety of biophysical properties. On this basis, the effect of biophysical properties such as matrix stiffness, matrix topography and mechanical force on the committed differentiation of stem cells was further investigated. This paper summarizes the approach of mechanical models of artificial physical microenvironment and reviews the effects of different biophysical characteristics on stem cell differentiation, in order to provide reference for future research and development in related fields.
Collapse
Affiliation(s)
- 驰宇 李
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - 瑜波 樊
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - 丽沙 郑
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Chen W, He Z, Li S, Wu Z, Tan J, Yang W, Li G, Pan X, Liu Y, Lyu FJ, Li W. The Effect of Tissue Stromal Vascular Fraction as Compared to Cellular Stromal Vascular Fraction to Treat Anal Sphincter Incontinence. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010032. [PMID: 36671604 PMCID: PMC9854502 DOI: 10.3390/bioengineering10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND The long-term prognosis of current treatments for anal sphincter incontinence (ASI) is poor. Here, we explored the efficacy of tissue adipose stromal vascular fraction SVF (tSVF) on ASI and compared it to that of cellular SVF (cSVF). We then investigated possible mechanisms. METHODS Rat cSVF and tSVF were isolated and labeled with DIL. One day after modeling, three groups received phosphate-buffered saline (PBS), cSVF, tSVF, respectively. The control group received nil modeling nor any treatments. The effect was assessed by function test for anal pressure and electromyography, and staining for fiber content, proliferation and differentiation at day 5 and day 10. RESULTS cSVF injection resulted in faster healing than tSVF. The cSVF group showed significant improvement on anal pressure on day 10. For the electromyography test, cSVF showed significant improvement for the frequencies on day 10, and for the peak values on both time points, while tSVF showed significant improvement for the peak values on day 10. The two SVF both alleviated fibrosis. Immunofluorescence tracing identified differentiation of some injected cells towards myosatellite cells and smooth muscle cells in both SVF groups. For all the tests, the tSVF group tends to have similar or lower effects than the cSVF group with no significant difference. CONCLUSION cSVF and tSVF are both safe and effective in treating ASI, while the effect of cSVF is slighter higher than tSVF.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Zijian He
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Shuyu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zixin Wu
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Jin Tan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Yang
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Guanwei Li
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Xiaoling Pan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Yuying Liu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
- Correspondence: (F.-J.L.); (W.L.)
| | - Wanglin Li
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
- Correspondence: (F.-J.L.); (W.L.)
| |
Collapse
|
10
|
Grogan S, Kopcow J, D’Lima D. Challenges Facing the Translation of Embryonic Stem Cell Therapy for the Treatment of Cartilage Lesions. Stem Cells Transl Med 2022; 11:1186-1195. [PMID: 36493381 PMCID: PMC9801304 DOI: 10.1093/stcltm/szac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/02/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a common disease resulting in significant disability without approved disease-modifying treatment (other than total joint replacement). Stem cell-based therapy is being actively explored for the repair of cartilage lesions in the treatment and prevention of osteoarthritis. Embryonic stem cells are a very attractive source as they address many of the limitations inherent in autologous stem cells, such as variability in function and limited expansion. Over the past 20 years, there has been widespread interest in differentiating ESC into mesenchymal stem cells and chondroprogenitors with successful in vitro, ex vivo, and early animal studies. However, to date, none have progressed to clinical trials. In this review, we compare and contrast the various approaches to differentiating ESC; and discuss the benefits and drawbacks of each approach. Approaches relying on spontaneous differentiation are simpler but not as efficient as more targeted approaches. Methods replicating developmental biology are more efficient and reproducible but involve many steps in a complicated process. The small-molecule approach, arguably, combines the advantages of the above two methods because of the relative efficiency, reproducibility, and simplicity. To better understand the reasons for lack of progression to clinical applications, we explore technical, scientific, clinical, and regulatory challenges that remain to be overcome to achieve success in clinical applications.
Collapse
Affiliation(s)
- Shawn Grogan
- Corresponding author: Darryl D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education, Scripps Health, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Joel Kopcow
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| |
Collapse
|
11
|
Mesenchymal Stromal Cells Laden in Hydrogels for Osteoarthritis Cartilage Regeneration: A Systematic Review from In Vitro Studies to Clinical Applications. Cells 2022; 11:cells11243969. [PMID: 36552733 PMCID: PMC9777087 DOI: 10.3390/cells11243969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This systematic review is focused on the main characteristics of the hydrogels used for embedding the mesenchymal stromal cells (MSCs) in in vitro/ex vivo studies, in vivo OA models and clinical trials for favoring cartilage regeneration in osteoarthritis (OA). PubMED and Embase databases were used to select the papers that were submitted to a public reference manager Rayyan Systematic Review Screening Software. A total of 42 studies were considered eligible: 25 articles concerned in vitro studies, 2 in vitro and ex vivo ones, 5 in vitro and in vivo ones, 8 in vivo ones and 2 clinical trials. Some in vitro studies evidenced a rheological characterization of the hydrogels and description of the crosslinking methods. Only 37.5% of the studies considered at the same time chondrogenic, fibrotic and hypertrophic markers. Ex vivo studies focused on hydrogel adhesion properties and the modification of MSC-laden hydrogels subjected to compression tests. In vivo studies evidenced the effect of cell-laden hydrogels in OA animal models or defined the chondrogenic potentiality of the cells in subcutaneous implantation models. Clinical studies confirmed the positive impact of these treatments on patients with OA. To speed the translation to the clinical use of cell-laden hydrogels, further studies on hydrogel characteristics, injection modalities, chemo-attractant properties and adhesion strength are needed.
Collapse
|
12
|
Ni Q, Chen H, Li B, He H, Shi H, Zhu J, Wang H, Chen L. miR-200b-3p/ERG/PTHrP axis mediates the inhibitory effect of ethanol on the differentiation of fetal cartilage into articular cartilage. Chem Biol Interact 2022; 368:110201. [PMID: 36174738 DOI: 10.1016/j.cbi.2022.110201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aims to further explore cartilage development in prenatal ethanol exposure (PEE) offspring at different times to explore the specific time points and mechanism of ethanol-induced fetal cartilage dysplasia. METHODS On gestational day (GD)14, GD17, and GD20, PEE fetal cartilage was evaluated by morphological analysis. RT-qPCR, immunohistochemistry, and immunofluorescence were used to detect the expression of cartilage marker genes and their regulatory factors. Bone marrow mesenchymal stem cells (BMSCs) were used to explore the effect of ethanol on the differentiation of chondrocytes. Additionally, we used inhibitors, overexpression plasmids and a luciferase reporter assay on GD17 chondrocytes to verify the mechanism. RESULTS PEE significantly reduced cartilage matrix content and the expression of marker genes on GD17 and GD20 but had no effect on GD14. The inhibition of chondrogenic differentiation by PEE mainly occurred on GD14-17. Furthermore, the expression of miR-200b-3p was increased, while that of ERG and PTHrP was markedly reduced in PEE fetal cartilage. In vitro, ethanol (30-120 mM) inhibited the differentiation of BMSCs into chondrocytes in a concentration-dependent manner, accompanied by strong expression of miR-200b-3p and low expression of ERG and PTHrP. Moreover, PTHLH and ERG overexpressed, as well as a miR-200b-3p inhibitor reversed the inhibitory effect of ethanol on the differentiation of fetal chondrocytes. Furthermore, miR-200b-3p could target and negatively regulate ERG. CONCLUSIONS PEE can significantly inhibit the development of articular cartilage, especially during articular cartilage formation. The mechanism is related to the decreased differentiation of fetal cartilage into articular cartilage mediated by the miR-200b-3p/ERG/PTHrP axis.
Collapse
Affiliation(s)
- Qubo Ni
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Haitao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hangyuan He
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Huasong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jiayong Zhu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China.
| |
Collapse
|
13
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
14
|
Hu J, Li C, Jin S, Ye Y, Fang Y, Xu P, Zhang C. Salvianolic acid B combined with bone marrow mesenchymal stem cells piggybacked on HAMA hydrogel re-transplantation improves intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:950625. [PMID: 36237221 PMCID: PMC9552300 DOI: 10.3389/fbioe.2022.950625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-based tissue engineering approaches have emerged as a realistic alternative for regenerative disc tissue repair. The multidirectional differentiation potential of bone marrow mesenchymal stem cells (BMSCs) to treat disc degeneration intervertebral disc degeneration has also become a viable option. We used 1% HAMA hydrogel as a carrier and co-encapsulated BMSCs and Salvianolic acid B (SalB) into the hydrogel to reduce the apoptosis of the transplanted cells. The protective effect of SalB on BMSCs was first verified in vitro using the CCK8 method, flow cytometry, and Western-Blotting, and the physical properties and biocompatibility of HAMA hydrogels were verified in vitro. The rat model was then established using the pinprick method and taken at 4 and 8 W, to examine the extent of disc degeneration by histology and immunohistochemistry, respectively. It was found that SalB could effectively reduce the apoptosis of BMSCs in vitro by activating the JAK2-STAT3 pathway. 1% HAMA hydrogels had larger pore size and better water retention, and the percentage of cell survival within the hydrogels was significantly higher after the addition of SalB to the HAMA hydrogels. In the in vivo setting, the HAMA + SalB + BMSCs group had a more pronounced delaying effect on the progression of disc degeneration compared to the other treatment groups. The method used in this study to encapsulate protective drugs with stem cells in a hydrogel for injection into the lesion has potential research value in the field of regenerative medicine.
Collapse
Affiliation(s)
- Jie Hu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Cai Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Shichang Jin
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuchen Ye
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuekun Fang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Panpan Xu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Changchun Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Changchun Zhang,
| |
Collapse
|
15
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Material Properties and Cell Compatibility of Photo-Crosslinked Sericin Urethane Methacryloyl Hydrogel. Gels 2022; 8:gels8090543. [PMID: 36135255 PMCID: PMC9498915 DOI: 10.3390/gels8090543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
There is a need to develop novel cytocompatible hydrogels for cell encapsulation and delivery in regenerative medicine. The objective of this work was to synthesize isocyanato ethyl methacryloyl-functionalized sericin and determine its material properties as a natural hydrogel for the encapsulation and delivery of human mesenchymal stem cells (MSCs) in regenerative medicine. Sericin extracted from silk cocoons was reacted with 2-isocyanatoethyl methacrylate (IEM) or methacrylic anhydride (MA) to produce sericin urethane methacryloyl (SerAte-UM) or sericin methacryloyl (SerAte-M, control) biopolymers, respectively. The hydrogels produced by photo-crosslinking of the biopolymers in an aqueous solution were characterized with respect to gelation kinetics, microstructure, compressive modulus, water content, degradation, permeability, and viability of encapsulated cells. The secondary structure of citric acid-extracted sericin was not affected by functionalization with IEM or MA. SerAte-UM hydrogel was slightly more hydrophilic than SerAte-M. The gelation time of SerAte-UM hydrogel decreased with an increasing degree of modification. The photo-polymerized SerAte-UM hydrogel had a highly porous, fibrous, honeycomb microstructure with an average pore size in the 40−50 µm range. The compressive modulus, swelling ratio, and permeability of SerAte-UM hydrogel depended on the degree of modification of sericin, and the mass loss after 21 days of incubation in aqueous solution was <25%. Both SerAte-UM and SerAte-M hydrogels supported viability and growth in encapsulated MSCs. The SerAte-UM hydrogel, with its higher hydrophilicity compared to SerAte-M, is promising as a matrix for encapsulation and delivery of stem cells in tissue engineering.
Collapse
|
17
|
Wang F, Li Z, Lyu FJ, Gao J, Lin J, Liu J, Chen X, Li Z, Shan J, Wu J. The therapeutic effect of stem cells from human exfoliated deciduous teeth on a rat model of tracheal fistula. Stem Cell Res Ther 2022; 13:310. [PMID: 35841116 PMCID: PMC9284811 DOI: 10.1186/s13287-022-02994-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tracheal fistulas (TF) can be dangerous and even fatal in patients. The current treatment is really challenging. Previous studies reported that mesenchymal stem cells (MSCs) could be used to treat respiratory tract fistulas. Stem cells from human exfoliated deciduous teeth (SHED) are considered to be MSC-like cells that may also have the potential to treat the tracheal fistulas. In this study, we investigated the therapeutic effects of SHED in rat tracheal fistula models. Methods A total of 80 SD rats were randomly divided into five groups: a sham-operated group, a local PBS group (L-PBS), an intravenous PBS group (I-PBS), a local SHED treatment group (L-SHED), and an intravenous SHED treatment group (I-SHED). The L-SHED and I-SHED groups were given a topical application around the fistula or an intravenous injection of 1*107 SHED via the tail vein, respectively, while the L-PBS and I-PBS groups were given an equivalent volume of PBS through local or intravenous administration. A stereomicroscope was used to observe fistula healing on the 2nd, 3rd, and 5th days following transplantation. On the 7th day, the survival of SHED was observed by immunofluorescence. The pathology of the lungs and fistulas was observed by hematoxylin and eosin (H&E) and Masson staining. The expression levels of the Toll-like receptor 4 (TLR4), interleukin (IL)-1β, IL-33, and IL-4 were measured using immunohistochemistry. The expression levels of TLR4, high mobility group box 1 (HMGB1), and myeloid differentiation factor 88 (MYD88) were studied using western blotting. On day 14, airway responsiveness of rats was detected and analyzed. Results Fistula healing in the L-SHED and I-SHED groups was faster than that in their respective PBS groups after transplantation. The fistula diameters in the L-SHED and I-SHED groups were significantly smaller than those in the L-PBS and I-PBS groups on the 3rd day. Moreover, the phenomenon of fibroblast proliferation and new blood vessel growth around the fistula seemed more pronounced in the L-SHED and I-SHED groups. Although no discernible difference was found in airway responsiveness after SHED treatment, the degree of inflammation in the lungs was reduced by intravenous SHED treatment. However, there was no significant reduction in lung inflammation by local SHED treatment. The expression levels of IL-1β and IL-33 were decreased in the I-SHED group, while IL-4 was elevated compared with the I-PBS group. Interestingly, intravenous SHED treatment inhibited the activation of HMGB1/TLR4/MYD88 in the lung tissues of TF rats. Conclusions SHED transplantation accelerated the rate of fistula healing in rats. Intravenous SHED treatment reduced lung inflammation. Thus, SHED may have potential in the treatment of tracheal fistula, providing hope for future therapeutic development for TF.
Collapse
Affiliation(s)
- Fang Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Zhangwen Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Feng-Juan Lyu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jie Gao
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jinle Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, The second school of clinical medicine, Southern Medical University, Shenzhen, 518101, China
| | - Jianling Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Xiaowen Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China
| | - Zhongpeng Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiajie Shan
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China. .,Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, 510080, China.
| |
Collapse
|
18
|
The Effect of Mesenchymal Stem Cells, Adipose Tissue Derived Stem Cells, and Cellular Stromal Vascular Fraction on the Repair of Acute Anal Sphincter Injury in Rats. Bioengineering (Basel) 2022; 9:bioengineering9070318. [PMID: 35877369 PMCID: PMC9311655 DOI: 10.3390/bioengineering9070318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Anal sphincter incontinence (ASI) can cause a serious decline in the quality of life and can cause a socioeconomic burden. Studies have shown that bone marrow mesenchymal stem cells (MSC) have significant therapeutic effects on ASI, but the cost and risk of MSC harvest limit their further application. In contrast, adipose tissue derived stem cells (ADSC) and cellular stromal vascular fraction (CSVF) as stem cell sources have multipotency and the advantage of easy harvest. Objective: Here we aim to investigate the effects of ADSC and CSVF on treating ASI and compare them to that of bone marrow MSC. Methods: Bone marrow MSC, ADSC, and CSVF were obtained and labeled with green fluorescent protein (GFP), and CSVF was labeled with DIL. Sprague Dawley (SD) rats were divided into 5 groups. Four groups were injected with 0.2 mL phosphate buffer saline (PBS), 1 × 107/0.2 mL of MSC, ADSC, or CSVF, respectively, after model establishment. The control group received no treatment. The repair was assessed by anal functional tests and immunostaining on day 5 and day 10 after injection. Results: MSC, ADSC, and CSVF significantly promoted tissue repair and the recovery of muscle contraction and electromyographic activity in ASI. The generation of myosatellite cells by injected MSC, ADSC, and CSVF was found in the wounded area. On day 5, CSVF showed highest therapeutic effect, while on day 10, MSC and ADSC showed higher therapeutic effects than CSVF. When comparing the effects of MSC and ADSC, ADSC was slightly better than MSC in the indexes of anal pressure, etc. Conclusion: ADSC and CVSF are alternative stem cell sources for ASI repair.
Collapse
|
19
|
Impact of Microenvironmental Changes during Degeneration on Intervertebral Disc Progenitor Cells: A Comparison with Mesenchymal Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9040148. [PMID: 35447707 PMCID: PMC9025850 DOI: 10.3390/bioengineering9040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc (IVD) degeneration occurs with natural ageing and is linked to low back pain, a common disease. As an avascular tissue, the microenvironment inside the IVD is harsh. During degeneration, the condition becomes even more compromised, presenting a significant challenge to the survival and function of the resident cells, as well as to any regeneration attempts using cell implantation. Mesenchymal stem cells (MSCs) have been proposed as a candidate stem cell tool for IVD regeneration. Recently, endogenous IVD progenitor cells have been identified inside the IVD, highlighting their potential for self-repair. IVD progenitor cells have properties similar to MSCs, with minor differences in potency and surface marker expression. Currently, it is unclear how IVD progenitor cells react to microenvironmental factors and in what ways they possibly behave differently to MSCs. Here, we first summarized the microenvironmental factors presented in the IVD and their changes during degeneration. Then, we analyzed the available studies on the responses of IVD progenitor cells and MSCs to these factors, and made comparisons between these two types of cells, when possible, in an attempt to achieve a clear understanding of the characteristics of IVD progenitor cells when compared to MSCs; as well as, to provide possible clues to cell fate after implantation, which may facilitate future manipulation and design of IVD regeneration studies.
Collapse
|
20
|
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 2022; 172:41-52. [PMID: 35114357 DOI: 10.1016/j.ejpb.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.
Collapse
Affiliation(s)
- P Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - C Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - O Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
21
|
Combinations of Hydrogels and Mesenchymal Stromal Cells (MSCs) for Cartilage Tissue Engineering-A Review of the Literature. Gels 2021; 7:gels7040217. [PMID: 34842678 PMCID: PMC8628761 DOI: 10.3390/gels7040217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 01/17/2023] Open
Abstract
Cartilage offers limited regenerative capacity. Cell-based approaches have emerged as a promising alternative in the treatment of cartilage defects and osteoarthritis. Due to their easy accessibility, abundancy, and chondrogenic potential mesenchymal stromal cells (MSCs) offer an attractive cell source. MSCs are often combined with natural or synthetic hydrogels providing tunable biocompatibility, biodegradability, and enhanced cell functionality. In this review, we focused on the different advantages and disadvantages of various natural, synthetic, and modified hydrogels. We examined the different combinations of MSC-subpopulations and hydrogels used for cartilage engineering in preclinical and clinical studies and reviewed the effects of added growth factors or gene transfer on chondrogenesis in MSC-laden hydrogels. The aim of this review is to add to the understanding of the disadvantages and advantages of various combinations of MSC-subpopulations, growth factors, gene transfers, and hydrogels in cartilage engineering.
Collapse
|
22
|
Zhou P, Zhou H, Shu J, Fu S, Yang Z. Skin wound healing promoted by novel curcumin-loaded micelle hydrogel. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1152. [PMID: 34430593 PMCID: PMC8350667 DOI: 10.21037/atm-21-2872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 02/05/2023]
Abstract
Background The development of biomaterials with the ability to promote skin wound healing is an important topic in the field of biomedical science. In this study, a topical curcumin (Cur) gel [Cur/hyaluronic acid (HA)] was prepared by combining curcumin-loaded PCL-b-PEG-b-PCL (PECE) nanomicelles (PCEC/Cur) and HA to effectively promote skin wound healing. Continuous drug release from PCEC/Cur can provide long-term protection and treatment of skin wounds. Methods The study was completed in two stages. The first stage (in vitro): PCEC/Cur were prepared by thin film hydration method. The second stage (in vivo): 36 anesthetized rats were used to prepare a round full-thickness skin defect wound with a diameter of 23 mm on the dorsal side of the spine, and the rats were randomly divided into 4 groups with 9 rats in each group. Results The results showed that wounds in the Cur/HA group were restored to normal after 14 days after operation, representing 96%±3% wound healing. Hematoxylin and eosin (HE) staining showed that hair follicles in the Cur/HA group were visible and that the re-epithelialization time was earlier. Masson staining showed that Cur/HA promoted the formation of collagen fibers. Immunohistochemical observation showed that angiogenesis and subsequent healing of the wound surface was enhanced in the Cur/HA group. Conclusions The injectable hyaluronic acid gel complex Cur/HA is a promising candidate material for a wound dressing to promote healing.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Zhou
- Post Graduation Training Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Shu
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhu Yang
- Nursing Department, People's Hospital of Luxian County, Luzhou, China
| |
Collapse
|